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We develop a formalism to directly evaluate the matrix of force constants within a Quantum Monte Carlo
calculation. We utilize the matrix of force constants to accurately relax the positions of atoms in molecules
and determine their vibrational modes, using a combination of Variational and Diffusion Monte Carlo. The
computed bond lengths differ by less than 0.007Å from the experimental results for all four tested molecules.
For hydrogen and hydrogen chloride, we obtain fundamental vibrational frequencies within 0.1% of experi-
mental results and ∼10 times more accurate than leading computational methods. For carbon dioxide and
methane, the vibrational frequency obtained is on average within 1.1% of the experimental result, which
is at least 3 times closer than results using Restricted Hartree-Fock and Density Functional Theory with a
Perdew-Burke-Ernzerhof (PBE) functional and comparable or better than Density Functional Theory with a
semi-empirical functional.

I. INTRODUCTION

Quantum Monte Carlo (QMC) is a leading class of
approaches used to establish and study the electronic
ground state of molecules and solids. Specifically, Diffu-
sion Monte Carlo (DMC) is widely used to project out the
exact electronic ground state wave function of a system,
subject only to the fixed node approximation, fully ac-
counting for correlation effects such as van der Waals in-
teractions1,2. Although DMC is an ideal tool for studying
the electronic wave function of the system3, the determi-
nation of the wave function of the atoms – their expected
positions and energy landscape – remains a challenge for
the method. Several approaches have been put forward
to calculate the force acting on the atoms with DMC4–11,
but a more comprehensive characterization of the atomic
wave function requires the second derivative of the en-
ergy – the matrix of force constants – to both efficiently
relax atomic positions and calculate vibrational modes.

We propose a method to directly calculate the ma-
trix of force constants, d2E/dRIdRJ , where RI is the
position of the Ith, and RJ the Jth, atom in the sys-
tem. The energy, E = 〈Ĥ〉, is calculated in the Born-

Oppenheimer approximation of Hamiltonian Ĥ; that is
with the electrons always in their ground state for the
respective atomic configuration. The calculation is im-
plemented in QMC through a new quantum mechanical
expectation value, d2〈Ĥ〉/dRIdRJ , meaning that it can
be evaluated with one configuration of the atoms to re-
cover the entire matrix of force constants. The matrix
of force constants allows us to efficiently relax atomic
positions and determine the vibrational modes.

We start by introducing the formalism and the QMC
methods in Sec. II. We subsequently outline the appli-
cations and implementation of the matrix of force con-
stants in Sec. III, followed by a series of case studies
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in Sec. IV. We begin with atomic and diatomic hydrogen,
and then move on to hydrogen chloride, carbon dioxide,
and methane. For each molecule we derive the matrix of
force constants, relax the positions of the atoms, and de-
termine the vibrational modes. We critically evaluate the
results with respect to existing computational methods:
Restricted Hartree-Fock (RHF)13–15 and Density Func-
tional Theory (DFT)16,17. Finally, in Sec. V we summa-
rize the results and discuss future opportunities for the
new formalism.

II. FORMALISM

In this section, we present the matrix of force con-
stants. We then outline the numerics by discussing how
the electronic orbitals are generated and the details of
the QMC algorithms.

A. Matrix of force constants

We consider many-body quantum systems comprised
of Nn nuclei and Ne electrons. The three-dimensional po-
sition vectors are denoted as RI for nuclei and ri for elec-
trons, with I = 1, . . . ,Nn and i = 1, . . . ,Ne. These are
used to construct the corresponding multi-dimensional
vectors in configuration phase space: R ≡ (R1, . . . , RNn)
and r ≡ (r1, . . . rNe).

We use the non-relativistic Hamiltonian18

Ĥ =− 1

2

Ne∑
i=1

∇2
ri +

Ne∑
i<j

1

|ri − rj |

−
Ne∑
i=1

Nn∑
I=1

VI(RI − ri) +

Nn∑
I<J

ZIZJ
|RI −RJ |

,

which is comprised of the electron kinetic energy, as
well as the electron-electron, electron-ion, and ion-ion
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interactions19. VI and ZI represent the electron-ion pseu-
dopotential and full nuclear charge, of atom I, respec-
tively.

We use a Hartree-Fock average effective Trail-Needs
pseudopotential20, which has been specifically optimized
for DMC calculations, to screen the effects of the core
electrons and nucleus on the valence electrons.

In an electron position basis, the expectation value of
the energy5 may be written as

E =

∫
Ψ∗ĤΨdr∫
|Ψ|2dr

,

where the many-body wave function, Ψ, and Hamilto-
nian, Ĥ, are both functions of nucleus configuration, R,
and electron configuration, r.

The force acting on ion I is defined as the negative
total derivative of the energy with respect to the nuclear
coordinates. Taking the first derivative of the energy
with respect to atom position5 yields

dE

dRI
=

∫
Ψ∗ dĤ

dRI
Ψdr∫

|Ψ|2dr
+

[∫
dΨ∗

dRI
(Ĥ − E)Ψdr∫
|Ψ|2dr

+ c.c.

]
,

which is decomposed into Hellmann-Feynman and Pu-
lay terms, respectively. When the wave functions are ex-
act eigenstates of the Hamiltonian, such that (Ĥ−E)Ψ =
0, the Pulay term vanishes. However in practice, the
wave functions are not exact in Variational Monte Carlo
(VMC) or DMC, so the Pulay term needs to be included
to obtain the total force.

In this paper, we derive the matrix of force constants
from the second derivative of the energy that takes the
form of

d2E

dRIdRJ
=

∫
Ψ∗ d2Ĥ

dRIdRJ
Ψdr∫

|Ψ|2dr

+

∫
Ψ∗
[

dΨ
dRI

(
Ψ−1 dĤ

dRJ
Ψ− dE

dRJ

)
+ (I ↔ J)

]
dr

2
∫
|Ψ|2dr

+

∫ [
d

dRJ

[
dΨ

dRI

(
Ĥ − E

)
Ψ
]

+ (I ↔ J)
]
dr

2
∫
|Ψ|2dr

+ c.c..

This comprises one component of the matrix of force
constants, so we must cycle over all atom pairs {I, J}
to determine the entire matrix. The second derivative
of the Hamiltonian with respect to atom position does
not commute with the Hamiltonian, hence we approxi-
mate the pure expectation value of the force constants in
the DMC procedure, as discussed in Sec. II C. The first
two terms of the matrix of force constants stem from the
Hellmann-Feynman force, whereas the third is due to the
Pulay force.

To calculate the entire matrix of force constants using
the Monte Carlo algorithm, we need to compute the ion-
ion and electron-ion components at a cost of at most
O(N3

nNe)+O(N2
nN

2
e ). This leads to an overall dominant

scaling of O(N4
n) assuming O(Nn) ∝ O(Ne).

Having evaluated the matrix of force constants and
implemented the formalism we can then use it to study
atomic relaxation and vibrational modes.

B. Variational Monte Carlo

For the fermionic many-body trial wave function in the
VMC method21, we take a Slater-Jastrow wave function
of the form18:

ΨT = eJD↑D↓,

where D↑(D↓) denotes the Slater determinant of the
molecular spin-up(down) orbitals. Here, the usual
Hartree-Fock ansatz, ΨHF = D↑D↓, which encodes Pauli
exclusion through the anti-symmetry of the Slater deter-
minant, is multiplied by a Jastrow factor, eJ , which is an
optimizable function used to impose further constraints
on ΨT.

Initially, we compute the VMC energy, which is the ex-
pectation value of the Hamiltonian operator with respect
to the trial wave function5:

EVMC =

∫
|ΨT(r)|2EL(r)dr∫
|ΨT(r)|2dr

,

where EL = Ψ−1
T (r)ĤΨT(r) is the local energy, dr is the

infinitesimal hypervolume element in electron configura-
tion phase space, and the integrals are performed using
Monte Carlo22 in the CASINO program23.

Single-particle orbitals for the different molecular
structures were calculated using the CRYSTAL pro-
gram24. The RHF and DFT calculations with
two exchange-correlation functionals the Perdew-Burke-
Ernzerhof (PBE)25 containing no exact orbital exchange
and the B3LYP26–28 hybrid functional containing a fixed
amount of exact exchange were performed with triple-ζ-
valence Gaussian basis sets, as well as polarization and
diffuse basis functions29. The exact exchange-correlation
functional is unknown and the choice of functional de-
pends heavily on the system and the property of interest.
PBE as a general functional was chosen for its greater
predictive power across all simulations and properties30,
though it is less likely to achieve the accuracy of a semi-
empirical functional such as B3LYP, which was chosen
in addition for its good agreement with post-DFT meth-
ods within its range of applicability on molecules31,32.
We use a Jastrow factor in its most general form com-
prising of an electron-electron term, an electron-nucleus
term, and an electron-electron-nucleus term. The wave
function parameters are optimized by using the variance
minimization method33 first, followed by the energy min-
imization method34–36.

C. Diffusion Monte Carlo

DMC evolves a wave function, Φ, according to the
imaginary-time Schrödinger equation, in order to project
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FIG. 1. Interatomic force estimates for the molecules (a) H2

and (b) CH4. The red dots correspond to the Hellmann-
Feynman (HF) force, the blue triangles to the Pulay force,
and the magenta squares to the total force. Error bars for all
of the data are given – some error bars are smaller than the
data points on the scale of the plot.

out the lowest energy eigenstate, Φ0, with the same nodal
surface as the trial wave function18.

The efficiency of the DMC algorithm is improved by
importance sampling37. By multiplying the wave func-
tion, Φ, by a trial wave function, ΨT from VMC, we may
solve the Schrödinger equation for the mixed distribu-
tion f(r, τ) = Φ(r, τ)ΨT(r), where τ denotes imaginary
time. We tested, and found negligible error, with time-
steps of τ = 0.01 a.u., and so this is used throughout38.
The fixed-node approximation39,40 is introduced to over-
come the fermion sign problem by constraining the nodal
surface of Φ0 to match that of ΨT

41.

The expectation value of the energy in the DMC
method5 is given by

EDMC =

∫
Φ(r)ΨT(r)EL(r)dr∫

Φ(r)ΨT(r)dr
.

This is an unbiased estimator, up to the approximations
made, since EDMC does not depend on the trial wave
function used. However, the mixed expectation value of
an operator that does not commute with the Hamilto-
nian is biased. In these cases, we approximate the pure
expectation value of an operator Ô with the extrapola-
tion formula42

O = 2ODMC −OVMC +O
[
(Φ−ΨT)2

]
.

Alternatively, the future-walking method may be used,
for example, to obtain an exact pure estimator43. Al-
though the extrapolation formula improves the results,
this procedure depends on an almost complete error can-
cellation and is strongly dependent on the quality of the
wave function employed. We run the simulations for
longer to systematically reduce the statistical error as-
sociated with variational techniques.

D. Contributions of the Hellmann-Feynman and Pulay
terms

Both the Hellmann-Feynman and Pulay terms con-
tribute to the force and matrix of force constants, and
both Pulay terms are zero at the exact electronic ground
state. However, the Pulay contribution to the matrix
of force constants contains a second derivative of the
wave function with respect to atom position, and so is
more susceptible to steep gradients due to an incorrect
trial wave function. Therefore, when using the electronic
structure methods, it is useful to determine the relative
contributions of the Hellmann-Feynman and Pulay terms
so that we can gauge the importance of refining the elec-
tronic wave function.

The interatomic force in a hydrogen molecule and
methane molecule is shown in Fig. 1. Different bond
lengths within the vicinity of the equilibrium were chosen
and forces were evaluated using the methods described
in Secs. II B and II C. The addition of the Pulay force to
the Hellmann-Feynman force shifts the equilibrium bond
length by 2% in both examples, therefore the Pulay force
is crucial for finding the correct equilibrium geometry.

We now turn to consider the calculation of the matrix
of force constants – the gradient of the force. We first
note from Fig. 1 that the Pulay force is remarkably con-
stant with respect to bond length across all molecules
tested in this paper, regardless of the molecular geome-
try. This means that the gradient of the force is neg-
ligible, and therefore does not significantly contribute
to the matrix of force constants. We find that, when
directly evaluated, the value of the Pulay term in the
matrix of force constants is smaller than its standard
error, as well as the standard error of the contribution
from the Hellmann-Feynman term. Furthermore, based
on the analysis of variance at the α = 0.05 level, the
gradient of the Pulay force does not significantly deviate
from zero. This means that the change in vibrational
frequency due to the Pulay force gradient is just 1% of
that from the Hellmann-Feynman gradient for both hy-
drogen and methane. This conclusion is also backed up
by independent studies: taking a numerical derivative
of the results for H2 and LiH reported by Casalegno et
al.44, CO2 reported by Lee et al.4, as well as adenine-
thymine reported by Ruiz-Serrano et al.46, confirms the
small contribution of the Pulay term to the matrix of
force constants.

The effect of the Pulay term in the force is significant
for force analysis and, when suitably formulated, can re-
duce the statistical noise in the expectation value and
improve the convergence of the optimization algorithm46.
However, as the Pulay force is almost constant with in-
teratomic bond length, its contribution to the matrix of
force constants is negligible. Therefore, we expect the
Pulay contribution to the matrix of force constants to be
insensitive to the quality of the trial wave function. An-
other corollary is that for our zero-variance scheme47,48,
the expected −5/2 power law tail associated with infi-
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nite variance that could arise from Pulay terms5,59 will
only make a limited contribution to the tail of the to-
tal probability distribution and as shown in Fig. 4 we
have not been hindered by this problem in our practical
application.

III. APPLICATIONS OF FORCE CONSTANTS

A. Atomic relaxation

The primary requirement for a versatile geometry
model, is the ability to minimize the energy of an arbi-
trary configuration of atoms50. For quantum mechanical
simulations, this is often performed using VMC, due to
the algorithm’s efficiency. In this paper, we relax the po-
sitions of the atoms first with VMC using the additional
information provided by the matrix of force constants.
The wave function from VMC is then optimized in DMC
and we perform the same iteration steps using DMC to
confirm convergence and further reduce the error23,52–54.

Requiring that the energy of the system is constant up
to quadratic order in atomic displacement, and explic-
itly correcting for global translation and rotation, as well
as anharmonicity, we find that the atomic displacement,
∆R, is given by

∆R = −2M−1 · ∇RE −
∑
I mIRI∑
I mI

−R× θ, (1)

where M ≡ d2E/dRIdRJ is the matrix of force con-
stants; ∇RE ≡ dE/dRI is the multi-particle gradient of
the energy with respect to atom position; θ is the three-
dimensional global angular displacement vector for the
configuration R. On each step, we displace the atoms by
∆R in order to compare with other methods in deter-
mining the minimum energy of the system. This yields
the interatomic bond length at the minimum of the total
potential. The details of the calculation are outlined in
Appendix A.

Though 〈R̂〉 minimizes the total potential after the
atomic relaxation procedure, if the potential is not sym-
metric then the expected separation of the atoms does
not coincide with the minimum. We capture the lowest-
order difference with the addition of an anharmonic cor-
rection term ∆Ra, outlined in Appendix A 4.

B. Vibrational modes

One main motivation for incorporating the matrix of
force constants into the QMC procedure is the ability to
calculate vibrational modes and frequencies directly. In
this paper, we use a variety of methods to calculate the
vibrational frequency for a cross comparison.

Up to a simple mapping, the eigenvectors of the matrix
of force constants correspond to the vibrational modes of

the system, and the eigenvalues correspond to the vi-
brational frequencies. We can, therefore, use a complete
diagonalization of the matrix of force constants to es-
timate the eigenmodes and frequencies. To benchmark
the results, we also calculate the frequencies from a nu-
merical second derivative of the energy with respect to
bond length – referred to as the energy curvature (EC)
method – and from a numerical derivative of the force –
force gradient (FG) method.

A discussion of all of these methods, including the anal-
ysis of statistical uncertainty and the anharmonic correc-
tion, is detailed in Appendix B.

IV. CASE STUDIES

In this section, we evaluate the effectiveness of the
matrix of force constants formalism for a selection of
molecules. We first confirm the theory with the simplest
possible molecules, before testing the generalizability of
the formalism on molecules containing more atoms.

A. Hydrogen atom and molecule

We begin by analyzing the simplest physical system:
the hydrogen atom. By performing a DMC calculation,
we verify that the hydrogen atom obeys Newton’s laws

since it has a net force of (3.68 ± 5.17) × 10−3 EhÅ
−1

acting on it, which is zero within standard error. Fur-
thermore, the hydrogen atom has a computed eigenfre-
quency of 0 cm−1. This system behaves as expected and
confirms the translational invariance.

From this, it is natural to increment the complexity by
adding another hydrogen atom to form an H2 molecule.
This is the simplest physical example that allows us to
verify the eigenfrequencies from our DMC method, which
has no nodes and gives an exact wave function, by com-
paring them against both experimental results in the lit-
erature, and RHF/DFT predictions from the CRYSTAL
program.

The energy, force, and diagonal elements of the ma-
trix of force constants for the hydrogen atom is shown
as a function of bond length in Fig. 2. We verify that
the energy is at a minimum and the force is zero at the
correct equilibrium bond length of 74.13 pm55, within
standard error. Furthermore, in Fig. 2b, we show that
in the vicinity of the equilibrium bond length for the
hydrogen molecule, the energy curvature, the force gra-
dient, and the direct computation, all agree within error
bounds. The entire matrix of force constants is sparse. If
we are only interested in the vibrational mode, it can be
reduced to be a 2× 2 matrix, with the off-diagonal force
constants to be minus the diagonal elements within error,
as required by symmetry56. Note that here the diagonal
elements of the matrix of force constants are not constant
across the range of bond lengths shown, as can also be
seen in the slight curvature of the force in Fig. 2a. This
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E
/
E

h

d
E
/
d
R

/
E

h
Å
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FIG. 2. (a) Energy, force, and (b) diagonal force constant
against bond length, for the hydrogen molecule. For the en-
ergy and force plots, the parabolic and linear curves of best
fit for the visible data, are overlaid. For the force constant
plots, we show the diagonal force constant derived using the
finite difference method from the energy curvature, the force
gradient, and the direct analytical evaluation of the force con-
stant. The line of best fit for the visible MFC data is overlaid.
The dashed line indicates the experimental equilibrium bond
length. Error bars for all of the data are given – some error
bars are smaller than the data points on the scale of the plot.

is due to the anharmonicity of the potential in a diatomic
molecule. We may use the gradient of the force constant
to calculate the anharmonic constant, and correct for the
anharmonicity, as discussed in Appendix A 4.

For the hydrogen molecule, it is possible to extract
the matrix of force constants efficiently from the force,
or energy, because the computational cost of obtaining
the numerical derivatives is low. However, for more com-
plicated molecules, where structural optimization is in-
fluential, using the matrix of force constants would be
beneficial, as it provides both the movement direction
and amplitude towards the minimum energy configura-
tion. In these cases, the equivalent information would
take considerably longer to extrapolate from either en-
ergy or force, if possible.

Equipped with reliable results for the matrix of force
constants directly from DMC at each bond length, we
may now exploit this information to efficiently relax the
bond length of the molecule. The force tells us the direc-
tion to move the atoms, and the matrix of force constants
additionally tells us how far to move them, on each step
(Eq. 1). Owing to the anharmonicity of the potential, we
must relax to the equilibrium bond length of 74.13 pm
over several steps. The predicted bond length on the
next atomic relaxation step as a function of initial bond
length is shown in Fig. 3. We see that the PBE curve in-
tersects the equilibrium line at 0.753 Å and the B3LYP
curve intersects at 0.745 Å ; whereas our DMC calcula-
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FIG. 3. Bond length on next step of atomic relaxation as
a function of initial bond length, for the hydrogen molecule.
The unconstrained parabolas of best fit, with respect to the
visible DFT (PBE, B3LYP) and DMC data points, are over-
laid. The dashed lines indicate the experimental equilibrium
bond length, whereas the solid line indicates the equilibrium
fixed points with respect to the plot. DMC error bars are
smaller than the data points on the scale of the plot.

tion intersects at 0.7420 ± 0.0007 Å, in close agreement
with the experimental value of 0.74130 Å5557. Further-
more, we note that PBE and B3LYP curves have a similar
shape as a result of sharing the same optimization algo-
rithm. However, both are steeper than the DMC curve in
the vicinity of equilibrium and therefore converge more
slowly, due to the fact that the DFT algorithm uses an
inaccurate estimate for the force constant. The number
of iteration steps reduced are particularly apparent when
there are multiple atoms in a molecule, however the lower
number of steps does not necessarily indicate a more ef-
ficient algorithm, as the complexity of each step needs to
be taken into consideration. In some cases where complex
molecules cannot be relaxed sufficiently for a long time
using DFT, our approach may be more efficient in giv-
ing the ground state geometry. In general, due to DFT’s
inaccurate estimate of the force constant, we observe at
least a slight improvement for all molecules.

An additional important check, before we proceed, is
an analysis of the probability distribution of the matrix of
force constants generated by DMC. Fig. 4 shows the his-
togram of a force constant value for the DMC run at the
computed equilibrium bond length. From this we can see
that the force constant heavy tails decay with the same
∼ |M −M0|−4 power law as the energy and Hellmann-
Feynman force5,59. This is as expected, since the effec-
tive remaining term is the Hellmann-Feynman term due
to the quasi-constant Pulay contribution in proximity to
the ground state, as seen in Sec. II D. Reassuringly, the
expected value of the distribution is also the modal value.

Now that the configuration is relaxed, we may ana-
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mode ωRHF ωPBE ωB3LYP ωEC ωFG ωDMC ωexp
58

stretch 4379 4116 4384 4170± 10 4180± 8 4166± 4 4161.1663± 0.0002

TABLE I. Vibrational frequencies, evaluated at the computed equilibrium bond length, for the hydrogen molecule in units of
cm−1, where ωRHF denotes the vibrational frequency obtained from a RHF calculation, ωPBE and ωB3LYP from DFT calculations
with a PBE /B3LYP functional, ωEC from the curvature of the DMC energy, ωFG from the gradient of the DMC force, ωDMC

from the DMC matrix of force constants, and ωexp from experiment. All values are presented at zero temperature and post
anharmonic corrections. These quantities, as well as their associated errors, are discussed in Appendix B.
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FIG. 4. Distribution of probability densities for the observed
values of an element of the matrix of force constants from
DMC, offset by the mean M0. Data are shown for the hydro-
gen molecule at the equilibrium bond length.

lyze the fundamental vibrational modes. For the hy-
drogen molecule, we obtain six eigenmodes, as expected
for a diatomic molecule. Three modes correspond to
global translation, two correspond to global rotation, and
one corresponds to a symmetric stretch. The symmet-
ric stretch mode has the largest eigenfrequency. We ex-
tract the frequency using a selection of methods, out-
lined in Appendix B, for a cross-comparison. In this
case, we obtain a fundamental vibrational frequency of
ωDMC = 4166 ± 4 cm−1, compared to the experimen-
tal value of ωexp = 4161.1663 ± 0.0002 cm−1, which
is 4.83 cm−1 away. This is a firm statistical confirma-
tion of the accuracy of DMC compared to RHF, PBE
and B3LYP results, which have deviations of 218 cm−1,
45 cm−1 and 223 cm−1 from experiment, respectively. All
of our computational values for the vibrational frequency
from DMC – matrix of force constants, force gradient,
and energy curvature – agree with each other within
standard error and show close agreement to experiment.
The DMC procedure yields no translational or rotational
modes, just as for the hydrogen atom. A summary of
the results is shown in Table I. Note that the less com-
putationally expensive calculation of the energy was run
for four times longer, compared to the force gradient and

matrix of force constant methods, in order to give the
error bars of the energy curvature eigenfrequency to a
comparable value.

B. Hydrogen chloride

Now that we have verified that the matrix of force
constants agrees with numerical estimates, and that
by exploiting this information it is possible to relax
the molecule more efficiently, and outperform RHF and
DFT estimates for the fundamental vibrational frequency
for the hydrogen case, we move onto a more complex
molecule: hydrogen chloride. We increment the complex-
ity of our case study in order to verify that our formal-
ism can cope with an asymmetric system with unequal
masses.

The hydrogen chloride molecule again relaxes quickly
to equilibrium, with a computed bond length of 128.0±
0.6 pm, which agrees with the experimental value of
127.5 pm within standard error. Both atoms have the
appropriate displacement to ensure that the center of
mass is stationary. We obtain six eigenmodes for the sys-
tem, including one symmetric stretch mode with eigenfre-
quency ωDMC = 2995± 8 cm−1. This result agrees with
the experimental value of ωexp = 2990.946± 0.003 cm−1

within standard error, whereas RHF, PBE, B3LYP meth-
ods are 107 cm−1, 112 cm−1, 50 cm−1 away, respectively.
A summary of the results is shown in Table IIa.

C. Carbon dioxide

In the previous two examples, we found that the matrix
of force constants can correctly calculate the modes of a
diatomic molecule. Building on this, we increment the
complexity to carbon dioxide: a three-atom system with
several non-trivial vibrational modes, some of which are
in orthogonal directions.

In this case, the O = C = O configuration is relaxed to
an equilibrium C = O bond length of 116.7±0.3 pm along
one axis, which is within three standard deviations of the
experimental value of 115.98 pm. For carbon dioxide, we
obtain nine vibrational modes: three of which correspond
to global translations, two to global rotations, and four
to vibrational modes. Of the vibrational modes, we ob-
tain one symmetric stretch mode, one asymmetric stretch
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(a) hydrogen chloride

mode ωRHF ωPBE ωB3LYP ωDMC ωexp
60

stretch 3098 2879 2941 2995± 8 2990.946± 0.003

(b) carbon dioxide

mode ωRHF ωPBE ωB3LYP ωDMC ωexp
61

sym. stretch 1468 1284 1325 1309± 5 1333± 6

antisym. stretch 2480 2297 2321 2312± 6 2349± 1

bending 766 634 664 662± 2 667± 1

(c) methane

mode ωRHF ωPBE ωB3LYP ωDMC ωexp
61

sym. stretch 3101 3034 3074 2874± 8 2917± 1

scissor 1655 1496 1544 1534± 9 1534± 1

TABLE II. Vibrational frequencies, evaluated at the com-
puted equilibrium bond length, for (a) the hydrogen chlo-
ride, (b) carbon dioxide, and (c) methane, molecules in units
of cm−1, where ωRHF denotes the vibrational frequency ob-
tained from a RHF calculation, ωPBE and ωB3LYP from DFT
calculations with a PBE functional and a B3LYP hybrid func-
tional respectively, ωDMC from a DMC calculation, and ωexp

from experiment. All values are presented at zero tempera-
ture and post anharmonic corrections. These quantities, as
well as their associated errors, are discussed in Appendix B.

molecule xRHF
0 xPBE

0 xB3LYP
0 xDMC

0 xexp
0

55

H2 0.736 0.753 0.745 0.7420± 0.0007 0.74130

HCl 1.260 1.286 1.278 1.280± 0.006 1.275

CO2 1.145 1.182 1.171 1.167± 0.003 1.1598

CH4 1.089 1.104 1.098 1.097± 0.002 1.093

TABLE III. Computed equilibrium bond lengths for the
hydrogen, hydrogen chloride, carbon dioxide, and methane
molecules, in units of Å, where xRHF

0 denotes the equilib-
rium bond length obtained from a RHF calculation, xPBE

0

and xB3LYP
0 from DFT calculations with a PBE/B3LYP func-

tional, xDMC
0 from a DMC calculation, and xexp

0 from exper-
iment. The details of the atomic relaxation calculation in
DMC are discussed in Appendix A.

mode, and two bending modes along orthogonal axes.
The modes examined in this section show a consis-

tent improvement over the RHF and PBE calculations,
with DMC eigenfrequency deviations from experiment
of −1.80% (symmetric), −1.58% (antisymmetric), and
−0.75% (bending). The recovery of the non-trivial anti-
symmetric mode is our first example to break the under-
lying symmetry of the molecule, and the bending mode
shows that our formalism can extend to atoms moving
in orthogonal directions. On average, our DMC result
is 22 cm−1 away from the experimental value, which
is an improvement over the RHF results (on average
122 cm−1 away) and PBE results (on average 45 cm−1

(a) (b)

FIG. 5. (a) The symmetric stretch, and (b) scissor, vibra-
tional modes of methane.

away). We note that in this particular case the B3LYP
results are on average 13 cm−1 away from the experi-
mental results, which is why it is a popular choice for
non metal-containing molecules62.

It is worthwhile to mention that the experimental re-
sults come with a larger error for carbon dioxide when
compared to smaller molecules, as shown in Table IIb.
The symmetric stretch mode is Raman active and in-
frared inactive, whereas for the other modes, the opposite
is true61. The Raman measurement typically comes with
a larger uncertainty than infrared spectroscopy in this
case, complicating the comparison to DMC. Addition-
ally, for these larger molecules, as the number of modes
increases, the chances of eigenfrequency interference is in-
creased. Here we notice that the symmetric stretch mode
eigenfrequency is quasi-degenerate with twice the bend-
ing mode eigenfrequency in Table IIb, which could also
potentially contribute to the increased uncertainty of the
symmetric stretch mode63. Finally, we note that the pre-
cise eigenfrequencies for arbitrarily large molecules have
not been studied as extensively. In contrast, the eigen-
frequency calculation for hydrogen especially, as well as
for other common diatomic molecules, is often used as an
experimental benchmark58. Together these factors moti-
vate the need for improving the accuracy and precision
of electronic structure calculations, such as QMC.

D. Methane

For the last example, we extend our formalism to
a three-dimensional molecule containing five atoms:
methane, to demonstrate that the formalism can be ap-
plied to diverse configurations of atoms.

We find that the configuration relaxes to a C−H bond
length of 109.7± 0.2 pm, within two standard deviations
of the experimental value of 109.3 pm, in fewer iterations
than existing methods. The equilibrium bond lengths
for all case studies are summarized in Table III. In this
case, we obtain fifteen eigenmodes of the system: three
corresponding to global translation, three corresponding
to global rotation, and nine corresponding to non-trivial
vibrational modes. Of the vibrational modes, we select
two modes to examine in detail: the symmetric stretch
mode and a scissor mode, as summarized in Table IIc
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and illustrated in Fig. 5.

An analysis of these modes yields a DMC deviation
from experiment of −1.47% for the symmetric stretch
mode and an expected agreement for the scissor mode,
which is generally comparable to the results for carbon
dioxide i.e. still of the order of 1% from the experi-
mentally measured values. The successful recovery of
these modes demonstrates that the formalism holds in
three dimensions, and the excellent agreement for the
scissor mode demonstrates that we are able to capture a
non-trivial symmetry for this molecule. The symmetric
stretch DMC eigenfrequency is 43 cm−1 away from ex-
periment, whereas the RHF, PBE and B3LYP results are
184 cm−1, 117 cm−1 and 157 cm−1 away, respectively.

V. CONCLUSION

In this paper, we develop and implement a formal-
ism to evaluate the matrix of force constants in QMC.
We calculate vibrational frequencies and improved esti-
mates for the atomic displacements on each relaxation
step, as well as correcting for anharmonicity. We report
statistically significant improvements over RHF and DFT
methods in the vast majority of cases, both in terms of
the vibrational frequency and the efficiency of the atomic
relaxation, for the hydrogen, hydrogen chloride, carbon
dioxide, and methane molecules.

The ability to calculate the matrix of force constants
within DMC, in particular, makes us well-positioned to
calculate vibrational modes where high accuracy is a ne-
cessity and relax atomic positions in complex systems
with many degrees of freedom where the extrapolation
from energy or force is difficult, if not impossible, to
optimize the geometry. The approach applies to both
molecules and periodic configurations. This will be espe-
cially beneficial in systems with heavy atoms that are
challenging to analyze accurately with DFT, systems
with significant anharmonic corrections, and also those
with strong van der Waals interactions, such as layered
materials and surfaces.
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Appendix A: Atomic relaxation calculation

In this section, we describe in detail how the configu-
ration coordinates are adjusted on each step during the
atomic relaxation process.

Let us define the atomic displacement on each Monte
Carlo step as

∆R = ∆Re + ∆Rt + ∆Rr,

where ∆Re is the energy-minimizing term, ∆Rt is the
correction for global translations, ∆Rr is the correction
for global rotations. We adjust the atomic displacements
from R to R+∆R on each step, so as to minimize the to-
tal energy of the system. Once the equilibrium is reached,
the anharmonic correction ∆Ra is applied.

1. Minimizing the energy

Consider a system of Nn atoms in three dimensions.
Taylor expanding the total energy of the system as a
function of atomic displacements, up to quadratic order,
yields

E = E0 +

Nn∑
I=1

dE

dRI
∆RI +

1

2

∑
IJ

d2E

dRIdRJ
∆RI∆RJ ,

where E0 is a constant. Demanding that the sum of the
first- and second-order terms in the energy are zero at
the minimum, gives[

1

2
∆RᵀM +∇RE

]
·∆R = 0,

which, excluding the trivial solution, implies

∆Re = −2M−1∇RE,

where M is the matrix of force constants, and ∇RE is
the multi-atom energy gradient with respect to the con-
figuration atomic displacement vector, R. This is the
bare estimate for the atomic displacement correction, up
to second order in the energy.

2. Correction for global translations

In order to ensure that the origin of our configuration
is fixed and that we have no global translational mode,
we explicitly subtract the center of mass motion of the
configuration.

Given Nn atoms, each with mass mI , this implies that
the global translation correction term is

∆Rt = −
∑
I mIRI∑
I mI

.

This term is particularly important for non-symmetric
molecules, such as hydrogen chloride in Sec. IV B.
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3. Correction for global rotations

Similarly, to ensure that the bond length corrections
do not result in a rotation of the configuration, or atomic
pair rotations, we explicitly subtract global rotational
modes.

The law of moments states that the total moment
about the center of mass of any atomic pair, as well as
the total moment about the origin of the configuration,
is zero, which gives

∑
I mIbI = 0 and

∑
I mIRI = 0,

where b is the half-bond length between an atomic pair.
Together, these relations imply∑

I

mIRI × (bI −RI × θ) = 0, (A1)

where br,I ≡ bI − RI × θ is the corrected half bond
length to be found. Hence, an expression for the angu-
lar displacement of the molecule θI ≡ (θxI , θyI , θzI) is
needed. Using the vector triple product identity, we find
that Eq. A1 reduces to

∑
I

mIRI × bI =
∑
I

[mIRI(RI · θ)−mIθ(RI ·RI)] ,

which after rearrangement becomes

∑
I

mI

RyIbzI −RzIbyI
RzIbxI −RxIbzI
RxIbyI −RyIbxI


︸ ︷︷ ︸

a

=
∑
I

mI

−R2
yI −R2

zI RyIRxI RzIRxI

RxIRyI −R2
xI −R2

zI RzIRyI

RxIRzI RyIRzI −R2
xI −R2

yI


︸ ︷︷ ︸

B

θx

θy

θz

 .

This implies that the atomic displacement correction for
global rotations, is

∆Rr,I = −RI × θ,

where θ = B−1a.

4. Correction for anharmonicity

Up to this point in the analysis, we have assumed that
the interaction between atomic pairs is harmonic. Al-
though this is a valid approximation at short distances,
at larger distances this approximation breaks down and
so a correction term is necessary. One of the most
well-studied models used to capture anharmonicity in
the interaction between diatomic molecules is the Morse
Hamiltonian, which we use as an approximation for our
case studies. The Morse Hamiltonian is given by

Ĥ =
p̂2

2µ
+ V̂

with a Morse potential

V̂ = V (x) = D[1− e−αx]2, (A2)

where D is the x = x0 energy minimum depth relative
to the dissociation limit at x→∞ and α determines the
curvature of the potential64.

The eigenvalues of the Morse Hamiltonian are

En = ~ω0

[(
n+

1

2

)
− xe

(
n+

1

2

)2
]

,

where ω0 =
√

2Dα2/µ is the fundamental frequency,
xe = ~ω0/4D is the anharmonic constant, and n ∈ Z+ is
the principal quantum number.

Note that the minima of the harmonic and Morse po-
tentials are the same. However, due to the dissociative
limit of the Morse potential, the expectation value of po-
sition is shifted in the positive x direction in the Morse
case. One of the main advantages of this model is that
the majority of its properties can be expressed analyti-
cally.

By setting D = ~2α2

2µ (N + 1/2)2, the Morse Hamilto-

nian may be written as

Ĥ = − ~2

2µ

∂2

∂x2
+

~2α2

2µ

(
N +

1

2

)2

(e−2x − 2e−x)

up to a constant term. The expectation value of position
with respect to the ground state Morse wave function is
then

〈0|x̂|0〉 =
ln(2N + 1)− ψ(2N)

α
,

where ψ is the digamma function65. Expanding the ex-
pectation value of position gives

〈0|x̂|0〉 =
3

2

√
~xe

2µω0

up to leading order in xe. This is the shift in the equilib-
rium bond length due to the anharmonicity of the Morse
potential.

In order to evaluate this shift, an estimate for the
anharmonic constant is needed. Expanding the Morse
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potential (Eq. A2) about the equilibrium displacement
x = x0 in powers of x, we find that

V (x) =
1

2
µω2

0x
2 +

√
µ3xeω5

0

2~
x3 + . . .

up to a constant term. Comparing quadratic and cubic
terms in x with the general form of the Taylor expansion,
and solving simultaneously, yields

xe =
~

18
√
µ

(
d3V

dx3

∣∣∣∣
x0

)2(
d2V

dx2

∣∣∣∣
x0

)−5/2

.

Conventionally, the third derivative of the energy is ex-
tracted from the curvature of the force, however now uti-
lizing the new information available, we extract the an-
harmonic constant directly from the gradient of the force
constant.

Appendix B: Vibrational modes calculation

In this section, we describe in detail the methods used
to determine the vibrational modes and frequencies of
atomic configurations, as well as their associated statis-
tical uncertainties.

1. Exisiting computational approaches

In order to calculate an estimate for the frequency
using the RHF and DFT methods, we use the default
scheme, PBE and B3LYP exchange-correlation function-
als, respectively, within the CRYSTAL program24.

2. Matrix of force constants approach

The direct method to obtain the vibrational frequen-
cies of a molecule is from an exact diagonalization of the
matrix of force constants. Consider, for example, a di-
atomic molecule in one dimension, such as the hydrogen
molecule discussed in Sec. IV A. The matrix of force con-
stants for this system may be written as

M =

(
d2E
dR2

1

d2E
dR1dR2

d2E
dR2dR1

d2E
dR2

2

)
. (B1)

By exactly diagonalizing the matrix, we obtain the eigen-
modes, and eigenfrequencies of the system given by

ω2 =
1

2

(
d2E

dR2
1

+
d2E

dR2
2

)

±

√
1

4

(
d2E

dR2
1

− d2E

dR2
2

)
+

(
d2E

dR1dR2

)2

, (B2)

where the positive frequencies are physical. The errors
are calculated using Monte Carlo, as discussed in Sec. B 5.

There are two possible disadvantages of this method
for obtaining the vibrational frequencies of a configura-
tion. First, since it is a complete diagonalization method,
it uses all of the entries in the matrix of force constants.
However, many of these entries are related by symme-
tries, and so these calculations are potentially redundant.
Second, due to numerical inaccuracy, Eq. B2 may result
in an overestimate of the frequencies if the diagonal terms
in Eq. B1 are not equal.

Following from the previous example, by imposing the
known modes of a diatomic molecule in one dimension,
we may write the matrix of force constants as

MKM =
1

2

(
d2E

d(R1+R2) 0

0 d2E
d(R1−R2)

)
,

which now yields the eigenfrequencies

ω2
KM =

1

2

(
d2E

dR2
1

+
d2E

dR2
2

)
±
(

d2E

dR1dR2

)
.

Notice that |ωKM| ≤ |ω| due to the absence of the diag-
onal terms in the square root of Eq. B2.

For a general system, we may input a set of known
modes {x}. These 3Nn-dimensional row vectors act on
the 3Nn × 3Nn dynamical matrix, D, to extract the cor-
responding eigenfrequency, such that

ωKM,i = x̂iDx̂ᵀ
i ,

with corresponding error

σKM,i =
√
x̂ij(2Σ2

jk − Σjkδjk)x̂ki ,

where the hats denote normalization, Σ is the standard
error matrix corresponding to M, and the dynamical ma-
trix, D, is the matrix of force constants weighted by the
atomic masses.

By imposing known modes on the system, we can re-
duce the potential for numerical error and speed up the
matrix diagonalization. However, these advantages only
hold if the correct eigenmodes are known a priori, and
therefore we do not employ this scheme as standard for
our DMC calculations.

3. Approaches based on derivatives of the force and
energy

Further to the methods based on the matrix of force
constants, we also consider traditional techniques, for
comparison.

We obtain an estimate of the frequency (ωFG) from
the gradient, κ, of the interatomic force against bond
length graph. The error in the gradient of the slope is
the asymptotic standard error from a linear regression,
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and this is propagated to the vibrational frequency in the
usual way:

σ2
ω =

∣∣∣∣∂ω∂κ
∣∣∣∣2 σ2

κ.

Similarly, an additional estimate of the vibrational
frequency (ωEC) is obtained by computing the second
derivative of the energy at a series of displacements along
the trajectory of an eigenmode. For this, we use a numer-
ical central difference scheme. Since this result is based
on a linear superposition of energy data points, the errors
add in quadrature.

4. Correction for anharmonicity

All of the above methods for calculating the vibrational
frequency rely on the harmonic potential approximation.
However, there are certain cases where anharmonic vi-
bration is dominant and a correction to these frequencies
needs to be applied. As for atomic relaxation, we ap-
ply an approximate correction, due to a Morse potential,
which for the fundamental vibrational frequency, is given
as ∆ω = −xe/4, where xe is the anharmonic constant.

5. Monte Carlo uncertainty

The matrix of force constants M comes with an as-
sociated standard error matrix, Σ, from the reblocking
method in CASINO66. Calculating the errors in eigenval-
ues given the errors in the matrix elements is a non-trivial
task and one which has been studied extensively in pure
mathematics67–72. For the purposes of this paper, we
calculate the eigenvalue errors using Monte Carlo.

For each Monte Carlo run we generate a dynamical
matrix, whose matrix elements are normally distributed,
with a mean equal to the original matrix elements and a
standard deviation equal to the corresponding standard
errors. We then perform many runs until the average
eigenvalues converge to the true eigenvalues, and we use
the standard errors of these Monte Carlo runs as the
errors in the eigenvalues.
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