45 research outputs found

    Absence of diagonal force constants in cubic Coulomb crystals.

    Get PDF
    The quasi-harmonic model proposes that a crystal can be modelled as atoms connected by springs. We demonstrate how this viewpoint can be misleading: a simple application of Gauss's law shows that the ion-ion potential for a cubic Coulomb system can have no diagonal harmonic contribution and so cannot necessarily be modelled by springs. We investigate the repercussions of this observation by examining three illustrative regimes: the bare ionic, density tight-binding and density nearly-free electron models. For the bare ionic model, we demonstrate the zero elements in the force constants matrix and explain this phenomenon as a natural consequence of Poisson's law. In the density tight-binding model, we confirm that the inclusion of localized electrons stabilizes all major crystal structures at harmonic order and we construct a phase diagram of preferred structures with respect to core and valence electron radii. In the density nearly-free electron model, we verify that the inclusion of delocalized electrons, in the form of a background jellium, is enough to counterbalance the diagonal force constants matrix from the ion-ion potential in all cases and we show that a first-order perturbation to the jellium does not have a destabilizing effect. We discuss our results in connection to Wigner crystals in condensed matter, Yukawa crystals in plasma physics, as well as the elemental solids

    Machine learning to predict mesenchymal stem cell efficacy for cartilage repair.

    Get PDF
    Inconsistent therapeutic efficacy of mesenchymal stem cells (MSCs) in regenerative medicine has been documented in many clinical trials. Precise prediction on the therapeutic outcome of a MSC therapy based on the patient's conditions would provide valuable references for clinicians to decide the treatment strategies. In this article, we performed a meta-analysis on MSC therapies for cartilage repair using machine learning. A small database was generated from published in vivo and clinical studies. The unique features of our neural network model in handling missing data and calculating prediction uncertainty enabled precise prediction of post-treatment cartilage repair scores with coefficient of determination of 0.637 ± 0.005. From this model, we identified defect area percentage, defect depth percentage, implantation cell number, body weight, tissue source, and the type of cartilage damage as critical properties that significant impact cartilage repair. A dosage of 17 - 25 million MSCs was found to achieve optimal cartilage repair. Further, critical thresholds at 6% and 64% of cartilage damage in area, and 22% and 56% in depth were predicted to significantly compromise on the efficacy of MSC therapy. This study, for the first time, demonstrated machine learning of patient-specific cartilage repair post MSC therapy. This approach can be applied to identify and investigate more critical properties involved in MSC-induced cartilage repair, and adapted for other clinical indications
    corecore