233 research outputs found
Deletion of the RNaseIII Enzyme Dicer in Thyroid Follicular Cells Causes Hypothyroidism with Signs of Neoplastic Alterations
Micro-RNAs (miRNAs) are small non-coding RNAs that regulate gene expression, mainly at mRNA post-transcriptional level. Functional maturation of most miRNAs requires processing of the primary transcript by Dicer, an RNaseIII-type enzyme. To date, the importance of miRNA function for normal organogenesis has been demonstrated in several mouse models of tissue-specific Dicer inactivation. However, the role of miRNAs in thyroid development has not yet been addressed. For the present study, we generated mouse models in which Dicer expression has been inactivated at two different stages of thyroid development in thyroid follicular cells. Regardless of the time of Dicer invalidation, the early stages of thyroid organogenesis, preceding folliculogenesis, were unaffected by the loss of small RNAs, with a bilobate gland in place. Nevertheless, Dicer mutant mice were severely hypothyroid and died soon after weaning unless they were substituted with T4. A conspicuous follicular disorganization was observed in Dicer mutant thyroids together with a strong down regulation of Nis expression. With increasing age, the thyroid tissue showed characteristics of neoplastic alterations as suggested by a marked proliferation of follicular cells and an ongoing de-differentiation in the center of the thyroid gland, with a loss of Pax8, FoxE1, Nis and Tpo expression. Together, our data show that loss of miRNA maturation due to Dicer inactivation severely disturbs functional thyroid differentiation. This suggests that miRNAs are mandatory to fine-tune the expression of thyroid specific genes and to maintain thyroid tissue homeostasis
Glycoprotein hormone receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database
Glycoprotein hormone receptors (provisional nomenclature [45]) are activated by a non-covalent heterodimeric glycoprotein made up of a common α chain (glycoprotein hormone common alpha subunit CGA, P01215), with a unique β chain that confers the biological specificity to FSH, LH, hCG or TSH. There is binding cross-reactivity across the endogenous agonists for each of the glycoprotein hormone receptors. The deglycosylated hormones appear to exhibit reduced efficacy at these receptors [120]
Glycoprotein hormone receptors (version 2020.4) in the IUPHAR/BPS Guide to Pharmacology Database
Glycoprotein hormone receptors (provisional nomenclature [45]) are activated by a non-covalent heterodimeric glycoprotein made up of a common α chain (glycoprotein hormone common alpha subunit CGA, P01215), with a unique β chain that confers the biological specificity to FSH, LH, hCG or TSH. There is binding cross-reactivity across the endogenous agonists for each of the glycoprotein hormone receptors. The deglycosylated hormones appear to exhibit reduced efficacy at these receptors [120]
Glycoprotein hormone receptors in GtoPdb v.2023.1
Glycoprotein hormone receptors (provisional nomenclature [47]) are activated by a non-covalent heterodimeric glycoprotein made up of a common α chain (glycoprotein hormone common alpha subunit CGA, P01215), with a unique β chain that confers the biological specificity to FSH, LH, hCG or TSH. There is binding cross-reactivity across the endogenous agonists for each of the glycoprotein hormone receptors. The deglycosylated hormones appear to exhibit reduced efficacy at these receptors [122, 31]
Identification and characterization of an endogenous chemotactic ligand specific for FPRL2
Chemotaxis of dendritic cells (DCs) and monocytes is a key step in the initiation of an adequate immune response. Formyl peptide receptor (FPR) and FPR-like receptor (FPRL)1, two G protein–coupled receptors belonging to the FPR family, play an essential role in host defense mechanisms against bacterial infection and in the regulation of inflammatory reactions. FPRL2, the third member of this structural family of chemoattractant receptors, is characterized by its specific expression on monocytes and DCs. Here, we present the isolation from a spleen extract and the functional characterization of F2L, a novel chemoattractant peptide acting specifically through FPRL2. F2L is an acetylated amino-terminal peptide derived from the cleavage of the human heme-binding protein, an intracellular tetrapyrolle-binding protein. The peptide binds and activates FPRL2 in the low nanomolar range, which triggers intracellular calcium release, inhibition of cAMP accumulation, and phosphorylation of extracellular signal–regulated kinase 1/2 mitogen-activated protein kinases through the Gi class of heterotrimeric G proteins. When tested on monocytes and monocyte-derived DCs, F2L promotes calcium mobilization and chemotaxis. Therefore, F2L appears as a new natural chemoattractant peptide for DCs and monocytes, and the first potent and specific agonist of FPRL2
Investigation of the effects of phthalates on in vitro thyroid models with RNA-Seq and ATAC-Seq
IntroductionPhthalates are a class of endocrine-disrupting chemicals that have been shown to negatively correlate with thyroid hormone serum levels in humans and to cause a state of hyperactivity in the thyroid. However, their mechanism of action is not well described at the molecular level.MethodsWe analyzed the response of mouse thyroid organoids to the exposure to a biologically relevant dose range of the phthalates bis(2-ethylhexyl) phthalate (DEHP), di-iso-decylphthalate (DIDP), di-iso-nonylphthalate (DINP), and di-n-octylphthalate (DnOP) for 24 h and simultaneously analyzed mRNA and miRNA expression via RNA sequencing. Using the expression data, we performed differential expression and gene set enrichment analysis. We also exposed the human thyroid follicular epithelial cell line Nthy-ori 3-1 to 1 µM of DEHP or DINP for 5 days and analyzed changes in chromatin accessibility via ATAC-Seq.ResultsDose-series analysis showed how the expression of several genes increased or decreased at the highest dose tested. As expected with the low dosing scheme, the compounds induced a modest response on the transcriptome, as we identified changes in only mmu-miR-143-3p after DINP treatment and very few differentially expressed genes. No effect was observed on thyroid markers. Ing5, a component of histones H3 and H4 acetylation complexes, was consistently upregulated in three out of four conditions compared to control, and we observed a partial overlap among the genes differentially expressed by the treatments. Gene set enrichment analysis showed enrichment in the treatment samples of the fatty acid metabolism pathway and in the control of pathways related to the receptor signalling and extracellular matrix organization. ATAC-Seq analysis showed a general increase in accessibility compared to the control, however we did not identify significant changes in accessibility in the identified regions.DiscussionWith this work, we showed that despite having only a few differentially expressed genes, diverse analysis methods could be applied to retrieve relevant information on phthalates, showing the potential of in vitro thyroid-relevant systems for the analysis of endocrine disruptors
Prevalence of HIV-1 drug resistance in treated patients with viral load >50 copies/mL in 2009: a French nationwide study
Background Surveillance of HIV-1 drug resistance in treated patients with plasma viral load (VL) >50 copies/mL. Methods The protease and reverse transcriptase (RT) genes were systematically sequenced in samples from 756 patients with VL >50 copies/mL in 2009. The genotyping results were interpreted for each antiretroviral drug (ARV) by using the ANRS algorithm v21. Weighted analyses were used to derive representative estimates of percentages of patients. Prevalence rates were compared with those obtained in 2004 among patients with VL >1000 copies/mL. Results Sequences were obtained for 506 patients. Sequencing was successful in 45%, 80% and 96% of samples with VL of 51-500, 501-1000 and >1000 copies/mL, respectively. Resistance or possible resistance to at least one ARV was observed in 59% of samples. Overall, 0.9% of samples contained viruses resistant to all drugs belonging to at least three drug classes. All resistance prevalence rates were significantly lower in 2009 than in 2004. Conclusion In France, where 86% of patients were receiving combination antiretroviral therapy in 2009, only 15.0% of patients had a VL >50 copies/mL, suggesting that only 8.9% of treated patients could potentially transmit resistant viruses. Only 0.08% of patients harboured viruses fully resistant to at least three antiretroviral drug classes. Further studies are needed to determine whether resistance continues to decline over tim
HIV-1-infected patients from the French National Observatory experiencing virological failure while receiving enfuvirtide
Objectives We studied gp41 mutations associated with failing enfuvirtide salvage therapy. Methods This multicentre study involved patients with HIV-1 plasma viral load (pVL) > 5000 copies/mL after at least 3 months of uninterrupted enfuvirtide therapy and with plasma samples available at inclusion (T0), at initial enfuvirtide failure (T1) and at last follow-up visit during continued failing enfuvirtide therapy (T2). The HR-1 and HR-2 domains of the gp41 gene were sequenced at T0, T1 and T2. Results Ninety-nine patients were enrolled. At baseline, the median pVL and CD4 cell count were 5.1 log copies/mL and 72 cells/mm3, respectively. Based on the ANRS Resistance Group algorithm, the proportion of patients harbouring viruses with enfuvirtide resistance mutations increased significantly between T0 and T1. In the HR-1 domain, the V38A/M, Q40H, N42T, N43D and L45M mutations wereselected (P < 0.02). In the HR-2 domain, no mutations were significantly selected during the follow-up. None of the mutations was associated with a CD4 cell count increment. Conclusions Mutations selected during failing enfuvirtide salvage therapy are mainly located in the HR-1 domain of the gp41 gene, between codons 38 and 45. No mutations were associated with an increase in the CD4 cell coun
Hidden molecular outflow in the LIRG Zw 049.057
Context. Feedback in the form of mass outflows driven by star formation or active galactic nuclei is a key component of galaxy evolution. The luminous infrared galaxy Zw 049.057 harbours a compact obscured nucleus with a possible far-infrared signature of outflowing molecular gas. Due to the high optical depths at far-infrared wavelengths, however, the interpretation of the outflow signature is uncertain. At millimeter and radio wavelengths, the radiation is better able to penetrate the large columns of gas and dust responsible for the obscuration. Aims. We aim to investigate the molecular gas distribution and kinematics in the nucleus of Zw 049.057 in order to confirm and locate the molecular outflow, with the ultimate goal to understand how the nuclear activity affects the host galaxy. Methods. We used high angular resolution observations from the Submillimeter Array (SMA), the Atacama Large Millimeter/submillimeter Array (ALMA), and the Karl G. Jansky Very Large Array (VLA) to image the CO J = 2-1 and J = 6-5 emission, the 690 GHz continuum, the radio centimeter continuum, and absorptions by rotationally excited OH. Results. The CO line profiles exhibit wings extending ~ 300 km s -1 beyond the systemic velocity. At centimeter wavelengths, we find a compact (~ 40 pc) continuum component in the nucleus, with weaker emission extending several 100 pc approximately along the major and minor axes of the galaxy. In the OH absorption lines toward the compact continuum, wings extending to a similar velocity as for the CO are only seen on the blue side of the profile. The weak centimeter continuum emission along the minor axis is aligned with a highly collimated, jet-like dust feature previously seen in near-infrared images of the galaxy. Comparison of the apparent optical depths in the OH lines indicate that the excitation conditions in Zw 049.057 differ from those within other OH megamaser galaxies. Conclusions. We interpret the wings in the spectral lines as signatures of a nuclear molecular outflow. A relation between this outflow and the minor axis radio feature is possible, although further studies are required to investigate this possible association and understand the connection between the outflow and the nuclear activity. Finally, we suggest that the differing OH excitation conditions are further evidence that Zw 049.057 is in a transition phase between megamaser and kilomaser activity
- …