155 research outputs found

    Fundamental Parameters of Exoplanets and Their Host Stars

    Full text link
    For much of human history we have wondered how our solar system formed, and whether there are any other planets like ours around other stars. Only in the last 20 years have we had direct evidence for the existence of exoplanets, with the number of known exoplanets dramatically increasing in recent years, especially with the success of the Kepler mission. Observations of these systems are becoming increasingly more precise and numerous, thus allowing for detailed studies of their masses, radii, densities, temperatures, and atmospheric compositions. However, one cannot accurately study exoplanets without examining their host stars in equal detail, and understanding what assumptions must be made to calculate planetary parameters from the directly derived observational parameters. In this thesis, I present observations and models of the primary transits and secondary eclipses of transiting exoplanets from both the ground and Kepler in order to better study their physical characteristics and search for additional exoplanets. I then identify, observe, and model new eclipsing binaries to better understand the stellar mass-radius relationship and stellar limb-darkening, compare these observations to the predictions of stellar models, and attempt to define to what extent these fundamental stellar characteristics can impact derived planetary parameters. I also present novel techniques for the direct determination of exoplanet masses and stellar inclinations via multi-wavelength astrometry, the ground-based photometric observation of stars at sub-millimagnitude precision, the reduction of Kepler photometry from pixel-level data, the extraction of radial velocities from spectroscopic observations, and the automatic identification, period analysis, and modeling of eclipsing binaries and transiting planets in large datasets.Comment: PhD Thesis, New Mexico State University (Sep 28, 2012), 326 pages, 63 figures, 24 table

    Kepler Planet Detection Metrics: Robovetter Completeness and Effectiveness for Data Release 25

    Get PDF
    In general, the Kepler pipeline identifies a list of Threshold Crossing Events (TCEs), which are periodic flux decrements meeting certain criteria (Jenkins, 2017). These TCEs are reviewed and those that appear consistent with astrophysically transiting or eclipsing systems are classified as Kepler Objects of Interest (KOIs). Further review is given to KOIs, which are then dispositioned as Planet Candidates (PCs) or False Positive (FPs). FPs are further denoted by four major flags that indicate if the signal is Not Transit-Like (NTL), due to a Stellar Eclipse (SS; previously referred to as Significant Secondary), and/or due to contamination from a source other than the target as evidenced by a Centroid Offset (CO) oran Ephemeris Match (EM) with another object. This entire TCE review process is known as dispositioning or vetting.In the first five Kepler mission planet candidate catalogs (Borucki et al., 2011a,b; Batalha et al., 2013; Burke et al., 2014; Rowe et al., 2015), TCEs were manually examined on an individual basis and dispositioned using various plots and quantitative diagnostic tests (see e.g., Coughlin, 2017). In the sixth catalog, Mullally et al. (2015a) employed partial automation via simple parameter cuts to automatically disposition a large fraction of TCEs as not transit-like. Mullally et al. (2015a) also used an automated technique known as the centroid Robovetter (Mullally, 2017) to automatically identify some FP KOIs due to centroid offsets - a telltale signature of light contamination from another target. The remaining targets were manually dispositioned. In the seventh catalog, Coughlin et al. (2016) automated theentire dispositioning process using what is collectively known simply as the Robovetter.In the eighth and final mission catalog, Thompson et al. (2017) use a revised Robovetter to automate the dispositioning of all TCEs with an emphasis on creating a catalog suitable for accurately determining planet occurrence rates. In order to calculate accurate occurrence rates, the completeness and effectiveness of the Robovetter must be characterized. We define these terms as applied to the Robovetter, following Thompson et al. (2017), as:1. Completeness: The fraction of transiting planets detected by the pipeline that are classified as planet candidates by the Robovetter.2. Effectiveness: The fraction of false positives detected by the pipeline that are classified as false positives by the Robovetter.The remainder of this document describes products that can be used to quantitatively assess Robovetter completeness and effectiveness for an arbitrary set of Kepler stars

    Orbital Solutions and Absolute Elements of the Eclipsing Binary MY Cygni

    Get PDF
    Differential UBV photoelectric photometry for the eclipsing binary MY Cyg is presented. The Wilson-Devinney program is used to simultaneously solve the three light curves together with previously published radial velocities. A comparison is made with the previous solution found with the Russell-Merrill method. We examine the long-term apsidal motion of this well-detached, slightly eccentric system. We determine absolute dimensions, discuss metallicity/Am-star issues, and estimate the evolutionary status of the stars

    Planetary Candidates Observed by Kepler. VII. The First Fully Uniform Catalog Based on the Entire 48-month Data Set (Q1–Q17 DR24)

    Get PDF
    We present the seventh Kepler planet candidate (PC) catalog, which is the first catalog to be based on the entire, uniformly processed 48-month Kepler data set. This is the first fully automated catalog, employing robotic vetting procedures to uniformly evaluate every periodic signal detected by the Q1–Q17 Data Release 24 (DR24) Kepler pipeline. While we prioritize uniform vetting over the absolute correctness of individual objects, we find that our robotic vetting is overall comparable to, and in most cases superior to, the human vetting procedures employed by past catalogs. This catalog is the first to utilize artificial transit injection to evaluate the performance of our vetting procedures and to quantify potential biases, which are essential for accurate computation of planetary occurrence rates. With respect to the cumulative Kepler Object of Interest (KOI) catalog, we designate 1478 new KOIs, of which 402 are dispositioned as PCs. Also, 237 KOIs dispositioned as false positives (FPs) in previous Kepler catalogs have their disposition changed to PC and 118 PCs have their disposition changed to FPs. This brings the total number of known KOIs to 8826 and PCs to 4696. We compare the Q1–Q17 DR24 KOI catalog to previous KOI catalogs, as well as ancillary Kepler catalogs, finding good agreement between them. We highlight new PCs that are both potentially rocky and potentially in the habitable zone of their host stars, many of which orbit solar-type stars. This work represents significant progress in accurately determining the fraction of Earth-size planets in the habitable zone of Sun-like stars. The full catalog is publicly available at the NASA Exoplanet Archive

    Structure in the Disk of epsilon Aurigae: Analysis of the ARCES and TripleSpec data obtained during the 2010 eclipse

    Full text link
    Context: Worldwide interest in the recent eclipse of epsilon Aurigae resulted in the generation of several extensive data sets, including those related to high resolution spectroscopic monitoring. This lead to the discovery, among other things, of the existence of a mass transfer stream, seen notably during third contact. Aims: We explored spectroscopic facets of the mass transfer stream during third contact, using high resolution spectra obtained with the ARCES and TripleSpec instruments at Apache Point Observatory. Methods: One hundred and sixteen epochs of data between 2009 and 2012 were obtained, and equivalent widths and line velocities measured, selected according to reports of these being high versus low eccentricity disk lines. These datasets also enable greater detail to be measured of the mid-eclipse enhancement of the He I 10830A line, and the discovery of the P Cygni shape of the Pa beta line at third contact. Analysis: We found evidence of higher speed material, associated with the mass transfer stream, persisting between third and fourth eclipse contacts. We visualize the disk and stream interaction using SHAPE software, and use CLOUDY software to estimate that the source of the enhanced He I 10830A absorption arises from a region with log n = 10 (/cm3) and temperature of 20,000 K consistent with a mid B type central star. Results and Next Steps: Van Rensbergen binary star evolutionary models are somewhat consistent with the current binary parameters for the case of a 9 plus 8 solar mass initial binary, evolving into a 2.3 and 14.11 solar mass end product after 35 Myr. Prior to the next eclipse, it is possible to make predictions which suggest that continued monitoring will help resolve standing questions about this binary

    Transit Timing Observations of the Extrasolar Hot-Neptune Planet GL 436b

    Full text link
    Gliese 436 is an M dwarf with a mass of 0.45 Msun and hosts the extrasolar planet GL 436b [3, 6, 7, 2], which is currently the least massive transiting planet with a mass of ~23.17 Mearth [10], and the only planet known to transit an M dwarf. GL 436b represents the first transiting detection of the class of extrasolar planets known as "Hot Neptunes" that have masses within a few times that of Neptune's mass (~17 Mearth) and orbital semimajor axis <0.1 AU about the host star. Unlike most other known transiting extrasolar planets, GL 436b has a high eccentricity (e~0.16). This brings to light a new parameter space for habitability zones of extrasolar planets with host star masses much smaller than typical stars of roughly a solar mass. This unique system is an ideal candidate for orbital perturbation and transit-time variation (TTV) studies to detect smaller, possibly Earth-mass planets in the system. In April 2008 we began a long-term intensive campaign to obtain complete high-precision light curves using the Apache Point Observatory's 3.5-meter telescope, NMSU's 1-meter telescope (located at APO), and Sommers Bausch Observatory's 24" telescope. These light curves are being analyzed together, along with amateur and other professional astronomer observations. Results of our analysis are discussed. Continued measurements over the next few years are needed to determine if additional planets reside in the system, and to study the impact of other manifestations on the light curves, such as star spots and active regions.Comment: 4 pages, 3 figures. To appear in "Proceedings of the 15th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun", 2009, AIP Conference Proceedings vol. 1094, ed. Eric Stempel

    Modeling Multi-Wavelength Stellar Astrometry. II. Determining Absolute Inclinations, Gravity Darkening Coefficients, and Spot Parameters of Single Stars with SIM Lite

    Get PDF
    We present a novel technique to determine the absolute inclination of single stars using multi-wavelength sub-milliarcsecond astrometry. The technique exploits the effect of gravity darkening, which causes a wavelength-dependent astrometric displacement parallel to a star's projected rotation axis. We find this effect is clearly detectable using SIM Lite for various giant stars and rapid rotators, and present detailed models for multiple systems using the REFLUX code. We also explore the multi-wavelength astrometric reflex motion induced by spots on single stars. We find that it should be possible to determine spot size, relative temperature, and some positional information for both giant and nearby main-sequence stars utilizing multi-wavelength SIM Lite data. This data will be extremely useful in stellar and exoplanet astrophysics, as well as supporting the primary SIM Lite mission through proper multi-wavelength calibration of the giant star astrometric reference frame, and reduction of noise introduced by starspots when searching for extrasolar planets.Comment: 8 pages, 7 figures, 4 tables. Accepted for publication in the Astrophysical Journa
    • …
    corecore