2,304 research outputs found

    Constructional Volcanic Edifices on Mercury: Candidates and Hypotheses of Formation

    Get PDF
    Mercury, a planet with a predominantly volcanic crust, has perplexingly few, if any, constructional volcanic edifices, despite their common occurrence on other solar system bodies with volcanic histories. Using image and topographical data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, we describe two small (< 15 km‐diameter) prominences with shallow summit depressions associated with volcanically flooded impact features. We offer both volcanic and impact‐related interpretations for their formation, and then compare these landforms with volcanic features on Earth and the Moon. Though we cannot definitively conclude that these landforms are volcanic, the paucity of constructional volcanic edifices on Mercury is intriguing in itself. We suggest that this lack is because volcanic eruptions with sufficiently low eruption volumes, rates, and flow lengths, suitable for edifice construction, were highly spatiotemporally restricted during Mercury's geological history. We suggest that volcanic edifices may preferentially occur in association with late‐stage, post‐impact effusive volcanic deposits. The ESA/JAXA BepiColombo mission to Mercury will be able to investigate further our candidate volcanic edifices, search for other, as‐yet unrecognized edifices beneath the detection limits of MESSENGER data, and test our hypothesis that edifice construction is favored by late‐stage, low‐volume effusive eruptions

    Exploring the origin of ice-filled craters in the north polar region of Mars

    Get PDF
    We investigate the origins of enigmatic ice-filled craters in the north polar region of Mars. We test several explanations for their origin, namely: (1) as polar cap remnants (2) accumulation independently of the polar cap, and (3) upwelling of subsurface water, analogous to either aufice or pingo formation on Earth. Each of these hypotheses has a significant impact on our understanding of Mars’ recent geological and climatic history and the behaviour of water and water ice at high latitudes. We used several lines of evidence to assess the most likely formation mechanism. We first performed a crater survey based on THEMIS visual data and MOLA elevation data to identify any craters that had domal central lumps which were different from normal central peaks. From this survey we identified 17 craters for further study. These include Louth, Korolev, Dokka and other unnamed craters. Using data from orbiting spectrometers; OMEGA on ESA’s Mars Express and CRISM on NASA’s Mars Reconnaissance Orbiter; we verified that the composition of the exposed central domes was predominantly water ice. We found the domes fell into three groups: (1) those completely covered by dunes, (2) those partially covered by dunes and (3) those with no dunes. We investigated the morphology and the relative position of the domes using MOLA elevation data. We found that the domes are always asymmetrically placed within the craters. However, this asymmetry could not easily be linked to wind directions as revealed by dune slip-faces [2]. The domes often have a moat-like structure and in some cases do not cover the entire crater floor, e.g. Louth Crater. From image data, we identified six craters which possessed internal stratigraphy, in the form of regularly spaced layers, and of these we have inspected three in detail. We found that the layers possess both strong sinuosity and high angle unconformities. We interpret the internal stratigraphy as representing a sequence of regular cyclic accumulations, which produced the layers, followed by asymmetric ablation and subsequent resumption of accumulation, to produce the unconformities. Hence, the present-day shape of the domes indicates that they are in a phase of ablation.We attribute the colour contrasts between layers to different levels of dust, or particulate content. This could form a source for the dunes, which are often located on the summits of these domes. We find that this sequence is best explained by a model of atmospheric condensation. Our measurements of internal layer spacing and observations of layer stratigraphy argues that these deposits are not linked directly to a former, more extensive polar cap

    Are the Dorsa Argentea on Mars eskers?

    Get PDF
    The Dorsa Argentea are an extensive assemblage of ridges in the southern high latitudes of Mars. They have previously been interpreted as eskers formed by deposition of sediment in subglacial meltwater conduits, implying a formerly more extensive south polar ice sheet. In this study, we undertake the first large-scale statistical analysis of aspects of the geometry and morphology of the Dorsa Argentea in comparison with terrestrial eskers in order to evaluate this hypothesis. The ridges are re-mapped using integrated topographic (MOLA) and image (CTX/HRSC) data, and their planar geometries compared to recent characterisations of terrestrial eskers. Quantitative tests for esker-like relationships between ridge height, crest morphology and topography are then completed for four major Dorsa Argentea ridges. The following key conclusions are reached: (1) Statistical distributions of lengths and sinuosities of the Dorsa Argentea are similar to those of terrestrial eskers in Canada. (2) Planar geometries across the Dorsa Argentea support formation of ridges in conduits extending towards the interior of an ice sheet that thinned towards its northern margin, perhaps terminating in a proglacial lake. (3) Variations in ridge crest morphology are consistent with observations of terrestrial eskers. (4) Statistical tests of previously observed relationships between ridge height and longitudinal bed slope, similar to those explained by the physics of meltwater flow through subglacial meltwater conduits for terrestrial eskers, confirm the strength of these relationships for three of four major Dorsa Argentea ridges. (5) The new quantitative characterisations of the Dorsa Argentea may provide useful constraints for parameters in modelling studies of a putative former ice sheet in the south polar regions of Mars, its hydrology, and mechanisms that drove its eventual retreat.FEGB is funded by STFC grant ST/N50421X/1 and is grateful for bursaries provided by The Open University, The Ogden Trust and the British Society for Geomorphology. SJC was funded by a Leverhulme Trust Grant RPG-397. We would like to thank Peter Fawdon for his technical advice. We are grateful to RD Storrar for providing raw data for the Canadian eskers, and to both RD Storrar and H Bernhardt for their insightful reviews of the manuscript.This is the final version of the article. It first appeared from Elsevier via https://doi.org/ 10.1016/j.icarus.2016.03.02

    Mechanisms of explosive volcanism on Mercury: implications from its global distribution and morphology

    Get PDF
    The identification of widespread pyroclastic vents and deposits on Mercury has important implications for the planet's bulk volatile content and thermal evolution. However, the significance of pyroclastic volcanism for Mercury depends on the mechanisms by which the eruptions occurred. Using images acquired by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft, we have identified 150 sites where endogenic pits are surrounded by a relatively bright and red diffuse-edged spectral anomaly, a configuration previously used to identify sites of explosive volcanism. We find that these sites cluster at the margins of impact basins and along regional tectonic structural trends. Locally, pits and deposits are usually associated with zones of weakness within impact craters and/or with the surface expressions of individual thrust faults. Additionally, we use images and stereo-derived topographic data to show that pyroclastic deposits are dispersed up to 130 km from their source vent and commonly have either no relief or low circumpit relief within a wider, thinner deposit. These eruptions were therefore likely driven by a relatively high concentration of volatiles, consistent with volatile concentration in a shallow magma chamber prior to eruption. The colocation of sites of explosive volcanism with near-surface faults and crater-related fractures is likely a result of such structures acting as conduits for volatile and/or magma release from shallow reservoirs, with volatile overpressure in these reservoirs a key trigger for eruption in at least some cases. Our findings suggest that widespread, long-lived explosive volcanism on Mercury has been facilitated by the interplay between impact cratering, tectonic structures, and magmatic fractionation

    Hollows on Mercury: materials and mechanisms involved in their formation

    Get PDF
    Recent images of the surface of Mercury have revealed an unusual and intriguing landform: sub-kilometre scale, shallow, flat-floored, steep-sided rimless depressions typically surrounded by bright deposits and generally occurring in impact craters. These ‘hollows’ appear to form by the loss of a moderately-volatile substance from the planet’s surface and their fresh morphology and lack of superposed craters suggest that this process has continued until relatively recently (and may be on-going). Hypotheses to explain the volatile-loss have included sublimation and space weathering, and it has been suggested that hollow-forming volatiles are endogenic and are exposed at the surface during impact cratering. However, detailed verification of these hypotheses has hitherto been lacking. In this study, we have conducted a comprehensive survey of all MESSENGER images obtained up to the end of its fourth solar day in orbit in order to identify hollowed areas. We have studied how their location relates to both exogenic processes (insolation, impact cratering, and solar wind) and endogenic processes (explosive volcanism and flood lavas) on local and regional scales. We find that there is a weak correlation between hollow formation and insolation intensity, suggesting formation may occur by an insolation-related process such as sublimation. The vast majority of hollow formation is in localised or regional low-reflectance material within impact craters, suggesting that this low-reflectance material is a volatile-bearing unit present below the surface that becomes exposed as a result of impacts. In many cases hollow occurrence is consistent with formation in volatile-bearing material exhumed and exposed during crater formation, while in other cases volatiles may have accessed the surface later through re-exposure and possibly in association with explosive volcanism. Hollows occur at the surface of thick flood lavas only where a lower-reflectance substrate has been exhumed from beneath them, indicating that this form of flood volcanism on Mercury lacks significant concentrations of hollow-forming volatiles

    Frontiers in geomorphometry and earth surface dynamics: possibilities, limitations and perspectives

    Get PDF
    Geomorphometry, the science of quantitative land-surface analysis, has become a flourishing interdisciplinary subject, with applications in numerous fields. The interdisciplinarity of geomorphometry is its greatest strength and also one of its major challenges. Gaps are still present between the process focussed fields (e.g. soil science, glaciology, volcanology) and the technical domain (such as computer science, statistics 
) where approaches and theories are developed. Thus, interesting geomorphometric applications struggle to jump between process-specific disciplines, but also struggle to take advantage of advances in computer science and technology. This special issue is therefore focused on facilitating cross-fertilization between disciplines, and highlighting novel technical developments and innovative applications of geomorphometry to various Earth-surface processes. The issue collects a variety of contributions which fall into two main categories: Perspectives and Research, further divided into “Research and innovative techniques” and “Research and innovative applications”. It showcases potentially exciting developments and tools which are the building blocks for the next step-change in the field

    Development of advanced practice competency standards for dietetics in Australia

    Get PDF
    Aim: This study aimed to explore the work roles, major tasks and core activities of advanced practice dietitians in Australia to define the Competency Standards for advanced practice. Methods: A qualitative approach was used to review advanced dietetic practice in Australia involving experienced professionals, mostly dietitians. Four focus groups were conducted with a total of 17 participants and an average of 20 years experience: 15 dietitian practitioners plus 2 employers (1 dietitian and 1 non-dietitian). The focus groups explored the key purpose, roles and outcomes of these practitioners. Data from the focus groups were confirmed with in-depth interviews about their core activities with a purposive sample of 10 individuals recently recognised as Advanced Accredited Practising Dietitians. Data from both focus groups and interviews were analysed adductively to identify key themes. Results: The key theme that emerged to define advanced dietetics practice was leadership, with four subthemes that described in more detail the major work roles and outcomes of advanced practice. These subthemes identified that advanced practitioners were (i) outcome-focused, having impact; (ii) influence others and advocate; (iii) innovate and embrace change; and (iv) inspire others and are recognised for their practice. These outcomes were conceptualised within a broad generalist framework to generate revised Competency Standards. Conclusions: This study confirmed that leadership rather than specialist practice skills is the key determinant of advanced practice

    The effect of sewage on uptake of inorganic nitrogen and carbon by natural populations of marine phytoplankton

    Get PDF
    The short-term effect of sewage effluent on nitrogen and carbon productivity of natural marine phytoplankton obtained near two California outfalls has been studied. Uptake of ammonium was shown to be inhibited at much lower effluent concentrations than was carbon uptake. Since the populations studied were shown to exhibit Michaelis-Menten kinetics for ammonium uptake, a precise measurement of inhibition could be obtained. The results have immediate application since the phytoplankton populations of the area studied have been shown previously to be nitrogen limited

    Mass wasting triggered by seasonal CO<sub>2</sub> sublimation under Martian atmospheric conditions: Laboratory experiments

    Get PDF
    Sublimation is a recognized process by which planetary landscapes can be modiïŹed. However, interpretation of whether sublimation is involved in downslope movements on Mars and other bodies is restricted by a lack of empirical data to constrain this mechanism of sediment transport and its inïŹ‚uence on landform morphology. Here we present the ïŹrst set of laboratory experiments under Martian atmospheric conditions which demonstrate that the sublimation of CO2 ice from within the sediment body can trigger failure of unconsolidated, regolith slopes and can measurably alter the landscape. Previous theoretical studies required CO2 slab ice for movements, but we ïŹnd that only frost is required. Hence, sediment transport by CO2 sublimation could be more widely applicable (in space and time) on Mars than previously thought. This supports recent work suggesting CO2 sublimation could be responsible for recent modiïŹcation in Martian gullies
    • 

    corecore