23 research outputs found

    A structural study of hcp and liquid iron under shock compression up to 275 GPa

    Full text link
    We combine nanosecond laser shock compression with \emph{in-situ} picosecond X-ray diffraction to provide structural data on iron up to 275 GPa. We constrain the extent of hcp-liquid coexistence, the onset of total melt, and the structure within the liquid phase. Our results indicate that iron, under shock compression, melts completely by 258(8) GPa. A coordination number analysis indicates that iron is a simple liquid at these pressure-temperature conditions. We also perform texture analysis between the ambient body-centered-cubic (bcc) α\alpha, and the hexagonal-closed-packed (hcp) high-pressure ϵ\epsilon-phase. We rule out the Rong-Dunlop orientation relationship (OR) between the α\alpha and ϵ\epsilon-phases. However, we cannot distinguish between three other closely related ORs: Burger's, Mao-Bassett-Takahashi, and Potter's OR. The solid-liquid coexistence region is constrained from a melt onset pressure of 225(3) GPa from previously published sound speed measurements and full melt (246.5(1.8)-258(8) GPa) from X-ray diffraction measurements, with an associated maximum latent heat of melting of 623 J/g. This value is lower than recently reported theoretical estimates and suggests that the contribution to the earth's geodynamo energy budget from heat release due to freezing of the inner core is smaller than previously thought. Melt pressures for these nanosecond shock experiments are consistent with gas gun shock experiments that last for microseconds, indicating that the melt transition occurs rapidly

    Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions

    Get PDF
    The high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as 10 times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ x-ray diffraction to study the effect of composition on the crystal structure and density of Fe-Si alloys, a potential constituent of super-Earth cores. We find that Fe-Si alloy with 7 weight % (wt %) Si adopts the hexagonal close-packed structure over the measured pressure range, whereas Fe-15wt%Si is observed in a body-centered cubic structure. This study represents the first experimental determination of the density and crystal structure of Fe-Si alloys at pressures corresponding to the center of a ~3–Earth mass terrestrial planet. Our results allow for direct determination of the effects of light elements on core radius, density, and pressures for these planets

    Equation of state of warm-dense boron nitride combining computation, modeling, and experiment

    Get PDF
    The equation of state (EOS) of materials at warm dense conditions poses significant challenges to both theory and experiment. We report a combined computational, modeling, and experimental investigation leveraging new theoretical and experimental capabilities to investigate warm-dense boron nitride (BN). The simulation methodologies include path integral Monte Carlo (PIMC), several density functional theory (DFT) molecular dynamics methods [plane-wave pseudopotential, Fermi operator expansion (FOE), and spectral quadrature (SQ)], activity expansion (ACTEX), and all-electron Green's function Korringa-Kohn-Rostoker (MECCA), and compute the pressure and internal energy of BN over a broad range of densities (ρ\rho) and temperatures (TT). Our experiments were conducted at the Omega laser facility and measured the Hugoniot of BN to unprecedented pressures (12--30 Mbar). The EOSs computed using different methods cross validate one another, and the experimental Hugoniot are in good agreement with our theoretical predictions. We assess that the largest discrepancies between theoretical predictions are <<4% in pressure and <<3% in energy and occur at 10610^6 K. We find remarkable consistency between the EOS from DFT calculations performed on different platforms and using different exchange-correlation functionals and those from PIMC using free-particle nodes. This provides strong evidence for the accuracy of both PIMC and DFT in the warm-dense regime. Moreover, SQ and FOE data have significantly smaller error bars than PIMC, and so represent significant advances for efficient computation at high TT. We also construct tabular EOS models and clarify the ionic and electronic structure of BN over a broad TρT-\rho range and quantify their roles in the EOS. The tabular models may be utilized for future simulations of laser-driven experiments that include BN as a candidate ablator material.Comment: 19 pages, 14 figures, 4 table

    Equation of state of boron nitride combining computation, modeling, and experiment

    Get PDF
    The equation of state (EOS) of materials at warm dense conditions poses significant challenges to both theory and experiment. We report a combined computational, modeling, and experimental investigation leveraging new theoretical and experimental capabilities to investigate warm-dense boron nitride (BN). The simulation methodologies include path integral Monte Carlo (PIMC), several density functional theory (DFT) molecular dynamics methods [plane-wave pseudopotential, Fermi operator expansion (FOE), and spectral quadrature (SQ)], activity expansion (actex), and all-electron Green\u27s function Korringa-Kohn-Rostoker (mecca), and compute the pressure and internal energy of BN over a broad range of densities and temperatures. Our experiments were conducted at the Omega laser facility and the Hugoniot response of BN to unprecedented pressures (1200–2650 GPa). The EOSs computed using different methods cross validate one another in the warm-dense matter regime, and the experimental Hugoniot data are in good agreement with our theoretical predictions. By comparing the EOS results from different methods, we assess that the largest discrepancies between theoretical predictions are ≲4% in pressure and ≲3% in energy and occur at 106K, slightly below the peak compression that corresponds to the K-shell ionization regime. At these conditions, we find remarkable consistency between the EOS from DFT calculations performed on different platforms and using different exchange-correlation functionals and those from PIMC using free-particle nodes. This provides strong evidence for the accuracy of both PIMC and DFT in the high-pressure, high-temperature regime. Moreover, the recently developed SQ and FOE methods produce EOS data that have significantly smaller statistical error bars than PIMC, and so represent significant advances for efficient computation at high temperatures. The shock Hugoniot predicted by PIMC, actex, and mecca shows a maximum compression ratio of 4.55±0.05 for an initial density of 2.26g/cm3, higher than the Thomas-Fermi predictions by about 5%. In addition, we construct tabular EOS models that are consistent with the first-principles simulations and the experimental data. Our findings clarify the ionic and electronic structure of BN over a broad range of temperatures and densities and quantify their roles in the EOS and properties of this material. The tabular models may be utilized for future simulations of laser-driven experiments that include BN as a candidate ablator material

    Pressure-induced phase transitions in amorphous materials (germanium and silicon-germanium alloys)

    No full text
    Cette thèse présente des mesures de spectroscopie Raman, d'absorption des rayons X et de diffraction des rayons X sous haute pression en cellule à enclumes de diamant dans deux semiconducteurs amorphes: le germanium et les alliages silicium-germanium (concentration de Si environ 75%). L'étude des systèmes amorphes sous haute pression présente un grand intérêt en ce qui concerne la physique fondamentale et appliquée. Notamment, l'application d'une pression externe peut induire des transitions de phase entre deux différentes structures amorphes caractérisées par différentes valeurs de densité (polyamorphisme''). L'étude à haute pression dans le germanium amorphe a montré qu'il y a une forte connexion entre sa morphologie et les transitions de phase subies. Une possible transition vers une phase amorphe métallique plus dense a été observée à 8 GPa dans l'échantillon le plus homogène, suivie par la cristallisation dans une structure tétragonale. Ces transitions sont réversibles et la structure amorphe réapparaît à la décompression, en passant, dans l'échantillon plus homogène par une phase cristalline métastable. Les mesures sous haute pression dans l'alliage a-SiGe ont montré qu'elle cristallise dans une structure quadratique à partir de 12 GPa. La cristallisation avance assez graduellement et une coexistence de phase amorphe-cristal est observée. A partir de 22 GPa on observe une nouvelle structure cristalline identifiée avec l'hexagonale simple. Cet étude n'a pas montré d'évidence de transition amorphe-amorphe. A la décompression on observe aussi la réamorphisasion de l'échantillon et la structure obtenue semble être caractérisée par un degré de désordre plus élevé.PARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Pressure effects on icosahedral short range order in undercooled copper

    No full text
    International audienceThere is not a wide consensus on the role played by the icosahedral short range order on the stability of undercooled simple metals. The scenario is even less clear for undercooled metals under external pressure. Classical molecular dynamics simulations are performed to explain experimental results recently obtained on liquid and undercooled liquid copper under pressure. The atomic configurations are characterized by a common neighbor analysis to reveal the icosahedral short range order and its relation with external pressure. External pressure increases the probability to find atomic bonds with icosahedral symmetry both in the liquid and in the undercooled copper
    corecore