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The quasi-harmonic model proposes that a crystal
can be modelled as atoms connected by springs. We
demonstrate how this viewpoint can be misleading:
a simple application of Gauss’s law shows that
the ion–ion potential for a cubic Coulomb system
can have no diagonal harmonic contribution and
so cannot necessarily be modelled by springs. We
investigate the repercussions of this observation by
examining three illustrative regimes: the bare ionic,
density tight-binding and density nearly-free electron
models. For the bare ionic model, we demonstrate
the zero elements in the force constants matrix and
explain this phenomenon as a natural consequence
of Poisson’s law. In the density tight-binding model,
we confirm that the inclusion of localized electrons
stabilizes all major crystal structures at harmonic
order and we construct a phase diagram of preferred
structures with respect to core and valence electron
radii. In the density nearly-free electron model, we
verify that the inclusion of delocalized electrons,
in the form of a background jellium, is enough to
counterbalance the diagonal force constants matrix
from the ion–ion potential in all cases and we show
that a first-order perturbation to the jellium does not
have a destabilizing effect. We discuss our results in
connection to Wigner crystals in condensed matter,
Yukawa crystals in plasma physics, as well as the
elemental solids.
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1. Introduction
The classical theory of crystal stability was extensively studied by Born in the first half of the
twentieth century [1]. This seminal work focused on deriving the Born stability criteria based
on the elasticity constants, as well as determining the scope of the Cauchy–Born rule of crystal
deformation [2]. Since this time, the topic of crystal stability has been revisited from numerous
perspectives [3]: from the historic models of ionic matter by Born–Landé [4], Born–Mayer [5] and
Kapustinskii [6]; the Hume-Rothery rules for metal alloys [7]; through to sophisticated quantum
Monte Carlo simulations in current research [8,9]. However, these works are based on quadratic
modes, which we demonstrate can be absent from the most basic ion–ion interaction of many
common crystal structures. This motivates us to revisit the stability analysis of prototypical
models, which are currently of interest to the electronic structure [3], plasma physics [10] and
astrophysics [11] communities.

In this paper, we study the force constants matrix with respect to atomic positions for infinite
crystals in the bare ionic, density tight-binding and density nearly-free electron regimes.1 Having
observed that the ion–ion potential for cubic crystal structures can have no diagonal harmonic
contribution, we seek to answer the question of what repercussions this has on preferred crystal
structure. By looking at a variety of crystal lattices, motivated by the elemental solids in the
periodic table, we draw comparisons between specific structures. We stabilize the ionic crystal for
all structures through the inclusion of electrons in our model, we study the stability transition and
we use our framework to unify complementary models in the literature. We show that, using this
simple yet overlooked observation, insight is gained into low-energy crystal structure relaxation.

We first introduce the underlying theory in §2. We then proceed to examine the bare ionic
crystal, and subsequently the density tight-binding and density nearly-free electron regimes
in §§3, 4 and 5, respectively. Finally, we summarize the conclusions and implications of the results
in §6.

2. Theory
We consider an infinite crystal of atoms in three dimensions and at zero temperature.

The general Hamiltonian of the system is

Ĥ = T̂i + T̂e + V̂i-i + V̂e-i + V̂e-e,

where T̂i, T̂e are the ion and electron kinetic energies, and V̂i-i, V̂e-i and V̂e-e are the ion–ion,
electron–ion and electron–electron contributions to the potential energy, respectively.

We work in the Born–Oppenheimer (BO) approximation, where the ions are assumed to be
significantly more massive than the electrons and therefore move on much longer time scales.
In this approximation, the complete many-body problem may be solved in two steps: first, with
the BO Hamiltonian containing only the electronic degrees of freedom and ions assumed fixed in
space; and second, with the ions free to move in the previously calculated BO potential energy
surface to account for the nuclear contribution to the kinetic energy. For the computation of the
inter-atomic force constants in this paper, we use the BO potential energy surface, EBO [12]. In
the cases where we need the total energy, E, we then solve the nuclear problem that includes the
kinetic energy of the ions.

The contribution from the electronic kinetic energy is discussed in the sections for the models.
The ion–ion, electron–ion and electron–electron potential energies are given by the Coulomb
interaction.

Each unit cell of the crystal has an atom at the origin of the cell with position RI (upper case).
There may also be additional atoms in the unit cell with displacement vectors ri (lower case)
relative to RI. The general position of an atom at equilibrium may be written as R0

Ii = RI + ri. We

1We use the terms ‘density tight-binding model’ and ‘density nearly-free electron model’ to emphasize the fact that this is in
reference to the electron densities.
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consider an instantaneous small and finite displacement uIi of an atom in the crystal, such that
the general position of an atom is given as RIi = RI + ri + uIi.

Harmonic lattice dynamics is based on a Taylor expansion of the total energy about structural
equilibrium. In the BO approximation, this yields

EBO({RIi}) = EBO({R0
Ii}) + 1

2

∑
Iiα,jβ

ΦIiα,0jβuIiαu0jβ ,

where α, β are Cartesian directions and the adiabatic and harmonic approximations are
assumed [12]. The quantity ΦIiα,0jβ is known as the matrix of force constants, given as

ΦIiα,0jβ = ∂2EBO

∂uIiα∂u0jβ

∣∣∣∣∣
u=0

,

where J = 0 owing to translational invariance. This quantifies the stability of a crystal due to the
movement of particular atoms. In periodic solids, it is common to subsequently examine the mass-
reduced Fourier transform of the force constants matrix, known as the dynamical matrix, given as

Diα,jβ (k) = 1√
mimj

∑
I

ΦIiα,0jβe−ik·RI , (2.1)

where mi is the mass of particle i and k is the linear momentum vector. The eigenvalues of the
dynamical matrix are the squared frequencies, ω2. The dynamical matrix is used to compute
eigenmodes and definitively quantify whether a system is stable.

In 1904 Drude proposed the paradigmatic model of a crystalline solid to be atoms connected by
springs, which implies that the atoms move in a harmonic potential [13–15]. Here we focus on a
crucial contribution to this atom–atom potential, the ion–ion interaction, and show that the ions in
cubic crystals are not necessarily bound by a harmonic potential. To demonstrate this statement,
we assume a one-component ionic lattice in the absence of any background charge and analyse
the components of the matrix of force constants in turn.

First, we examine the diagonal matrix of force constants with respect to the motion of a
single ion, Φ0iα,0iβ . Since the second derivative is with respect to the position of a single ion,
Φ0iα,0iβ = 0 for α �= β by symmetry. Furthermore, the sum over Cartesian directions for this matrix
of force constants is equivalent to the Laplacian of the BO energy, such that

∑
α Φ0iα,0iα = ∇2

0iE
BO.

Hence, the Poisson equation of Gauss’s theorem demands
∑

α Φ0iα,0iα = 0, which is true for all
crystal structures. For cubic crystals, symmetry implies Φ0iα,0iα = 0 and therefore the ions are
not harmonically bound; for non-cubic crystals,

∑
α Φ0iα,0iα = 0 implies that some terms will be

positive and other terms will be negative.
Second, we examine the matrix of force constants, ΦIiα,0iβ , with respect to the motion of

two ions that reside in different unit cells, one in cell 0 and the other in cell I.2 In this
case, the second derivative is mixed and so the sum over Cartesian directions no longer
corresponds to the Laplacian. After perturbing the ion in unit cell 0, we subsequently need
to perturb the corresponding ion in unit cell I to obtain the cross terms. We demonstrate in
electronic supplementary material, section SI that for all crystal structures we obtain the result∑

α ΦIiα,0iα = 0. We note that this two-ion result with both ions moving parallel to each other
has a pleasing analogy to the Poisson equation for the motion of a single ion. In electronic
supplementary material, section SI, we also consider the non-parallel motion of the two ions,
which for centrosymmetric crystals yields the corollary

∑
I �=0 ΦIiα,0iβ = 0, where the summation is

over unit cells I. To include the I = 0 term in the summation, which corresponds to the motion of
a single ion, we can use the result from the previous paragraph that Φ0iα,0iβ = 0 for cubic crystals.
This implies that the full sum

∑
I ΦIiα,0iβ = 0 holds for all centrosymmetric cubic crystals, which

includes all of the cubic space groups considered in this paper.

2J = 0 without loss of generality.
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Using the above analysis, we have shown that
∑

α ΦIiα,0iα = 0 for all crystal structures and∑
I ΦIiα,0iβ = 0 for all centrosymmetric cubic crystal structures. Substituting the latter result into

equation (2.1), we see that there is at least one momentum mode where the diagonal dynamical
matrix with respect to ion positions, Diα,iβ , is identically zero. Since the trace of the dynamical
matrix is equal to the sum of its eigenvalues, Diα,iβ = 0 implies that centrosymmetric cubic crystals
are neither stabilized nor destabilized by a harmonic term. For other crystals, we note that the
trace of the diagonal dynamical matrix is zero,

∑
α Diα,iα = 0. Therefore, if some modes are stable

(ω2 > 0) others will be necessarily unstable (ω2 < 0). These results provide strong motivation to
revisit the stability of crystals.

In this paper, we study the diagonal matrix of force constants, ΦI ≡ ΦIiα,0iβ . We focus on the
diagonal (i = j) elements of the matrix of force constants, since they are sufficient to demonstrate
that a system is not stable (see electronic supplementary material, section SII).3 Moreover, in cases
where ΦI = 0, we additionally examine the symmetry-contracted fourth-order diagonal force
constant matrix, Xi ≡ XIiα,0iβ (see electronic supplementary material, section SIII).4

With the strategy and motivation in place, we still face the challenge of calculating the
energy. We therefore turn to three limits where we can make progress: the bare ionic crystal, and
subsequently the density tight-binding and density nearly-free electron models.

3. Bare ionic model
We start with the simplest system that demonstrates the concept of this paper. For the bare
ionic crystal, we consider a one-component crystal of Coulomb point charges of equal sign and
infinite extent. This is typical of the systems studied in plasma physics [16], albeit without a
background of positive charges. Working in atomic units, the Coulomb potential is V(R) = |R|−1,
corresponding to repulsive interactions between the point charges. Our strategy is to demonstrate
that cubic crystals can have a zero matrix of force constants with respect to the motion of a single
ion, and therefore centrosymmetric cubic crystals are not necessarily stabilized or destabilized at
harmonic order.

In §3a, we discuss the background and key developments in the field of Coulomb crystals, and
in §3b we analyse our numerical results.

(a) Background
Coulomb crystals are defined by the dominant role of the Coulomb interaction and the simple
form of their constituents [17]. In this paper, we consider a special type of ‘transient Coulomb’
crystal, categorized as an unconfined and infinite, one-component system with repulsive
interactions. However, the study of Coulomb crystals extends beyond this limiting case and has
a history spanning over a century [18].

The earliest study of a one-component system was by Madelung in 1918 [18], where he showed
that an infinite array of point charges can form an ordered state. Two decades later, Wigner
predicted, in his seminal paper, that the electron jellium in metals can form a body-centred
cubic crystal at sufficiently low densities [19,20]. The subsequent numerical and experimental
confirmation of Wigner crystals sparked interest in the condensed matter community, and
a plethora of papers on the general theory [21–27] and stability [28–31] of these systems
followed, including detailed quantum Monte Carlo simulations [32–39]. From the plasma physics
perspective on the other hand, interest in strongly coupled plasmas, i.e. plasmas where the
average Coulomb energy of a particle is much greater than its average kinetic energy [40],
led to the prediction that three-dimensional, one-component Coulomb plasmas can also form
a body-centred cubic crystal at sufficiently high densities and/or low temperatures [41]. It was
subsequently realized that these two conclusions could be reconciled as opposite density limits of

3This quantity would not be sufficient to quantify whether a system is stable.

4Higher order (in)stabilities are, in all cases, weaker than those at lower orders.
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Table 1. Diagonal matrices of force constants and minimizing directions for the ion–ion interaction expansion about
equilibrium, at second orderwith lattice spacing, a. The cubic crystals are denoted by C ∈ {cub, bcc, fcc, dia} and the hexagonal
crystals byH ∈ {hcp, dhcp}.Φ0 is the Hessian; m̂2 is the normalized eigenvector corresponding to the lowest eigenvalue of the
Hessian; and m̂ᵀ

2 · Φ0 · m̂2 is the projection of the Hessian in the minimizing direction. All values are given to the precision
up to which they have converged, or three significant figures, whichever is lower.

crystal aΦ i-i
0 i-im̂2 i-im̂

ᵀ
2 · (aΦ i-i

0 ) · i-im̂2

C 0 − 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H − k
2

⎛
⎜⎝
1 0 0

0 1 0

0 0 −2

⎞
⎟⎠ ±êz

khcp = −0.33

kdhcp = −0.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the same problem.5 All of these models, however, include a homogeneous positive background
of charges to stabilize the system. Indeed, there are two ways to stabilize a repulsive Coulomb
crystal: a homogeneous oppositely charged background or confinement [17].

Work on confined plasmas has been performed in a variety of contexts [40]. Most notably,
the structure and Madelung energy [42] as well as the melting of ordered states [43] in
spherical Coulomb crystals have been studied in the last 30 years. These systems can also be
probed and manipulated experimentally using ions confined to Penning [16] or Paul [44] traps,
with motivation provided by the recent discovery of crystalline plasmas of dust particles in
astrophysics [11] as well as the industrial success of quantum dot technology [45]. For all of these
confined systems, however, the resulting crystal structure is strongly dependent on the shape of
the trap [43]. Therefore, no general statements can be made about the equilibrium structure.

In this section, we study the instability of unconfined Coulomb crystals, which we stabilize in
later sections through the inclusion of an oppositely charged background.

(b) Analysis
We first calculate the BO energy of a lattice of ions. We examine the Bravais lattices: simple cubic
(cub), body-centred cubic (bcc) and face-centred cubic (fcc). Additionally, we study the diamond
(dia) lattice structure, from the fcc family, separately, as it is of special interest owing to its extreme
material properties, such as hardness and thermal conductivity. We also include the hexagonal
close-packed (hcp) and double hexagonal close-packed (dhcp) structures in our analysis, from the
hexagonal Bravais lattice family, because of their ubiquity in nature (see electronic supplementary
material, section SIV).

In order to perform the summation over lattice sites in this section we use a rotationally
symmetric summation scheme. We start by defining all unit cells with an atom at the origin and
then incrementally add atoms in concentric shells. The long-range contribution is incorporated
using the classical Ewald method [46] and we compute this summation until convergence
to the desired precision. The full details of the numerical model are discussed in electronic
supplementary material, section SV.

The diagonal matrices of force constants, directions of greatest instability and minimal
eigenvalues for these crystals are shown in table 1. For all crystal structures, the trace of the
diagonal matrix of force constants is zero. For cubic systems (cub, bcc, fcc, dia) the diagonal
harmonic term is identically zero, whereas for hexagonal systems (hcp, dhcp) the diagonal force
constant matrices are indefinite, which implies the system is at a saddle point. We also see that
hexagonal structures are stable to diagonal perturbations in the xy-plane, but most unstable to
diagonal perturbations in the z-direction, as illustrated in figure 1a. The dhcp system is more
unstable than the hcp system with this metric because of the higher density of ions.

5Additionally, the successful quest to determine the intermediate physics arguably inspired the first application of
importance-sampled diffusion Monte Carlo [34].
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Figure 1. Angular variation in the inner product of the matrices of force constants with a direction vectorm atφ = π/2 and
unit radius, in units of a−1. Plots are shown for the (a) second-order and (b) fourth-order terms for the hcp and dhcp crystal
structures. Note that the inner product of the diagonal matrices of force constants is azimuthally symmetric for these systems.
The minimizing directions are recorded in tables 1 and 2. (Online version in colour.)

Having found that the cubic crystal stability test can be inconclusive at second order, we
turn to a higher order expansion. An analogous table for the fourth-order diagonal matrices
of force constants is shown in table 2.6 At this order, the cubic systems do not have vanishing
contributions; instead, they demonstrate a fourth-order instability. Note that the form of the
fourth-order matrices is similar in each case, with a varying pre-factor. Plots of the angular
variation of these fourth-order matrices are shown in figure 2. As for the hexagonal systems at
second order, the system is again at a saddle point. In this case, the configuration is stable to
perturbations in the Cartesian basis directions for cub; and in the diagonal directions for bcc, fcc
and dia crystals, and vice versa. For completeness, we show that the fourth-order matrices for the
hexagonal systems are also indefinite, as shown in figure 1b. In the dhcp case, the minimizing
directions are again ±êz, whereas for the hcp system the most unstable directions have now
shifted to θ = 0.857, π − 0.857. The angular variation for the hexagonal systems is rotationally
symmetric about the z-axis, since the x- and y-eigenvalues are the same. Note that since higher
order (in)stabilities are always weaker than lower orders, it is unnecessary to examine the higher
order terms for these hexagonal systems. As seen for the second-order case, the magnitude of the
instabilities is determined by the ion density.

This lack of a diagonal harmonic contribution to the energy in cubic systems appears to
contradict the 1904 quasi-harmonic model for a crystal of atoms connected by springs [13–15].
However, as stated before, it is a natural consequence of Gauss’s theorem (∂xx + ∂yy + ∂zz)EBO = 0.
In a system with cubic symmetry all terms in Gauss’s theorem must be identical so each must
be zero, ∂ααEBO = 0. Furthermore, ∂αβEBO = 0 for these examples by symmetry. Conversely, in
systems without cubic symmetry, we can say that if in some direction the second derivative is
positive, then in others it must be negative to satisfy Gauss’s theorem, and so will never be stable
by geometry. The changing sign in the fourth-order derivative in cubic systems is expected as
Gauss’s theorem requires the net electron flux through a closed surface to be zero, so positive
contributions must be counterbalanced by negative contributions. We therefore deduce that it is
inevitable that crystalline solids are not stabilized at any order by contributions from the ion–ion
potential.

Note that in this section we have considered a one-component ionic crystal without a
neutralizing background to show that cubic structures have the weakest (fourth-order) instability
with respect to the motion of a single ion. In §5 we will show that if a constant neutralizing
background is introduced, this would provide a quadratic restoring potential for the ions,
which would compensate for this instability. This holds even for non-cubic systems, since
it can be shown that the stabilizing contribution to the dynamical matrix from the constant

6Odd power terms in the potential trivially vanish owing to symmetry.
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a m̂T·X0
i-i·m̂ a m̂T·X0

i-i·m̂

(a) (b)z

yx

z

yx

0 25–25–50 50 0 25–25–50–75 5075

Figure 2. Angular variation in the inner product of the fourth-order diagonalmatrices of force constants with a direction vector
m at unit radius, in units of a−1. Plots are shown for the (a) cub and (b) bcc crystal structures. The plots for the fcc and dia crystal
structures have an identical form to (b)with different scales. The scales andminimizing directions are recorded in table 2. (Online
version in colour.)

Table 2. Diagonal force constant matrices and minimizing directions for the ion–ion interaction expansion about equilibrium,
at fourth order, with the same conventions as table 1. Fourth-order matrices are symmetry contracted as described in electronic
supplementary material, section SIII.

crystal aXi-i0 i-im̂4 i-im̂
◦2
4

ᵀ · (aXi-i0 ) · i-im̂◦2
4

cub 74.6

⎛
⎜⎝

1 −1.5 −1.5

−1.5 1 −1.5

−1.5 −1.5 1

⎞
⎟⎠ 1√

3
(±êx ± êy ± êz) −49.7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bcc/fcc/dia k

⎛
⎜⎝

1 −1.5 −1.5

−1.5 1 −1.5

−1.5 −1.5 1

⎞
⎟⎠ {±êx,±êy,±êz}

kbcc = −74.6

kfcc = −181

kdia = −2570
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hcp 8.1

⎛
⎜⎝
1 1 0

1 1 0

0 0 0

⎞
⎟⎠ + 21.6

⎛
⎜⎝

0 0 −1.5

0 0 −1.5

−1.5 −1.5 1

⎞
⎟⎠ θ = 0.857,π − 0.857 −9.3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dhcp −108

⎛
⎜⎝
1 1 0

1 1 0

0 0 0

⎞
⎟⎠ − 288

⎛
⎜⎝

0 0 −1.5

0 0 −1.5

−1.5 −1.5 1

⎞
⎟⎠ ±êz −288

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

uniform background is greater than the destabilizing contribution from the purely repulsive ionic
crystal.

4. Density tight-binding model
We found that the bare crystal of ions is not stable and so, motivated by the need to stabilize the
system, we now consider the simplest model to include electrons to bind the ions: the density
tight-binding model. The electrons are tightly bound to each nucleus with a spherical effective
charge density parametrized by core and valence orbital radii.

We start by analysing the model and phase diagram in §4a, and then discuss the interpretation
in §4b.
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(a) Analysis
In the density tight-binding approximation, the electrons are situated directly on top of and
nearby to the ions. We consider ions that have only spherically symmetric (s-type) orbitals, with
the electron density distribution

ρE(r; c, ae) ∝ 1
1 + exp(2(|r| − c)/ae)

,

where the normalization factor to give net charge neutrality is given in electronic supplementary
material, section SVI A 1. Here r denotes the displacement of the electron relative to the origin of
its associated ion, and c, ae characterize the core and valence orbital radii, respectively. The factor
of 2 ensures that the associated wave function, defined by ρ = |Ψ |2, reduces to the hydrogenic
atom solution, ∼ exp(−|r|/ae), in the extreme density tight-binding approximation: c 
 ae 
 a.
We choose this form of the electron orbital density [37] because it is analytically well behaved
for the required derivation and has the correct scaling behaviour (see electronic supplementary
material, section SVI A 1). Throughout our calculations, we work to leading order in the density
tight-binding approximation. In practice, this implies results up to first order in the small core
radial parameter (c/ae) and second order in the valence radial parameter (ae/a).

As mentioned in §2, to compute the total energy, E, we first solve the electronic problem with
ions assumed fixed and then we allow the ions to move in the Born–Oppenheimer potential
energy surface to account for the ionic contribution to the kinetic energy.

There are two contributions to the electronic kinetic energy: the energy due to confinement
and the energy due to tunnelling. We note that the expectation value of the total electronic kinetic
energy due to confinement is effectively independent of atom positions, since each potential well
in the vicinity of an ion is approximately the same shape. Moreover, the contribution from the
electrons tunnelling into neighbouring wells is exponentially small. Therefore, the expectation
value of the total electronic kinetic energy is constant with respect to atom configurations.

We calculate the ion–ion, electron–ion and electron–electron contributions to the potential
energy based on the electron orbital ansatz up to the approximations detailed above. We
subsequently add on the contribution to the energy due to the Pauli repulsion of the overlapping
electron orbitals, evaluated at the optimal effective radius of atoms in a spherical packing. Finally,
we relax the crystal structure to find the optimal lattice constant, a. We perform the calculation for
each of the crystal structures: cub, bcc, fcc, dia, hcp and dhcp.

For both the kinetic and potential energies, we use the same rotationally symmetric summation
scheme for the crystal introduced in §3. The details of the numerical model are discussed in
electronic supplementary material, section SVI.

In figure 3, we show the phase diagram of the stable crystal structures with the lowest energy
out of the cub, bcc, fcc, dia, hcp and dhcp lattices. We note that all of the crystal structures are
stable with respect to their dynamical matrices in this model and so the preferred crystal structure
is determined by the total energy hierarchy. Out of the six crystal structures considered, the hcp,
fcc and bcc structures are found to be the preferred phases. We present a higher resolution close-
up of the tricritical point in the inset of figure 3 to analyse the features of interest. The tricritical
point is at (ae, c) = (2.04, 2.13) × 10−3 with three transition lines: fcc-bcc at c ∝ ae; fcc-hcp at c ∝ a2.5

e ;
and bcc-hcp at c = 2.13 × 10−3 in the vicinity of the tricritical point. Since all phase transitions
between allotropes of crystal structures are first order, the tricritical point is valid with respect
to the vertex rule. Note that other than the restriction imposed by the density tight-binding
approximation, in this context c � ae, the phase diagram may be extended in both directions.

Now that we have constructed the phase diagram, we verify the convergence of our
calculations. Figure 4 shows a detailed analysis of the blue points depicted in figure 3. Most
importantly, we see from plots of the total energy against number of shells of ions in the
summation that convergence is reached at approximately five shells. Therefore, we plot the phase
diagram by summing over eight shells, deep into the converged region. We consistently observe
that {bcc, fcc, hcp} forms the energetically favourable subset of crystal structures.
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Figure 3. Phase diagram of the lowest energy crystal structure out of {cub, bcc, fcc, dia, hcp, dhcp} at the optimum lattice
constant, summed out to eight shells. The black line separates the valid region for the density tight-binding model: the lower
right-hand triangle at c < ae. The blue points, {(1.75 × 10−3, 10−2), (1.75 × 10−3, 10−3), (8 × 10−3, 10−3)}, are analysed in
figure 4. Inset: Higher resolution plot of the region enclosed by the black square, highlighting the tricritical point. The diagrams
are plotted to a resolution of 1002 points. (Online version in colour.)
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(b) Discussion
In this section, we progressed from the ionic crystal in §3 by introducing tightly bound electrons
to stabilize the system. Three phases emerged with noticeably lower energy: hcp, bcc and fcc. Each
is the ground state in different limits, and all have been separately noted before, hence the density
tight-binding model presented allows us to reconcile previous findings in a unified framework.
We now discuss how these phases emerge in the three separate limits of our density tight-binding
model.

It has been known for a long time that three-dimensional Coulomb crystals have a bcc
symmetry [41], where the term ‘Coulomb crystal’ in plasma physics refers to strongly coupled
charged particles with a neutralizing background [17]. In the density tight-binding limit (c 

ae 
 a), this is effectively equivalent to the system presented in figure 3. The particle interactions
are Coulomb-like, since the effect of the well is still minimal, and the presence of the electrons
provides the neutralizing background, albeit highly concentrated around the ions. Therefore, it
is unsurprising that we see the same bcc ground-state crystal structure. This also has parallels to
a Wigner crystal, where the decay of the electronic wave function is sufficiently slow to stabilize
the crystal [19].

As soon as we move into the region where c > ae, we modify the effective interaction through
screening. In this region we observe the behaviour of screened Coulomb charges, and when c �
ae and c � a we observe the density nearly-free electron model. Indeed, it has been shown by
Hamaguchi et al. [47] that three-dimensional Yukawa crystals have a bcc and fcc phase. They
show that there exist two solid phases for the Yukawa crystal: bcc at small screening parameter
and a transition to fcc when the screening parameter is increased, which corresponds to moving
vertically upwards in our phase diagram.

In addition to these extreme limits, our model provides insight into the transition from extreme
matter to real materials. From figure 3, we can see that as ae is increased, that is, the valence
electron radius is increased and the density tight-binding approximation is relaxed, the hcp
structure is energetically favourable, for both c < ae and c > ae. This shows that in many materials
the crystal lattice begins to favour high symmetry and a high packing factor. The limit applies
to many of the lanthanides and actinides that are in the tight-binding regime [48]. Moreover, as
shown in figure 5 and discussed in electronic supplementary material, section SIV, the hexagonal
structure is the most common Bravais lattice in the periodic table. More generally, the vast
majority of the periodic table is composed of the bcc, fcc and hcp crystal structures;7 identified
here are the three most energetically favourable structures.

5. Density nearly-free electron model
In contrast to the density tight-binding model, where the Bohr radii of the atoms are much smaller
than the inter-atomic spacing, we now consider the opposite ‘density nearly-free electron’ limit,
where the Bohr radii mostly overlap. This is applicable to a variety of simple metals in the periodic
table, and particularly the alkali metals. In the weak-binding or density nearly-free electron
model, we perform first-order perturbation theory about the jellium model, where the electron
density is uniform. Our strategy is to focus on the ion motions found in §3 to be not governed
by a harmonic potential, and then investigate whether the electron cloud can compensate for this.
The details of the electron cloud densities in this model are presented in electronic supplementary
material, section SVII.

The density nearly-free electron model comprises a lattice of ions with Coulomb repulsion,
as studied in §3, together with an oscillatory and near-uniform electron cloud density, ρE.
The expectation value of the total electronic kinetic energy in this model is therefore directly
proportional to the Fermi energy. In accordance with first-order perturbation theory, this electron
cloud density may be split into two parts, ρE = ρcst

E + ρosc
E , with ρcst

E corresponding to the constant

7See electronic supplementary material, section SIV.
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Figure 5. The periodic table of elements labelled according to the crystal structure of their thermodynamically most stable
allotrope [49]. Thewhite cells correspond to elementswith a crystal structure that is not in the set {cub, bcc, fcc, dia, hcp, dhcp}.
The crystal structure of elements marked with an asterisk is not known. (Online version in colour.)
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Figure 6. (a) Three-, (b) two- and (c) one-dimensional plots of the oscillatory part of the electron cloud density,ρosc
E (x, y, z)=

[cos(kx) + cos(ky) + cos(kz)]/3 with k = 2π/a, for the simple cubic lattice in the density nearly-free electron model.
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jellium-like density and ρosc
E corresponding to the oscillatory density due to the electron–ion

interaction and the geometry of the ionic lattice. An example of the oscillatory electron cloud
density for the simple cubic lattice is shown in figure 6. In each case, we ensure that the density
range is normalized such that max(ρosc

E ) = u, where u is the oscillation strength, and that the
integral of ρosc

E over a unit cell is equal to zero.
In order to calculate the total diagonal force constant matrix, we proceed by summing

the ion–ion, electron–ion and electron–electron contributions from the BO potential. For the
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Table 3. Electron–ion contributions to the diagonal force constants matrix in the density nearly-free electronmodel. The cubic
crystals are denoted by C ∈ {cub, bcc, fcc}. The prefactors for the constant electron–ion contributions for cubic systems are
{kcub, kbcc, kfcc} = {1, 2, 4}. I and ũ denote the identity matrix and dimensionless oscillation strength, respectively.

crystal a(Φe-i,cst
0 + Φe-i,osc

0 )

C
4π
3

(
k +

√
2π ũ

)
I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hcp
4
√
2π
41

(
1 + √

π ũ
)
⎛
⎜⎝
16 0 0

0 16 0

0 0 9

⎞
⎟⎠

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dhcp
4
√
2π

697

(
2 + √

π ũ
)
⎛
⎜⎝
218 0 0

0 218 0

0 0 261

⎞
⎟⎠
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ion–ion contribution, we take results directly from §3. Note that, when performing the real-
space summation over shells for the ion–ion contribution, the zeroth-order contribution to the
BO energy is divergent, whereas the matrix of force constants converges. In fact, there are
divergent zeroth-order contributions for the electron–ion and electron–electron contributions too,
corresponding to the jellium-like term in the electron density. These divergent terms cancel, which
is reflected in the Ewald summation. However, we gain additional insight by directly calculating
the diagonal force constants matrix in each case. The constant electron–ion contribution to the
diagonal force constants matrix must satisfy

∑
α Φ

e-i,cst
0iα,0iα = 4πρcst

E by Poisson’s law. The uniform
neutralizing background stabilizes any crystal with respect to diagonal force constants and its
contribution is summarized in table 3.

The oscillatory electron–ion contribution to the BO energy, EBO,osc
e-i (u) = −2

∑
I
∫

Vi(RI − u +
re)ρosc

E (re)dre, may be simplified by noting that all ions are equivalent and so we can focus on the
ion at the origin. Subsequently calculating the energy per atom allows us to drop the summation
over ions and write

EBO,osc
e-i (u) = −2

∫
Vi(−u + re)ρosc

E (re) dre, (5.1)

where Vi is given by the Coulomb potential and the oscillatory part of the electron density is
approximated by a cosine function (see electronic supplementary material, section SVII).

Finally, for the electron–electron contribution, EBO
e-e = ∑

I
∫∫

Ve(RI − u + re − ue)ρE(re)ρE(ue)
dredue, we may drop the summation by the same argument. Note also that the electron potential
does not depend on the displacement of the central ion. Hence, excluding the zeroth-order term
and working to first order in the perturbation strength, we may write the oscillatory contribution
to the electron–electron BO energy as

EBO,osc
e-e = 2ρconst

E

∫
re∈unit

cell

∫
ue∈R3

Ve(re − ue)ρosc
E (ue) duedre, (5.2)

where the factor of 2 is from the addition of both cross terms, and Ve is again given by the
Coulomb potential. For all structures the positive and negative regions of the oscillating electron

density ρosc
E cancel and therefore the oscillatory electron–electron contribution is zero, EBO,osc

e-e = 0.
The summation of the leading-order terms from §3, the jellium contribution, as well as the

oscillatory contributions from equations (5.1) and (5.2) yields the total BO energy, the diagonal
matrix of force constants, and hence an instability discriminant.

The harmonic energy contributions for the crystal structures is summarized in table 3. We
note that all of the electron–ion contributions are positive at this order. We can see that the cubic
structures all have isotropic matrices, whereas the hexagonal structures are only isotropic in the
xy-plane, as expected by symmetry.
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For all of the crystals considered, the electron–ion term from the constant electron background
alone is sufficient to counterbalance the corresponding ion–ion term. The oscillating electron
background provides additional stability for these diagonal terms. We note that, for the complete
stability hierarchy in the density nearly-free electron system, the dynamical matrices need to be
studied, as well as additional effects, such as the electron per atom concentration and the band
lowering at the Brillouin zone boundaries [50,51].

In the empty lattice approximation (ũ ≈ 0), we find that cubic systems have positive diagonal
harmonic terms of larger magnitude than hexagonal systems, and in particular the fcc structure
has the largest diagonal harmonic term. This potentially concurs with the nearly-free limit c �
ae and c � a of the density tight-binding model. Furthermore, this matches observations in the
periodic table, not only for the quintessential empty lattice case study, aluminium [52], but also
nickel, copper, silver and gold [53]—all of which have an fcc structure.

In this section, we have shown that, considering diagonal harmonic terms with respect to the
motion of a single ion, all ionic crystals are counterbalanced with the addition of a constant
neutralizing background, and that a first-order oscillatory component to the background does
not have a destabilizing effect. The fcc lattice has the largest such term, in agreement with many
itinerant elemental solids.

6. Conclusion
In this paper, we have studied lattice instability of unconfined crystal structures at zero
temperature in the bare ionic, density tight-binding and density nearly-free electron models.
We analysed the diagonal matrices of force constants to expose instability and focused on the
{cub, bcc, fcc, dia, hcp, dhcp} structures because of their prevalence in nature and distinctive
properties.

In §3, we studied a bare one-component system of point Coulomb charges. First, we reviewed
the history of the field, and noted that the bcc structure is special for being the stable crystal
structure for both the low-density Wigner crystal and the high-density Coulomb crystal in the
one-component plasma model. We then demonstrated that, in this regime, centrosymmetric cubic
crystal structures can have no diagonal contribution to the dynamical matrix at quadratic order
but instead an instability at fourth order, whereas all other crystal structures have an instability
at second order. This is counter to the paradigmatic quasi-harmonic model of ions connected by
springs [13–15]. These findings motivated us to continue and examine the preferred structure as
we permit background charges to stabilize the system.

In §4, we stabilized the lattice through the addition of electron orbitals. We constructed a
density tight-binding model, and found that in the extreme density tight-binding limit the bcc
structure is the most stable, as suspected from the results and discussion in §3. We also showed
that, if we tune the parameters to increase screening in our pseudopotential model of the nucleus
and approach the nearly-free electron limit, the fcc structure is the stable ground state. This agrees
with theoretical studies of unconfined three-dimensional Yukawa crystals in the literature. Finally,
we report the second dominant phase to be hcp as we tune away from density tight binding,
which accords to trends in the periodic table. The use of the density tight-binding model with
the systematic analysis of terms has allowed us to combine the emergence of these three separate
phases into a single framework.

In §5, we briefly examined the instability of crystal structures in the opposite limit, density
nearly-free electrons, which is representative of many common metals. In this model, we found
that the instability of every crystal structure is counterbalanced with the addition of a constant
neutralizing background, and that a first-order oscillatory perturbation to the background does
not have a destabilizing effect. We note here that a formal stability analysis would require the
complete dynamical matrix. The most stable crystal structure in the empty lattice approximation
according to this metric is fcc, agreeing not only with a limit of the density tight-binding model
but also with several structures observed in the periodic table.
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By investigating three simple cases, motivated by the absence of diagonal force constants in
cubic Coulomb crystals, this paper highlights the connections and limitations of paradigmatic
crystal models for stability. For many real materials, there are a plethora of important effects that
need to be taken into consideration to determine the optimal lattice structure, e.g. temperature
effects, the shape of the atomic orbitals, the precise band structure or the van der Waals
interaction, which leaves scope for future work. However, we have identified minimal models
to illustrate the interesting physical effects at play, shown how the density tight-binding and
density nearly-free electron theories may be linked and connected historical theories of crystal
structures at low energies. We hope that this closer look at the energies and force constants for
these three models will instil a greater appreciation and understanding of the requirements for
crystal stability, as well as its connection with lattice geometry.
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