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Abstract

Inconsistent therapeutic efficacy of mesenchymal stem cells (MSCs) in regenerative medi-
cine has been documented in many clinical trials. Precise prediction on the therapeutic
outcome of a MSC therapy based on the patient’s conditions would provide valuable refer-
ences for clinicians to decide the treatment strategies. In this article, we performed a meta-
analysis on MSC therapies for cartilage repair using machine learning. A small database
was generated from published in vivo and clinical studies. The unique features of our neural
network model in handling missing data and calculating prediction uncertainty enabled pre-
cise prediction of post-treatment cartilage repair scores with coefficient of determination of
0.637 + 0.005. From this model, we identified defect area percentage, defect depth percent-
age, implantation cell number, body weight, tissue source, and the type of cartilage damage
as critical properties that significant impact cartilage repair. A dosage of 17 — 25 million
MSCs was found to achieve optimal cartilage repair. Further, critical thresholds at 6% and
64% of cartilage damage in area, and 22% and 56% in depth were predicted to significantly
compromise on the efficacy of MSC therapy. This study, for the first time, demonstrated
machine learning of patient-specific cartilage repair post MSC therapy. This approach can
be applied to identify and investigate more critical properties involved in MSC-induced carti-
lage repair, and adapted for other clinical indications.

Author summary

Cartilage damage affects the life quality of hundreds of millions of people, causing chronic
joint pain and disability. Cartilage has poor regenerative capacity. Only minor damage
could improve on its own or with passive treatments, while more severe damage often
requires surgery. In recent decades, stem cell therapy has become a promising treatment
option to reduce pain and repair cartilage. However, with complex mechanisms and vari-
ous factors involved, efficient and consistent cartilage regeneration remains elusive. Our
neural network learns information from clinical trials and animal studies to predict thera-
peutic outcomes along with the confidence level based on the patient’s condition. This
machine learning approach provides an important reference and significant insights into
the optimization of treatment strategies.
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Introduction

Articular cartilage is a critical tissue with multifaceted mechanical functions. It holds compres-
sion, absorbs shock, and enables smooth articulation at the joints. Cartilage injury is unfortu-
nately common due to tears, accidents and arthritis, which often leads to joint pain, stiffness,
and inflammation. Cartilage disorders affect millions of people worldwide, including 52.2 mil-
lion adults in US [1], and more than 10 million in UK [2]. In particular, osteoarthritis alone
affects more than 200 million people globally [3]. Adult cartilage has limited self-repair capac-
ity due to its avascular nature [4], thus treatments are often necessary to accelerate repair and
relieve pain during joint motions. Besides the conservative treatments and conventional surgi-
cal options, such as microfracture and autologous chondrocyte implantation (ACI), mesen-
chymal stem cell (MSC) has also been widely investigated in the management of cartilage
damages in recent decades [5].

Although significant success has been achieved for MSC therapy in cartilage repair, the effi-
cacy of therapy has been inconsistent. This is likely attributed to the complex cellular mecha-
nisms and dynamic interplay across different populations of cells involved in the stem cell
assisted tissue repair processes. MSC therapy is also complicated by heterogeneity of cell, cul-
ture conditions, delivery methods, and recipients’ conditions, which are all highly variable in
current clinical trials and laboratory studies. Thus, disconnectedness between the in vitro, pre-
clinical, and clinical performances of MSCs have been broadly observed [5], which has so far
rendered the analysis of MSCs’ therapeutic efficacy largely retrospective, rather than predic-
tive. As a result, there is a lack of guidelines on MSC therapy strategy to promote optimal ther-
apeutic efficacy.

Setting guidelines for MSC therapy requires identification of critical properties that affect
MSCs’ therapeutic efficacy most significantly. To achieve this, quantitative assessment of the
significance of individual property is needed. However, this is ineffective through conventional
controlled biomedical experiments where one or at most a few properties can be interrogated
at a time. To overcome this challenge, we use machine learning to capture multi-property cor-
relations and exploit all of the information in a database. A machine learning model predicts
based on the training dataset, and each algorithm has a basic set of parameters to fit multidi-
mensional functions that can be changed to improve its accuracy [6]. Deep learning methods
are able to predict multiple output properties simultaneously [7].

In this paper, we performed a meta-analysis on MSC therapy for cartilage repair. The data
we analyzed were generated by different researchers using different experimental designs; as a
result, the properties considered in one study may not always be addressed in another, which
has led to a database containing “missing information” in some of its entries. Many machine
learning methods do not analyze the entries with incomplete information, which often results
in a shrinking database with compromised cognitive performance. We adapt a neural network
formalism [8-12] with a unique capacity to “fill” the missing data by learning the correlations
across multiple properties, and recursively imputes with precise estimates. Furthermore, our
machine learning method computes the uncertainty of predictions raised from experimental
noise and computational extrapolation, which allows the neural network model to focus on
the most confident predictions.

The coefficient of determination (R?) of our machine learning model in predicting MSC
therapy outcome was 0.637 + 0.005 in cross-validation test. Through machine learning, we
identified defect area percentage, defect depth percentage, implantation cell number, body
weight, tissue source, and cartilage damage type as critical therapy properties of cartilage
repair. In particular, an optimal dosage range of 17-25 million cells was identified for achieving
the best therapeutic outcome. We also predicted that the optimal therapy outcome was most
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likely to be achieved in patients with cartilage defects less than 6% in area and 22% in depth of
the knee cartilage. Larger defects significantly dampen the efficacy of MSC therapy.

The capacity of predicting MSCs’ therapeutic outcome using machine learning holds
great clinical significance in suggesting critical therapy input properties to maximize the
therapeutic benefits. Further development of this technology could extend its applications in
other diseases and cell types, and shed light on substantial improvements in cell therapy effi-
cacy and consistency.

Methods

Data sets

We collected data from 36 published articles on PubMed [13-48] to train and validate our
machine learning models. Some articles comprised more than one type of cartilage injury
models or treatment conditions. In total, 15 clinical trial conditions and 29 animal model
conditions (1 goat, 6 pigs, 2 dogs, 9 rabbits, 9 rats, and 2 mice) on osteochondral injury or oste-
oarthritis were included, where MSCs were transplanted to repair the cartilage tissue. We doc-
umented each case into an entry of a database. We considered the cell- and treatment target-
related factors as input properties, including species, body weight, tissue source, cell number,
cell concentration, defect area, defect depth, and type of cartilage damage. The therapeutic out-
comes were considered as output properties, which were evaluated using integrated clinical
and histological cartilage repair scores, including the international cartilage repair society
(ICRS) scoring system, the O’Driscoll score, the Pineda score, the Mankin score, the osteoar-
thritis research society international (OARSI) scoring system, the international knee docu-
mentation committee (IKDC) score, the visual analog score (VAS) for pain, the knee injury
and osteoarthritis outcome score (KOOS), the Western Ontario and McMaster Universities
Osteoarthritis Index (WOMAC), and Lyscholm score. In this study, these scores were linearly
normalized to a number between 0 and 1, with 0 representing the worst damage or pain, and 1
representing the completely healthy tissue. The list of entries was combined together to form a
database.

Neural network formalism

We now define the neural network formalism that was used to capture the functional relation
between all properties, and predict these relations for new therapies. The establishment of the
core neural network and its critical feature on estimating the uncertainty in predictions are
described as follow, before the second novel aspect of handling missing data.

Each entry x = (xy, . . ., 1) to the neural network is a vector of length I, with the firstI -1
variables being the distinct treatment conditions (including species, body weight, tissue source,
cell number, cell concentration, defect area, defect depth, and type of cartilage damage); and
the final Ith variable is the therapeutic outcome. We intended to find a function f that satisfies
the fixed-point equation f(x) = x for all entries in the database. The trivial solution to this
fixed-point equation is the identity operator, f(x) = x, but this solution does not allow us to
impute data using the function f. We search for a solution to the fixed-point equation that is
orthogonal to the identity operator, and allow the function to predict a given component of x
from some or all other components. The output (y1, . . ., y1) is a vector of length I, with the first
I - 1 variables being the predicted treatment conditions (if unknown); and the final Ith vari-
able is the therapeutic outcome. A linear superposition of hyperbolic tangents was chosen to
model the function x,

f:(xl,...,xi,...,xl)»—>(yl,...,yj7...,yl) (1)
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with
H
%= Gy + D,
h=1

and

1
1, = tanh (X:Aihjxi + th> .
i=1

The neural network with one layer of hidden nodes was shown in Fig 1. Each hidden node
1 performed a tanh operation on a superposition of input properties x; with variational
parameters Ay, and By for 1 <i < 1. Each property y; for 1 <j <1was predicted separately as
a superposition of all hidden nodes with variational parameters Cy,; and D;. There are exactly as
many given properties as predicted properties, since all types of properties are treated equally

ny=tanh(A; x+B,))  y,=Cyn,, +Dy,

Given Hidden Predicted
properties nodes properties

Fig 1. Neural network to model data. The graph illustrates how different inputs x; are used to calculate the outputs for
1 (top) and y, (bottom); similar graphs can be drawn for all other y; to compute all the predicted properties. Linear
combinations (grey lines) of the given properties (red) are taken by the hidden nodes (blue) through a non-linear tanh
operation is applied, and a linear combination (grey lines) of the hidden nodes returns the predicted property (green).

https://doi.org/10.1371/journal.pcbi.1008275.g001
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by the ANN. We set the Ajp,; = 0 so that the network predicts y; without knowledge of the true
quantity x;. A hyperbolic tangent activation function was used to constrain the magnitude of
My giving the weights Cy; sole responsibility for the amplitude of the output response. The
variational parameters were selected to minimize the mean square error of predictions of the
training data.

The ANN has to be trained on a provided data set. The parameters {Ajyj, Byj» Cj» Dj} are ini-
tialized with random values, and varied following a random walk. The new values are accepted,
if the new function f(x) models the fixed-point equation f(x) = x better, which is quantitatively
measured by the error function,

o= |y Sl ) 2)

xeX j=1

This form is also known as the root-mean-square error (RMSE) cost function. The optimiza-
tion is equivalent to the minimization of the RMSE cost function and a steepest descent
approach is used.

In order to measure the uncertainty in the ANN’s prediction, we train a number of models
simultaneously, and treat their average as the overall prediction and their standard deviation
as the uncertainty. The pseudocode is shown in Algorithm A, at least 100 training models were
used to evaluate the uncertainty. This concept is similar when estimating the uncertainty in
ensemble models, with the underlying model being changed to neural networks and the uncer-
tainty generated accounts for both experimental uncertainty in the underlying data and the
uncertainty in the extrapolation of the training data [49, 50].

Handling incomplete data

Sometimes a database may contain entries with incomplete input information due to experi-
mental design or data acquisition problems. The possibility of such missing data is higher in
meta-analysis when results from studies with acceptable differences in design and purpose are
pooled to form a database. In our database, for example, the osteochondral defect studies took
the area of defect as a common critical data for evaluating the severity of injury [14, 17]. How-
ever, this information was not always presented in osteoarthritis studies due to difficulties in
precisely measuring defect area with complicated geometry [25, 48]. This leads to “missing
data” in the entries. We noticed that underlying correlations may exist across the different
properties, and can be distilled by a neural network to “fill in” the missing information. A
typical neural network formalism requires each property to be either an input or output of the
network, and all inputs must be provided to compute a valid output. In contrast, our neural
network takes the known treatment conditions and the therapeutic outcome (if known) as
inputs then outputs the predictions for unknown treatment conditions and the therapeutic
outcome. Then following the flowchart in Fig 2 the neural network is applied iteratively to
cycle the predictions of the unknown treatment conditions and therapeutic outcome until self-
consistency, an expectation-maximization algorithm [51].

The algorithm is shown in Fig 2. For any unknown properties, we first set missing values to
the average of the values present in the data set. With estimates for all values of the neural net-
work we then recursively apply the following equation until convergence:

XM= px" 4 (1= )f(x"), (3)

where n denotes the iteration step, f(x") is a prediction for x obtained from the neural network.
The converged result is then returned instead of f(x"). The function f remains fixed on each
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[Evaluate network at X]

Have all

prop-
erties?

Set X% = x, use averages Return f(x")

Reached
convergence?

X1 = yach 4 (1= Y)f(xn)

Fig 2. Data imputation algorithm for the vector x. After checking the missing properties of entries, we set x” = x, and
replace all the missing data by averages from the training data set. We then iteratively compute x"*' as a function of x"
and f(x") until we reach convergence after # iterations.

https://doi.org/10.1371/journal.pchi.1008275.g002

iteration of the cycle. A softening parameter, y € [0, 1], is used to combine the results with the
existing predictions, and a y > 0 serves to prevent oscillations and divergences of the predic-
tions. Typically, we set y as 0.5. The performance against the missing data percentage in the
database is shown in S1 Text (Fig. B).

Thus we were able to utilize the full information in the database, derive a more robust
model and enhance the quality of predictions.

Validation

The model was initially fitted on a training dataset, which is a set of entries from our database.
The fitted model then used to predict the outputs in a second validation dataset, to provide an
unbiased evaluation of the model. To assess the performance of the model, we adapt the coeffi-
cient of determination (R*) metric when training our model on the validation dataset. In this
work, we are only using the therapeutic outcome as the variable for R*:

S8 -y’
Z0r =)

where y* is the therapeutic outcome from the ith case (patient or animal) and yfred is the

i

R=1-

corresponding prediction. The value of R* ranges from negative infinity to 1 and is a measure

of the fit to the perfect identity line y™* = 2, where R* = 1 means a perfect fit, R* = 0 corre-

sponds to making the most naive prediction of all values being the average of the data. To
confirm the accuracy of the neural network prediction and avoid overfitting, the R* was cal-
culated within the leave-one-out cross-validation framework. We first removed one entry
from the database at a time for all the entries, trained the model on the remaining entries,
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and presented the inputs of the unseen entry to predict its output. Eventually we then gath-
ered all the predicted properties of every entry, and computed the R* against the actual
experimental properties.

Other machine learning methods

We compare our neural network algorithm with a variety of other machine learning
approaches in S1 Text (Fig. A(i)). Random Forest (RF) [52] is a popular method, which builds
an ensemble of decision trees to predict individual results. However, decision trees require all
their input to be present during training that makes it impossible to build RF models using
incomplete entries but to drop them, we use the imputation algorithm to fill the database and
record the second-best R* value of 0.554 compared to the value of 0.637 from our neural net-
work method. We have also tested the K-Nearest Neighbor (KNN) and Multiple Linear
Regression (MLR) method [53], where 3 nearest neighbors was chosen as the optimal setting
of KNN using Euclidean distance.

Another popular method of analyzing sparse databases is matrix factorization, where the
matrix of condition and treatment values is approximately factorized into two lower-rank
matrices that are then used to predict therapeutic outcome for the new patient. We used the
modern Collective Matrix Factorization (CMF) [54] implementation for comparison, and the
hyperparameter alpha for the CMF model was chosen heuristically as 0.99. The R* value is
-0.003, the reason might be the CMF method assumes linearity in the interaction of latent fac-
tors which fails to capture some complex non-linear interactions.

We also use the leave-one-out cross-validation to determine other hyperparameters of the
neural network in S1 Text (Fig. A).

Selection of input properties

The procedure for the neural network to select the most appropriate input properties is chal-
lenging for our meta-analysis, as discussed before the available properties vary across different
studies, and the same or related properties may be reported in different ways. The input prop-
erties were categorized into two types, factual and derived. The factual properties were: species,
implantation cell number, defect area, defect depth, type of cartilage damage, body weight, and
tissue source. The type of tissue source can be further classified into bone marrow (BM), adi-
pose tissue (AD), synovial fluid (SF), Warton’s jelly (WJ), synovial tissue (ST), and umbilical
cord blood (UCB). The derived properties emerged from our biological intuitions and may
not have been used in the previous studies, such as defect area percentage, defect depth per-
centage, and cell concentration.

We first trained a neural network to take only one input property and predicted the carti-
lage repair score. This allowed us to probe the performance of individual property in Fig 3. It
is possible that two or more properties of MSC therapy were individually not impactful to the
cartilage repair, but when used in combination they allow the model to capture important cor-
relation. For example, both implantation cell concentration and defect volume have low R* val-
ues (-0.04 and 0.12 respectively), but the implantation cell number, which is the product of
two former properties, gives a R* value of 0.41.

The full set of factual and derived properties was provided as inputs to train the neural net-
work. A correlation test is performed between all properties to make sure no pairs of input
properties are closely correlated, finding that both Pearson’s Correlation and Spearman’s Rank
Correlation coefficients are smaller than 0.53. The individual properties’ correlation with the
cartilage repair score was computed and sorted in descending order in Fig 3. The most corre-
lated property is defect depth percentage, with an R* value of 0.55, followed by defect area
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Fig 3. Accuracy of the neural network. R values of the neural network model trained with individual property (bar) and
the combination of best performing individual properties (red line). The shaded red area represents the uncertainty of
each R’ value.

https://doi.org/10.1371/journal.pcbi.1008275.9003

percentage (0.42), cell number (0.41) and body weight (0.30). The tissue type BM, AD, and
type of cartilage damage are less correlated, and the cell concentration along with other tissue
types (SF, WJ, ST, and UCB) are negatively correlated with the cartilage repair score. The top
four properties gives an R” value of 0.625 + 0.012, and the combination of all seven positive
properties has a maximum R* of 0.637 + 0.005. Overfitting was observed at a decreasing R
with more than seven descriptors, this happened when the system matched the training dataset
but failed with unseen data draw from the validation dataset. Fewer descriptors did not pro-
vide a sufficient basis set, so we chose the first seven descriptors where each of them individu-
ally yields a positive R* value, which captured more correlations of clinical properties without
overfitting and provided higher quality uncertainty prediction. The tissue type BM and AD
have been consolidated into a single tissue type property, and we have a total of six different
input properties.

Results

With the identified six critical input properties, the neural network used for our machine
learning model achieved a R* of 0.637 + 0.005 with blind cross-validation. The neural network
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Fig 4. Histogram of errors for predictions using our neural network. The dotted red line is fitted with a normal
distribution. Each bin contains four data points. Overpredicted refers to predicted values are better than post-treatment
cartilage repair scores. Underpredicted refers to predicted values are worse than post-treatment cartilage repair scores.

https://doi.org/10.1371/journal.pcbi.1008275.9004

also delivered the prediction uncertainty in terms of the absolute error between the predicted
value and the actual value, as plotted in Fig 4. The random errors associated with the model
correctly followed a normal distribution so should well capture the true uncertainty. There are
18 entries out of the total 44 entries lie outside the one standard deviation region. We will
exploit all of this knowledge in the next subsection.

Imputation

With access to the uncertainties in Fig 4, we can gain further insight from the neural network
predictions. In particular, we can discard predictions carrying large uncertainty, and trust only
those with smaller uncertainty. The idea is illustrated in Fig 5A, where we select four of the
points from Fig 5B, including that with the largest uncertainty that has the highest likelihood
of deviating from the true value so should give the largest error, as well as other quartiles in
uncertainty. This allowed us to focus on the most confident predictions only at the expense of
reporting fewer predictions, e.g. discard the data point with the largest uncertainty (yellow
bar) and recalculate the sum of squares for the R” value. By doing so, the quality of the remain-
ing neural network predictions increases as the root-mean-square error between the predicted
values and the actual values decreases when a smaller fraction of predictions is accepted and
validated as shown in Fig 5B, 100% of data validated means we predicted and validated against
every entry in our database, and all of these values contribute to the final R*. 75% of data vali-
dated means that we calculate the R* using only the 75% of the data with smallest uncertainties
in their predictions. The best R* value of 0.743 was reported at 82% of data being validated,
and then reached the plateau when less than 70% of data are being validated. Validating fewer
data can lead to significant noise and is less applicable in the real-world where we wish to
impute as much as possible, therefore we focus on the >50% regime. The result confirms that

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008275 October 7, 2020 9/19


https://doi.org/10.1371/journal.pcbi.1008275.g004
https://doi.org/10.1371/journal.pcbi.1008275

PLOS COMPUTATIONAL BIOLOGY

Machine learning to predict mesenchymal stem cell efficacy for cartilage repair

z

1.0 1

0.9

0.8 -

0.7 -

0.6 -

0.5 1

0.4 -

Predicted therapeutic outcome

(B)

Data points ordered by uncertainty

0.76
SS=¢2+¢2+IZ+2 o
0.72-'..00...’0
2
I i 0.68 -
®
% 6 o
{* 0.64
T T T T 0.60 T
25% 50% 75% 100% 50 75 100

Percentage of data validated %

Fig 5. Model performance after imputation. (A) shows an example when making predictions for just four data points. The y-axis is the prediction from
the machine learning, and the x-axis delineates four different sample predictions ordered by their uncertainty. The colored dots represent the predicted
value and their uncertainty that is also predicted by the machine learning method is shown by the colored bars (magenta, turquoise, green, and yellow), the
violin plot represents the probability density distribution for predicted outcomes, and the red dots are the true (unknown to machine learning) values used
for validation, and the difference between predicted and true values is measured as the grey arrows. The sum of squares (SS) value is then normalized to
calculate the R” value. (B) shows the R” value with percentage of data validated, and the data points are color-coded by their uncertainty ranking. The blue
line is the trend line fitted to the data points. The turquoise, green, and yellow points in (A) are the points at 50%, 75%, and 100% in (B).
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the neural network is able to accurately and truthfully inform us about the uncertainties in its
predictions; and so the confidence of predictions is correlated with their accuracy.

We note that this post-processing corresponds to increase in accuracy, once a model was
trained, and the desired level of confidence can be specified and used to return only sufficiently
accurate predictions. The projected cartilage repair score along with the confidence level of the
prediction will be provided once the patient’s condition has been set as inputs to the model,
which will allow clinicians to focus treatments on those most likely to lead to success, and trials
to focus on the most illuminating input property space.

Identifying anomalous results

With the computed uncertainties of prediction, we identified entries with particularly high
deviations between the predicted and experimental results. Those can then be re-examined,
and corrected to improve the training dataset. Most predictions of our model were expected to
lie within one standard deviation (+1) of the experimental results, as shown in Fig 4. The 18
entries lay outside of the one standard deviation region are shown in Table 1. Three of them
were from clinical trials, and the other 15 were from animal studies. A positive number of stan-
dard deviation away means our neural network overpredicts the cartilage repair score, and a
negative number means underprediction. We analyzed the over- and underpredicted repair
scores as follows.

In general, our model predicted 80% of the clinical trials with an error smaller than one
standard deviation, which was better than that of 48% for the animal studies. Three human
clinical trial outcomes were underpredicted. In two of the cases, the researchers performed
additional surgical procedures besides MSC implantation to repair the damaged cartilage. De
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Table 1. The table highlights predicted entries where the number of standard deviations out by clinical results are greater than 1 or less than -1, which indicates our

prediction is away from the experiments.
Species
Rabbit
Rat
Rat
Minipig
Rat
Rat

Overpredicted

Minipig
Minipig
Rabbit
Rat
Rabbit
Human
Rabbit
Human
Rabbit
Rat

Underpredicted

Human

Piglet
https://doi.org/10.1371/journal.pchi.1008275.t001

Authors Damage Standard deviations out by
Katayama et al. [33] Defect 2.88
Dahlin et al. [38] Defect 2.16
Papadopoulou et al. [47] Arthritis 2.15
Haetal. [15] Defect 1.84
Zhu et al. [35] Defect 1.35
Zhang et al. [43] Arthritis 1.20
Wuetal. [17] Defect 1.10
Lee et al. [23] Defect 1.04
Li et al. [34] Defect 1.02
Xue et al. [37] Defect -1.03
Park et al. [14] Defect -1.15
de Windt et al. [18] Defect -1.26
Li et al. [34] Defect -1.30
Koh et al. [22] Defect -1.40
Ma et al. [32] Defect -1.62
Park et al. [13] Defect -1.74
Fodor et al. [26] Arthritis -1.76
Ando et al. [29] Defect -2.34

Windt et al. implanted debrided autologous chondrocytes together with MSCs in their proce-
dure [18]. The interaction between MSCs and chondrocytes was not considered as an input
property in the current neural network, but might promote the cartilage repair. Koh et al. per-
formed microfracture surgery before MSC implantation [22]. The recruitment of autologous
MSCs from the subchondral bone to the defect cartilage area by the microfracture surgery was
likely the cause of the underpredicted outcome from the neural network.

The most underpredicted entry with -2.34 standard deviations away from the actual experi-
ment outcome, appeared in the study from Ando et al., where an MSC-based tissue scaffold
was implanted to chondral defects in porcine models [29]. Similarly, Li et al. encapsulated
MSCs in microspheres prior to transplantation to the rabbit osteochondral defects [34], which
yielded a standard deviation of -1.30. In both cases, the use of scaffold likely induced pre-dif-
ferentiation of MSCs towards chondrogenic lineage, and the production of extracellular matrix
proteins before transplantation might have greatly promoted the repair efficacy. Xue et al. also
delivered MSCs to their rat model in tissue-engineered scaffold made from poly (lactide-co-
glycolide) (PLGA)/nano-hydroxyapatite (NHA), but the MSCs possibly remained at undiffer-
entiated status [37]. This resulted in a smaller underprediction by the neural network with a
standard deviation of -1.03. Another underprediction with a standard deviation of -1.62 was
seen in the study from Ma et al. [32], where an autologous graft was transplanted together with
the MSCs. In this study, the mosaicplasty might have contributed significantly to the repair,
which was not analyzed as an input to the neural network.

For overpredicted repair scores, Katayama et al. reported their MSC treatment efficacy to
rabbit cartilage defect [33] at a much lower level than the neural network prediction, with 2.88
standard deviations away. Although the isolation and subculture of MSCs were performed
using standard protocols, the authors did not provide sufficient quality control of the cells
before the treatment. The uncertainty in cell purity and quality might have resulted in the sub-
optimal repair.
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Re-visiting these inaccurately predicted cases has allowed us to gain further insights on the
therapeutic efficacy of MSCs in cartilage repair. The majority of the less accurate predictions
occurred in animal trials, where special delivery methods or manipulations to the MSCs have
been implemented. These findings implied the potential impact of these novel therapy input
properties on cartilage repair, although they are not readily applied in clinical trials. We also
realized that not all the less accurately predicted cases were associated with special delivery
strategy or cell modification, and the underlying causes were not obvious. It is reasonable to
believe that the potency of MSCs, secretome profile, and the surgical procedures might all
impose significant impacts on the therapeutic outcome. Including these information as input
properties in the database would empower the neural network to enhance the prediction
accuracy.

Influence of properties

The patients’ pre-treatment conditions and therapeutic strategies were encoded within the
input properties for the model to make predictions. The relative strength of the properties on
predicting the cartilage repair score, defined as the change of R* on removing a property, is
plotted Fig 6. The pre-treatment conditions such as defect area percentage, defect depth per-
centage, and body weight play important roles in the treatment outcome. Whereas the treat-
ment strategy properties, such as the implantation cell number and the tissue source, impact
the outcome to a lesser extent. We now study these input properties in descending order of
importance.

Defect area and depth percentage. We first investigated the two most important proper-
ties: defect area percentage and defect depth percentage; a surface plot is shown in Fig 7 where
the cartilage repair score has been normalized against the full range of scores in the database. It
is worthwhile to note that although most training dataset has defect area percentage less than
30% and defect depth percentage greater than 40%, our neural network model extrapolated
cartilage repair of a patient with indications beyond the existing range of conditions in the
database. The neural network can do this due to its unique ability to handle missing data over
the full range of conditions (0-100%). In general, the cartilage repair score drops as the per-
centage of defect area and depth increases, implying the difficulty for MSC therapy to achieve
full recovery in patients with severe cartilage damages.

Defect depth percentage _ !_\:i"\““:) Body weight

. -##~, Tissue source
12 g

%

"= Type of damage

‘,’&
7 -4

Defect area percentage Implantation cell number

Fig 6. Illustration of the relative strength of properties used in our model.

https://doi.org/10.1371/journal.pcbi.1008275.9006
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Fig 7. Surface plot of the normalized cartilage repair score based on defect area percentage and defect depth
percentage. The trajectory of changing area or depth is shown in white arrows.

https://doi.org/10.1371/journal.pcbi.1008275.g007

The study showed that critical thresholds of damage exist for effective cartilage repair to
happen, which is similar to the case of volumetric muscle loss [55]. In cartilage repair mod-
els, a “critical size” osteochondral defect that can not effectively repair by itself, has been
widely used. In most cases, such critical sizes were applied at estimated default values for dif-
ferent animal models. Some studies have attempted to experimentally determine the critical
size of the defect in terms of depth and diameter in specific animal models [56]. In our
machine learning model, we predicted those “critical size” defects as we observed a rapid
decrease in the normalized cartilage repair score when the defect area percentage increases
from 6% to 35%. Another fast drop was observed at 64%, because minimal repair should be
expected when more than 70% of cartilage area is damaged. These sharp drop-offs identified
from the model indicates the presence of multiple “critical sizes” that constrain cartilage
repair to different levels post MSC therapy. These quantitative cartilage repair predictions
based on the patients’ defect conditions provide useful references for the clinicians to make
decisions on the therapy.

Body weight. As shown in Fig 6, the body weight also acts as an important input property
in our neural network: heavier species tend to have a better therapeutic outcome. However,
this may be attributed to the large inter-species weight differences in the database. The lack of
intra-species weights information in the databased has made further analysis difficult. This
could be a valuable topic for further investigation.

Implantation cell number. The next most important input property is the implantation
cell number. Fig 8 shows a near linear increase in the cartilage repair score with implantation
cell number less than 17 million. The normalized cartilage repair score is above 0.9 between 17
to 25 million implantation cell number, and is maintained around 0.8 in the 25 to 75 million
range. Further increase in the implantation cell number results in a sudden drop of the nor-
malized cartilage repair score to below 0.7.

The determination of MSC dose for therapy remains intuitive in current practice. A wide
range of implantation cell numbers has been found in the literature, ranging from a few thou-
sand to 10 billion with the majority falling between 1 to 100 million [5]. Besides the implanta-
tion cell number, these cells were also transplanted at a vast range of concentrations in
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Fig 8. Impact of implantation cell number on the cartilage repair. The left y-axis shows the predicted patient’s
cartilage repair scores normalized to the range of score that patients have been evaluated in clinical trials. The right y-
axis shows the number of studies (blue histogram) that use a certain cell number in our database.

https://doi.org/10.1371/journal.pcbi.1008275.9008

different animal studies and clinical trials, between a thousand to a billion cells per millilitre of
the delivery agents [5]. Controversial results on the cell dose-dependent influence on cartilage
repair have been reported. On one hand, higher cell number and concentration have been
associated with better chondrogenesis and cartilage repair [57-62]. The high cell density likely
recapitulated the mesenchymal condensation process that occurred during embryonic devel-
opment of cartilage, and promoted MSC differentiation towards chondrogenic lineage [63].
On the other hand, native cartilage is an ECM-rich avascular tissue with low cell density. Stud-
ies have pointed out the limitation to cell saturation and survival [64], and high dose of MSC
transplantation was likely to increase the risk of synovitis and synovial proliferation [57, 65].

In this study, we untangle the long-lasting controversy through machine learning approach,
and recommend an optimal dose of 17-25 million MSC for human therapy. This conclusion is
partly supported by a dose-dependent MSC Phase II clinical trial [48] to treat osteoarthritis
patients, which is unseen to the machine learning model, where MSC dose larger than 25 mil-
lion resulted in a decline in the patients’ cartilage repair scores. This overturns the long-stand-
ing protocol of using fewer than 2 million cells for implantation.

Tissue source. The tissue sources of MSCs, bone marrow (BM) and adipose tissue (AD),
have been combined to form a new property in our model. These two sources of MSCs are the
most widely used and studied, mainly because of the high accessibility to BM and AD. The
abundant MSC number obtainable from BM and AD also determines that these cells have
greater potential to be produced at large scale for allogenic uses. The number of occurences of
BM and AD MSCs were abundant in our database, and the machine learning results suggested
that both BM and AD MSCs are beneficial to the treatment. However, more studies are needed
to reach a conclusion on the effects of other tissue sources, including synovia fluid (SF), Whar-
ton’s jelly (WJ), synovia tissue (ST), and umbilical cord blood (UCB). Their individual perfor-
mances were tentatively analyzed and displayed in Fig 3 based on the current database.

Type of cartilage damage. The least important property in this machine learning model
is the type of cartilage damage. Although fundamental difference exists in the causes and
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pathologies between osteochondral defect and osteoarthritis, the mechanisms of cartilage
repair through MSC therapy in both cases may share many commonalities, such as differentia-
tion of the MSCs into chondrocytes at the damage site, secretion of regenerative factors, and
immune regulation.

Discussion

In this study, we have developed a neural network model that exploits the inter-property and
property-property correlations to predict the therapeutic efficacy of MSC transplantation for
cartilage repair based on animal results and human clinical trials. We started with cartilage
injury models where different MSCs were given and measures of their performance were
recorded. We characterized the cartilage repair score and filled the missing information using
the neural network while training the model. The assessment of new patient would provide
input information for the model to make predictions on human clinical trial outcomes and the
recommended properties, clinicians would be given the uncertainty in the prediction along
with the confidence level to decide the most suitable therapy for treatment.

We reported an optimal implantation cell number of 17-25 million to treat patients with
cartilage damages, and quantitatively demonstrated how the key factors, including the number
of cells implanted, defect area, and depth, could impact the post-transplantation healing. In
particular, the neural network has the ability to systematically estimate the confidence level of
each prediction, make decisions based on reliable results, and expedite trials. The predictive
power of our model enables personalized therapy. We predicted the optimal therapeutic out-
come based on individual patient’s disease conditions, including defect area percentage, defect
depth percentage, and body weight. For patients with severe cartilage damages beyond the
threshold for effective repair, other treatment strategies should be considered. Together, the
predictions from our model would serve as important references to the clinicians and scientists
to design better MSC therapy strategies for cartilage repair, and their findings can be used to
further optimize the model. The technology can also be adapted for MSC therapies to other
medical indications, and address other biomedical questions.

There is open access to the data and codes at https://doi.org/10.17863/CAM.52036.

Supporting information

S1 Text. We provide additional details, including the algorithm to calculate uncertainties
and figures that validate the hyperparameters for our machine learning method.
(PDF)
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