70 research outputs found

    A role for the equatorial undercurrent in the ocean dynamical thermostat

    Get PDF
    Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 6245-6261, doi:10.1175/JCLI-D-17-0513.1.Reconstructions of sea surface temperature (SST) based on instrumental observations suggest that the equatorial Pacific zonal SST gradient has increased over the twentieth century. While this increase is suggestive of the ocean dynamical thermostat mechanism of Clement et al., observations of a concurrent weakening of the zonal atmospheric (Walker) circulation are not. Here we show, using heat and momentum budget calculations on an ocean reanalysis dataset, that a seasonal weakening of the zonal atmospheric circulation is in fact consistent with cooling in the eastern equatorial Pacific (EEP) and thus an increase in the zonal SST gradient. This cooling is driven by a strengthening Equatorial Undercurrent (EUC) in response to decreased upper-ocean westward momentum associated with weakening equatorial zonal wind stress. This process can help to reconcile the seemingly contradictory twentieth-century trends in the tropical Pacific atmosphere and ocean. Moreover, it is shown that coupled general circulation models (CGCMs) do not correctly simulate this process; we identify a systematic bias in the relationship between changes in equatorial surface zonal wind stress in the EEP and EUC strength that may help to explain why observations and CGCMs have opposing trends in the zonal SST gradient over the twentieth century.2019-01-1

    Ocean-atmosphere trajectories of extended drought in southwestern North America

    Get PDF
    Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Atmospheres 124(16), (2019): 8953-8971, doi: 10.1029/2019JD030424.Multiyear droughts are a common occurrence in southwestern North America (SWNA), but it is unclear what causes these persistent dry periods. The ocean‐atmosphere conditions coinciding with droughts have traditionally been studied using correlation and composite methods, which suggest that cool conditions in the tropical Pacific are associated with SWNA droughts and warm conditions are associated with wet periods in SWNA. Nevertheless, the extent to which multiyear droughts are truly consistent with this paradigm remains unknown. This is, in part, because the temporal trajectory of ocean‐atmosphere conditions during these dry periods have not been sufficiently characterized. Here we examine the continuum of ocean‐atmosphere trajectories before, during, and after multiyear droughts in SWNA using observation‐based data and an ensemble of climate model simulations from the Community Earth System Model. An examination of sea surface temperature patterns at the beginning, middle, and end of SWNA droughts shows that an El Niño event tends to precede SWNA droughts, a cool tropical Pacific occurs during droughts, and central Pacific El Niño events end droughts. However, moderate El Niño events can occur in the middle of persistent droughts, so a warm tropical Pacific does not always end these dry periods. These findings are important for drought predictability and emphasize the need to improve simulations of the magnitude, life cycle, and frequency of occurrence of El Niño events.L. Parsons thanks the Washington Research Foundation for funding support and thanks R. Jnglin Wills and D. Battisti for suggestions related to tropical Pacific‐SWNA comparisons. We thank B. Otto‐Bliesner and acknowledge the CESM1(CAM5) Last Millennium Ensemble Community Project and supercomputing resources provided by NSF/CISL/Yellowstone. Support for the Twentieth Century Reanalysis Project version 2c data set is provided by the U.S. Department of Energy, Office of Science Biological and Environmental Research (BER), and by the National Oceanic and Atmospheric Administration Climate Program Office. GPCC Precipitation data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site (https://www.esrl.noaa.gov/psd/).2020-02-0

    Global Warming and 21st Century Drying

    Get PDF
    Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twentyfirst century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman- Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both precipitation and PET changes increase the percentage of global land area projected to experience at least moderate drying (PDSI standard deviation of or = -1; 11 to 44 %), although this is likely less meaningful because much of the PET induced drying in the SPEI occurs in the aforementioned arid regions. Integrated accounting of both the supply and demand sides of the surface moisture balance is therefore critical for characterizing the full range of projected drought risks tied to increasing greenhouse gases and associated warming of the climate system

    Stationarity of the Tropical Pacific Teleconnection to North America in CMIP5 PMIP3 Model Simulations

    Get PDF
    The temporal stationarity of the teleconnection between the tropical Pacific Ocean and North America (NA) is analyzed in atmosphere-only, and coupled last-millennium, historical, and control runs from the Coupled Model Intercomparison Project Phase 5 data archive. The teleconnection, defined as the correlation between December-January-February (DJF) tropical Pacific sea surface temperatures (SSTs) and DJF 200 mb geopotential height, is found to be nonstationary on multidecadal timescales. There are significant changes in the spatial features of the teleconnection over NA in continuous 56-year segments of the last millennium and control simulations. Analysis of atmosphere-only simulations forced with observed SSTs indicates that atmospheric noise cannot account for the temporal variability of the teleconnection, which instead is likely explained by the strength of, and multidecadal changes in, tropical Pacific Ocean variability. These results have implications for teleconnection-based analyses of model fidelity in simulating precipitation, as well as any reconstruction and forecasting efforts that assume stationarity of the observed teleconnection

    The value of initial condition large ensembles to robust adaptation decision-making

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mankin, J. S., Lehner, F., Coats, S., & McKinnon, K. A. The value of initial condition large ensembles to robust adaptation decision-making. Earth's Future, 8(10), (2020): e2012EF001610, doi:10.1029/2020EF001610.The origins of uncertainty in climate projections have major consequences for the scientific and policy decisions made in response to climate change. Internal climate variability, for example, is an inherent uncertainty in the climate system that is undersampled by the multimodel ensembles used in most climate impacts research. Because of this, decision makers are left with the question of whether the range of climate projections across models is due to structural model choices, thus requiring more scientific investment to constrain, or instead is a set of equally plausible outcomes consistent with the same warming world. Similarly, many questions faced by scientists require a clear separation of model uncertainty and that arising from internal variability. With this as motivation and the renewed attention to large ensembles given planning for Phase 7 of the Coupled Model Intercomparison Project (CMIP7), we illustrate the scientific and policy value of the attribution and quantification of uncertainty from initial condition large ensembles, particularly when analyzed in conjunction with multimodel ensembles. We focus on how large ensembles can support regional‐scale robust adaptation decision‐making in ways multimodel ensembles alone cannot. We also acknowledge several recently identified problems associated with large ensembles, namely, that they are (1) resource intensive, (2) redundant, and (3) biased. Despite these challenges, we show, using examples from hydroclimate, how large ensembles provide unique information for the scientific and policy communities and can be analyzed appropriately for regional‐scale climate impacts research to help inform risk management in a warming world.F. L. has been supported by the Swiss NSF (grant no. PZ00P2_174128), the NSF Division of Atmospheric and Geospace Sciences (grant no. AGS‐0856145, Amendment 87), and the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the U.S.Department of Energy’s Office of Biological & Environmental Research (BER) via NSF IA 1844590. This is SOEST publication no. 11115
    corecore