1,334 research outputs found

    Moving Walkways, Escalators, and Elevators

    Full text link
    We study a simple geometric model of transportation facility that consists of two points between which the travel speed is high. This elementary definition can model shuttle services, tunnels, bridges, teleportation devices, escalators or moving walkways. The travel time between a pair of points is defined as a time distance, in such a way that a customer uses the transportation facility only if it is helpful. We give algorithms for finding the optimal location of such a transportation facility, where optimality is defined with respect to the maximum travel time between two points in a given set.Comment: 16 pages. Presented at XII Encuentros de Geometria Computacional, Valladolid, Spai

    Cannibalism as a life boat mechanism

    Get PDF
    Under certain conditions a cannibalistic population can survive when food for the adults is too scarce to support a non-cannibalistic population. Cannibalism can have this lifeboat effect if (i) the juveniles feed on a resource inaccessible to the adults; and (ii) the adults are cannibalistic and thus incorporate indirectly the inaccessible resource. Using a simple model we conclude that the mechanism works when, at low population densities, the average yield, in terms of new offspring, due to the energy provided by one cannibalized juvenile is larger than one

    Statistical mechanics of Beltrami flows in axisymmetric geometry: Equilibria and bifurcations

    Full text link
    We characterize the thermodynamical equilibrium states of axisymmetric Euler-Beltrami flows. They have the form of coherent structures presenting one or several cells. We find the relevant control parameters and derive the corresponding equations of state. We prove the coexistence of several equilibrium states for a given value of the control parameter like in 2D turbulence [Chavanis and Sommeria, J. Fluid Mech. 314, 267 (1996)]. We explore the stability of these equilibrium states and show that all states are saddle points of entropy and can, in principle, be destabilized by a perturbation with a larger wavenumber, resulting in a structure at the smallest available scale. This mechanism is therefore reminiscent of the 3D Richardson energy cascade towards smaller and smaller scales. Therefore, our system is truly intermediate between 2D turbulence (coherent structures) and 3D turbulence (energy cascade). We further explore numerically the robustness of the equilibrium states with respect to random perturbations using a relaxation algorithm in both canonical and microcanonical ensembles. We show that saddle points of entropy can be very robust and therefore play a role in the dynamics. We evidence differences in the robustness of the solutions in the canonical and microcanonical ensembles. A scenario of bifurcation between two different equilibria (with one or two cells) is proposed and discussed in connection with a recent observation of a turbulent bifurcation in a von Karman experiment [Ravelet et al., Phys. Rev. Lett. 93, 164501 (2004)].Comment: 25 pages; 16 figure

    Study of the Stabilization to the Nanometer Level of Mechanical Vibrations of the CLIC Main Beam

    Get PDF
    Original publication available at http://www.jacow.org/International audienceTo reach the design luminosity of CLIC, the movements of the quadrupoles should be limited to the nanometre level in order to limit the beam size and emittance growth. Below 1 Hz, the movements of the main beam quadrupoles will be corrected by a beambased feedback. But above 1 Hz, the quadrupoles should be mechanically stabilized. A collaboration effort is ongoing between several institutes to study the feasibility of the "nanostabilization" of the CLIC quadrupoles. The study described in this paper covers the characterization of independent measuring techniques including optical methods to detect nanometre sized displacements and analyze the vibrations. Actuators and feedback algorithms for sub-nanometre movements of magnets with a mass of more than 400 kg are being developed and tested. Input is given to the design of the quadrupole magnets, the supports and alignment system in order to limit the amplification of the vibration sources at resonant frequencies. A full scale mock-up integrating all these features is presently under design. Finally, a series of experiments in accelerator environments should demonstrate the feasibility of the nanometre stabilization

    Reliability of two goniometric methods of measuring active inversion and eversion range of motion at the ankle

    Get PDF
    BACKGROUND: Active inversion and eversion ankle range of motion (ROM) is widely used to evaluate treatment effect, however the error associated with the available measurement protocols is unknown. This study aimed to establish the reliability of goniometry as used in clinical practice. METHODS: 30 subjects (60 ankles) with a wide variety of ankle conditions participated in this study. Three observers, with different skill levels, measured active inversion and eversion ankle ROM three times on each of two days. Measurements were performed with subjects positioned (a) sitting and (b) prone. Intra-class correlation coefficients (ICC([2,1])) were calculated to determine intra- and inter-observer reliability. RESULTS: Within session intra-observer reliability ranged from ICC([2,1] )0.82 to 0.96 and between session intra-observer reliability ranged from ICC([2,1] )0.42 to 0.80. Reliability was similar for the sitting and the prone positions, however, between sessions, inversion measurements were more reliable than eversion measurements. Within session inter-observer measurements in sitting were more reliable than in prone and inversion measurements were more reliable than eversion measurements. CONCLUSION: Our findings show that ankle inversion and eversion ROM can be measured with high to very high reliability by the same observer within sessions and with low to moderate reliability by different observers within a session. The reliability of measures made by the same observer between sessions varies depending on the direction, being low to moderate for eversion measurements and moderate to high for inversion measurements in both positions

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far
    corecore