25 research outputs found

    A niche in the spotlight: Could external factors critically disturb hair follicle homeostasis and contribute to inflammatory hair follicle diseases?

    Get PDF
    The anatomy of the hair follicle and the dynamics of its barrier provide a special space for interactions between macromolecules and the underlying tissue. Translocation across the hair follicle epithelium and immune recognition has been confirmed for proteins, nucleic acids, engineered particles, virus particles and others. Tissue responses can be modulated by pro-inflammatory stimuli as demonstrated in penetration and transcutaneous immunization studies. Even under physiological conditions, hair follicle openings are filled with exogenous material ranging from macromolecules, engineered particles to natural particles including diverse communities of microbes. The exposed position of the infundibulum suggests that local inflammatory insults could disturb the finely tuned balance and may trigger downstream responses that initiate or facilitate local outbreaks of inflammatory hair diseases typically occurring in close spatial association with the infundibulum as observed in cicatricial alopecia. The question as to how microbial colonization or deposition of contaminants on the surface of the hair follicle epithelium interact with the barrier status under the influence of individual predisposition may help us understand local flare-ups of inflammatory hair diseases. Specifically, learning more about skin barrier alterations in the different types of inflammatory hair diseases and cross-talk with exogenous compounds could give new insights in this less explored aspect of hair follicle homeostasis. Such knowledge may not only be used to develop supportive measures to maintain a healthy scalp. It may have wider implications for our understanding on how external factors influence inflammation and immunological responses in the skin

    Distinct Time Effects of Vaccination on Long-Term Proliferative and IFN-γ–producing T Cell Memory to Smallpox in Humans

    Get PDF
    Residual immunity to the smallpox virus raises key questions about the persistence of long-term immune memory in the absence of antigen, since vaccination ended in 1980. IFN-γ–producing effector–memory and proliferative memory T cells were compared in 79 vaccinees 13–25 yr after their last immunization and in unvaccinated individuals. Only 20% of the vaccinees displayed both immediate IFN-γ–producing effector–memory responses and proliferative memory responses at 6 d; 52.5% showed only proliferative responses; and 27.5% had no detectable vaccinia-specific responses at all. Both responses were mediated by CD4 and CD8 T cells. The vaccinia-specific IFN-γ–producing cells were composed mainly of CD4Pos CD45RANeg CD11aHi CD27Pos and CCR7Neg T cells. Their frequency was low but could be expanded in vitro within 7 d. Time since first immunization affected their persistence: they vanished 45 yr after priming, but proliferative responses remained detectable. The number of recalls did not affect the persistence of residual effector–memory T cells. Programmed revaccination boosted both IFN-γ and proliferative responses within 2 mo of recall, even in vaccinees with previously undetectable residual effector–memory cells. Such long-term maintenance of vaccinia-specific immune memory in the absence of smallpox virus modifies our understanding of the mechanism of persistence of long-term memory to poxviruses and challenges vaccination strategies

    The Safety and Immunogenicity of GTU®MultiHIV DNA Vaccine Delivered by Transcutaneous and Intramuscular Injection With or Without Electroporation in HIV-1 Positive Subjects on Suppressive ART

    Get PDF
    International audiencePrevious studies have shown targeting different tissues via the transcutaneous (TC) and intramuscular injection (IM) with or without electroporation (EP) has the potential to trigger immune responses to DNA vaccination. The CUTHIVTHER 001 Phase I/II randomized controlled clinical trial was designed to determine whether the mode of DNA vaccination delivery (TC+IM or EP+IM) could influence the quality and function of induced cellular immune responses compared to placebo, in an HIV positive clade B cohort on antiretroviral therapy (ART). The GTU®MultiHIV B DNA vaccine DNA vaccine encoded a MultiHIV B clade fusion protein to target the cellular response. Overall the vaccine and regimens were safe and well-tolerated. There were robust pre-vaccination IFN-γ responses with no measurable change following vaccination compared to placebo. However, modest intracellular cytokine staining (ICS) responses were seen in the TC+IM group. A high proportion of individuals demonstrated potent viral inhibition at baseline that was not improved by vaccination. These results show that HIV positive subjects with nadir CD4+ counts ≥250 on suppressive ART display potent levels of cellular immunity and viral inhibition, and that DNA vaccination alone is insufficient to improve such responses. These data suggest that more potent prime-boost vaccination strategies are likely needed to improve pre-existing responses in similar HIV-1 cohorts (This study has been registered at http://ClinicalTrials.gov under registration no. NCT02457689)

    Characterization of pandemic influenza immune memory signature after vaccination or infection

    Get PDF
    International audienceThe magnitude, quality, and maintenance of immunological memory after infection or vaccination must be considered for future design of effective influenza vaccines. In 2009, the influenza pandemic produced disease that ranged from mild to severe, even fatal, illness in infected healthy adults and led to vaccination of a portion of the population with the adjuvanted, inactivated influenza A(H1N1)pdm09 vaccine. Here, we have proposed a multi-parameter quantitative and qualitative approach to comparing adaptive immune memory to influenza 1 year after mild or severe infection or vaccination. One year after antigen encounter, severely ill subjects maintained high levels of humoral and polyfunctional effector/memory CD4+^+ T cells responses, while mildly ill and vaccinated subjects retained strong cellular immunity, as indicated by high levels of mucosal homing and degranulation markers on IFN-γ+\gamma^+ antigen-specific T cells. A principal component analysis distinguished 3 distinct clusters of individuals. The first group comprised vaccinated and mildly ill subjects, while clusters 2 and 3 included mainly infected individuals. Each cluster had immune memory profiles that differed in magnitude and quality. These data provide evidence that there are substantial similarities between the antiinfluenza response that mildly ill and vaccinated individuals develop and that this immune memory signature is different from that seen in severely ill individuals

    Preferential Amplification of CD8 Effector-T Cells after Transcutaneous Application of an Inactivated Influenza Vaccine: A Randomized Phase I Trial

    Get PDF
    Background: Current conventional vaccination approaches do not induce potent CD8 T-cell responses for fighting mostly variable viral diseases such as influenza, avian influenza viruses or HIV. Following our recent study on vaccine penetration by targeting of vaccine to human hair follicular ducts surrounded by Langerhans cells, we tested in the first randomized Phase-Ia trial based on hair follicle penetration (namely transcutaneous route) the induction of virus-specific CD8 T cell responses. Methods and Findings: We chose the inactivated influenza vaccine – a conventional licensed tetanus/influenza (TETAGRIP®) vaccine – to compare the safety and immunogenicity of transcutaneous (TC) versus IM immunization in two randomized controlled, multi-center Phase I trials including 24 healthy-volunteers and 12 HIV-infected patients. Vaccination was performed by application of inactivated influenza vaccine according to a standard protocol allowing the opening of the hair duct for the TC route or needle-injection for the IM route. We demonstrated that the safety of the two routes was similar. We showed the superiority of TC application, but not the IM route, to induce a significant increase in influenza-specific CD8 cytokine-producing cells in healthy-volunteers and in HIV-infected patients. However, these routes did not differ significantly for the induction of influenza-specific CD4 responses, and neutralizing antibodies were induced only by the IM route. The CD8 cell response is thus the major immune response observed after TC vaccination. Conclusions: This Phase Ia clinical trial (Manon05) testing an anti-influenza vaccine demonstrated that vaccines designed for antibody induction by the IM route, generate vaccine-specific CD8 T cells when administered transcutaneously. These results underline the necessity of adapting vaccination strategies to control complex infectious diseases when CD8 cellular responses are crucial. Our work opens up a key area for the development of preventive and therapeutic vaccines for diseases in which CD8 cells play a crucial role

    Peptide-Based Vaccination for Antibody Responses Against HIV

    No full text
    International audienceHIV-1 is responsible for a global pandemic of 35 million people and continues to spread at a rate of >2 million new infections/year. It is widely acknowledged that a protective vaccine would be the most effective means to reduce HIV-1 spread and ultimately eliminate the pandemic, whereas a therapeutic vaccine might help to mitigate the clinical course of the disease and to contribute to virus eradication strategies. However, despite more than 30 years of research, we do not have a vaccine capable of protecting against HIV-1 infection or impacting on disease progression. This, in part, denotes the challenge of identifying immunogens and vaccine modalities with a reduced risk of failure in late stage development. However, progress has been made in epitope identification for the induction of broadly neutralizing antibodies. Thus, peptide-based vaccination has become one of the challenges of this decade. While some researchers reconstitute envelope protein conformation and stabilization to conserve the epitope targeted by neutralizing antibodies, others have developed strategies based on peptide-carrier vaccines with a similar goal. Here, we will review the major peptide-carrier based approaches in the vaccine field and their application and recent development in the HIV-1 field

    Innate gene signature distinguishes humoral versus cytotoxic responses to influenza vaccination

    No full text
    International audienceBACKGROUND: Systems vaccinology allows cutting-edge analysis of innate biomarkers of vaccine efficacy. We have been exploring novel strategies to shape the adaptive immune response, by targeting innate immune cells through novel immunization routes. METHODS: This randomized phase I/II clinical study (n=60 healthy subjects aged 18-45 years old) used transcriptomic analysis to discover early biomarkers of immune response quality after transcutaneous (t.c.), intradermal (i.d.), and intramuscular (i.m.) administration of a trivalent influenza vaccine (TIV season 2012-2013) (1:1:1 ratio). Safety and immunogenicity (hemagglutinin inhibition (HI), microneutralization (MN) antibodies and CD4, CD8 effector T cells) were measured at baseline Day (D)0 and at D21. Blood transcriptome was analyzed at D0 and D1. RESULTS: TIV-specific CD8+GranzymeB+(GRZ) T cells appeared in more individuals immunized by the t.c. and i.d. routes, while immunization by the i.d. and i.m. routes prompted high levels of HI antibody titers and MN against A/H1N1 and A/H3N2 influenza viral strains. The early innate gene signature anticipated immunological outcome by discriminating two clusters of individuals with either distinct humoral or CD8 cytotoxic responses. Several pathways explained this dichotomy confirmed by nine genes and serum level of CXCL10 were correlated with either TIV-specific cytotoxic CD8+GRZ+ T-cell or antibody responses. A logistic regression analysis demonstrated that these nine genes and serum levels of CXCL10 (D1/D0) best foreseen TIV-specific CD8+GRZ+ T-cell and antibody responses at D21. CONCLUSION: This study provides new insight into the impact of immunization routes and innate signature in the quality of adaptive immune responses
    corecore