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Abstract Global warming is expected to increase the

frequency and intensity of droughts in the twenty-first

century, but the relative contributions from changes in

moisture supply (precipitation) versus evaporative demand

(potential evapotranspiration; PET) have not been com-

prehensively assessed. Using output from a suite of general

circulation model (GCM) simulations from phase 5 of the

Coupled Model Intercomparison Project, projected twenty-

first century drying and wetting trends are investigated

using two offline indices of surface moisture balance: the

Palmer Drought Severity Index (PDSI) and the Standard-

ized Precipitation Evapotranspiration Index (SPEI). PDSI

and SPEI projections using precipitation and Penman-

Monteith based PET changes from the GCMs generally

agree, showing robust cross-model drying in western North

America, Central America, the Mediterranean, southern

Africa, and the Amazon and robust wetting occurring in the

Northern Hemisphere high latitudes and east Africa (PDSI

only). The SPEI is more sensitive to PET changes than the

PDSI, especially in arid regions such as the Sahara and

Middle East. Regional drying and wetting patterns largely

mirror the spatially heterogeneous response of precipitation

in the models, although drying in the PDSI and SPEI cal-

culations extends beyond the regions of reduced precipi-

tation. This expansion of drying areas is attributed to

globally widespread increases in PET, caused by increases

in surface net radiation and the vapor pressure deficit.

Increased PET not only intensifies drying in areas where

precipitation is already reduced, it also drives areas into

drought that would otherwise experience little drying or

even wetting from precipitation trends alone. This PET

amplification effect is largest in the Northern Hemisphere

mid-latitudes, and is especially pronounced in western

North America, Europe, and southeast China. Compared to

PDSI projections using precipitation changes only, the

projections incorporating both precipitation and PET

changes increase the percentage of global land area pro-

jected to experience at least moderate drying (PDSI stan-

dard deviation of B-1) by the end of the twenty-first

century from 12 to 30 %. PET induced moderate drying is

even more severe in the SPEI projections (SPEI standard

deviation of B-1; 11 to 44 %), although this is likely less

meaningful because much of the PET induced drying in the

SPEI occurs in the aforementioned arid regions. Integrated

accounting of both the supply and demand sides of the

surface moisture balance is therefore critical for charac-

terizing the full range of projected drought risks tied to

increasing greenhouse gases and associated warming of the

climate system.

1 Introduction

Extreme climate and weather events have caused signifi-

cant disruptions to modern and past societies (Coumou and

Rahmstorf 2012; Ross and Lott 2003; Lubchenco and Karl

2012), and there is concern that anthropogenic climate

change will increase the occurrence, magnitude, or impact

of these events in the future (e.g., Meehl et al. 2000; e.g.,

Rahmstorf and Coumou 2011). Drought is one such

extreme phenomenon, and is of particular interest because
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of its often long-term impacts on critical water resources,

agricultural production, and economic activity (e.g., Li

et al. 2011; e.g., Ding et al. 2011; e.g., Ross and Lott

2003). Focus on drought vulnerabilities has increased due

to a series of recent and severe droughts in regions as

diverse as the United States (Hoerling et al. 2012, 2013;

Karl et al. 2012), east Africa (Lyon and DeWitt 2012),

Australia (McGrath et al. 2012), and the Sahel (Giannini

et al. 2003). Recent work further suggests that global

aridity has increased in step with observed warming trends,

and that this drying will worsen for many regions as global

temperatures continue to rise with increasing anthropo-

genic greenhouse gas emissions (Burke et al. 2006; Dai

2013; Sheffield and Wood 2008).

There are significant uncertainties, however, in recent

and projected future drought trends, especially regarding

the extent to which these trends will be forced by changes

in precipitation versus evaporative demand (Hoerling et al.

2012; Sheffield et al. 2012). Drought is generally defined

as a deficit in soil moisture (agricultural) or streamflow

(hydrologic); as such, it can be caused by declines in

precipitation, increases in evapotranspiration, or a combi-

nation of the two. In the global mean, both precipitation

and evapotranspiration are expected to increase with

warming, a consequence of an intensified hydrologic cycle

in a warmer world (Allen and Ingram 2002; Huntington

2006). Regional changes in precipitation and evapotrans-

piration, and the dynamics that drive such changes, are

nevertheless more uncertain, despite the fact that these

changes are perhaps of greatest relevance to on-the-ground

stakeholders.

Precipitation projections in general circulation models

(GCMs) have large uncertainties compared to other model

variables, such as temperature (e.g., Knutti and Sedlacek

2013). The most confident estimates indicate that precipi-

tation will increase in mesic areas (e.g., the wet tropics, the

mid- to high latitudes of the Northern Hemisphere, etc) and

decrease in semi-arid regions (e.g., the subtropics). This is

generally referred to as the ‘rich-get-richer/poor-get-

poorer’ mechanism, and is attributed to thermodynamic

(warming and moistening of the atmosphere) and dynamic

(circulation) processes (Chou et al. 2009, 2013; Held and

Soden 2006; Neelin et al. 2003; Seager et al. 2010).

Evapotranspiration includes both the physical (evapo-

ration) and biological (transpiration) fluxes of moisture

from the surface to the atmosphere and can be viewed in

terms of actual evapotranspiration (latent heat flux) or

evaporative demand (potential evapotranspiration; PET).

PET is expected to increase in the future (Scheff and Fri-

erson 2013), forced by increases in both total energy

availability at the surface (surface net radiation) and the

vapor pressure deficit (the difference between saturation

and actual vapor pressure; VPD). Increased radiative

forcing from anthropogenic greenhouse gases (GHG) will

increase surface net radiation in most areas by inhibiting

longwave cooling, while GHG-induced warming of the

atmosphere will increase the VPD. Importantly, VPD

increases with warming, even at constant relative humidity

(e.g., Anderson 1936). Actual evapotranspiration is

expected to increase less than PET in areas where latent

heat fluxes are, or will become, limited by moisture supply.

Indeed, declines in global actual evapotranspiration have

been documented over the last two decades (Jung et al.

2010), attributed primarily to soil moisture drying in the

Southern Hemisphere.

The idea that increased evaporative demand in a warmer

world will enhance drought is not new (e.g., Dai 2011), but

it is important to understand where precipitation or evap-

oration changes will be dominant individual drivers of

drought and where they will work in concert to intensify

drought. To date, however, little has been done to quantify

and explicitly separate the relative contribution of changes

in precipitation versus evaporative demand to the magni-

tude and extent of global warming-induced drying. To

address this question, we use output from a suite of

twentieth and twenty-first century GCM simulations,

available through the Coupled Model Intercomparison

Project phase 5 (CMIP5, Taylor et al. 2012), to calculate

two offline indices of surface moisture balance: the Palmer

Drought Severity Index (PDSI; Palmer 1965) and the

Standardized Precipitation Evapotranspiration Index

(SPEI; Vicente-Serrano et al. 2009). Both indices provide

ideal and flexible estimations of surface moisture balance,

allowing us to vary inputs such as model precipitation,

temperature, and surface energy availability in order to

separate and quantify the influence of specific variables on

future drought projections. Our analysis thus addresses

three questions: (1) What are the relative contributions of

changes in precipitation and evaporative demand to global

and regional drying patterns?, (2) Where do the combined

effects of changes in precipitation and evaporative demand

enhance drying?, and (3) In which regions, if any, are

increases in evaporative demand sufficient to shift the cli-

mate towards drought when precipitation changes would

otherwise force wetter conditions?

2 Data and methods

2.1 CMIP5 model output

We use GCM output available from the CMIP5 archive, the

suite of model experiments organized and contributed from

various modeling centers in support of the Fifth Assess-

ment Report (AR5) of the Intergovernmental Panel on

Climate Change (IPCC). Output from the historical and
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RCP8.5 model scenarios is used. The historical experi-

ments are run for the years 1850–2005 and are forced with

observations of transient climate forcings (e.g., solar vari-

ability, land use change, GHG concentrations, etc). These

experiments are initialized in 1850 using output from long,

unforced control runs with fixed pre-industrial climate

forcings. The RCP8.5 scenario (2006–2099) is one of a

suite of future GHG forcing scenarios; RCP8.5 is designed

so that the top of the atmosphere radiative imbalance will

equal approximately ?8.5 W m-2 by the end of the twenty-

first century, relative to pre-industrial conditions. The

RCP8.5 scenario runs are initialized using the end of the

historical runs. Our analysis is restricted to those models

(Table 1) with continuous ensemble members spanning the

historical through RCP8.5 time periods.

2.2 Drought indices

We are interested in long-term (decadal to centennial)

trends and changes in moisture availability, rather than

shorter-term (month to month) drought events. For this

reason, our analysis uses two drought indices that integrate

over longer timescales: the PDSI and 12-month SPEI.

Understanding the causes, inception, and termination of

discrete (and often short and intense) drought events (e.g.,

Hoerling et al. 2012, 2013) is an important scientific goal.

Our focus, however, is on the longer-term drying and

wetting responses to GHG warming, the hydroclimatic

baseline within which seasonal or annual events will occur

in the future.

Simulated soil moisture within the GCMs is not easily

separated into contributions from precipitation or PET,

making it difficult to identify the extent to which soil mois-

ture trends in themodels are driven by changes in supply and/

or demand. Moreover, each GCM employs soil models that

vary widely in their sophistication (e.g., soil depth, number

of layers, etc), tunings, and parameterizations (e.g., soil

texture, rooting depths, vegetation types, etc), complicating

the meaningful comparison of soil moisture and drought

responses across GCMs. PDSI and SPEI provide a flexible

framework that allows GCM output to be modified (e.g.,

detrended) as a means of isolating drought contributions

from specific changes, such as trends in precipitation or net

radiation. A common offline metric, such as PDSI or SPEI,

also provides a standard comparison of soil moisture bal-

ance, thus controlling for differences in soil models across

the ensemble of CMIP5 GCMs. The PDSI (Palmer 1965) is a

normalized index of drought using a simplified soil moisture

balance model calculated from inputs of precipitation and

losses from evapotranspiration. PDSI is locally normalized,

with negative values indicating drier than normal conditions

(droughts) and positive values indicating wetter than normal

conditions (pluvials), relative to a baseline calibration period

Table 1 Continuous model ensembles from the CMIP5 experiments

(historical?RCP8.5) used in this analysis, including the modeling

center or group that supplied the output, the number of ensemble

members that met our criteria for inclusion, and the approximate

spatial resolution

Model Modeling center

(or Group)

#

Runs

Lat/Lon

resolution

CanESM2 CCCMAa 5 2.8� 9 2.8�
CCSM4 NCARb 6 0.94� 9 1.25�
CNRM-CM5 CNRM-CERFACSc 4 1.4� 9 1.4�
CSIRO-MK3.6.0 CSIRO-QCCCEd 5 1.87� 9 1.87�
GFDL-CM3 NOAA GFDLe 1 2.0� 9 2.5�
GFDL-ESM2G NOAA GFDLe 1 2.0� 9 2.5�
GFDL-ESM2M NOAA GFDLe 1 2.0� 9 2.5�
GISS-E2-R NASA GISSf 1 2.0� 9 2.5�
INMCM4.0 INMg 1 1.5� 9 2.0�
IPSL-CM5A-LR IPSLh 4 1.9� 9 3.75�
MIROC5 MIROCi 1 1.4� 9 1.4�
MIROC-ESM MIROCj 1 2.8� 9 2.8�
MIROC-ESM-CHEM MIROCj 1 2.8� 9 2.8�
MRI-CGCM3 MRIk 1 1.1� 9 1.1�
NorESM1-M NCCl 1 1.9� 9 2.5�
a Canadian Centre for Climate Modelling and Analysis
b National Center for Atmospheric Research
c Centre National de Recherches Météorologiques / Centre Européen

de Recherche et Formation Avancée en Calcul Scientifique
d Commonwealth Scientific and Industrial Research Organization in

collaboration with Queensland Climate Change Centre of Excellence
e NOAA Geophysical Fluid Dynamics Laboratory
f NASA Goddard Institute for Space Studies
g Institute for Numerical Mathematics hInstitut Pierre-Simon Laplace
iAtmosphere and Ocean Research Institute (The University of Tokyo),

National Institute for Environmental Studies, and Japan Agency for

Marine-Earth Science and Technology
j Japan Agency for Marine-Earth Science and Technology, Atmo-

sphere and Ocean Research Institute (The University of Tokyo), and

National Institute for Environmental Studies
k Meteorological Research Institute
l Norwegian Climate Centre

Table 2 Description of different versions of the PDSI and SPEI

calculations, and the model diagnostics used in their calculation

PDSI/SPEI Transient

Variables

Detrended

Variables

PDSI-ALL, SPEI-ALL tsurf, prec, q, rnet none

PDSI-PRE, SPEI-PRE prec tsurf, q, rnet

PDSI-PET, SPEI-PET tsurf, q, rnet prec

Variables are: tsurf 2-m surface air temperature, prec precipitation,

q specific humidity, rnet surface net radiation. Detrended variables

have the trend from 2000–2099 removed and replaced with mean

conditions for 1980–1999
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for a given location. PDSI has persistence on the order of

12–18 months (Guttman 1998;Vicente-Serrano et al. 2010),

integrating moisture gains and losses throughout the calen-

dar year, and providing a useful metric to describe longer

term trends and variability in hydroclimate. PDSI has been

widely used as a metric to quantify drought using climate

model simulations (e.g., Bonsal et al. 2013; Burke and

Brown 2008; Coats et al. 2013; Cook et al. 2010, 2013; Dai

2011, 2013; Rosenzweig andHillel 1993; Seager et al. 2008;

Taylor et al. 2013).

Because recent work has suggested that PDSI may be

intrinsically too sensitive to changes in PET (e.g., Burke

2011; Seneviratne 2012), we repeat our analysis using an

alternative drought index, the SPEI. Like PDSI, SPEI

(Vicente-Serrano et al. 2009) is a normalized index of

drought, developed from the original Standardized Pre-

cipitation Index (SPI, McKee et al. 1993). Whereas the SPI

is based on normalized accumulations of precipitation

surpluses and deficits over some user-defined interval

(typically 1, 3, or 12 months), SPEI uses accumulations of

precipitation minus PET. Therefore, SPEI includes in its

accounting both supply and demand changes in moisture

variability, and can be interpreted similarly to PDSI (i.e.,

positive values of SPEI indicate wetter than average con-

ditions, negative values indicate drier than average condi-

tions). Unlike PDSI, SPEI does not include an explicit soil

moisture balance accounting, and only uses information on

precipitation minus PET to curve fit and calculate stan-

dardized departures of moisture availability. Similar to

PDSI, SPEI has been used previously in GCM based cli-

mate projections (e.g., Barrera-Escoda et al. 2013; e.g.,

Hernandez and Uddameri 2013).

Recent studies have highlighted some deficiencies

regarding the Thornthwaite (Thornthwaite 1948) tempera-

ture-based method often used for estimating PET in PDSI

and SPEI calculations (Dai 2011; Hoerling et al. 2012;

Sheffield et al. 2012; Vicente-Serrano et al. 2009). The

Thornthwaite method of estimating PET has the advantage

of only requiring temperature data, and so has been widely

used for PET calculations, especially over the historical

period. Because Thornthwaite is largely a linear rescaling

of temperature to PET, it significantly overestimates PET

and drying when temperatures increase significantly

beyond the mean of the baseline calibration period. This

has led to several studies (e.g., Hoerling et al. 2012;

Sheffield et al. 2012) concluding that Thornthwaite based

estimates of PET are inappropriate for use in global

warming projections of drought. Recently, there has been

support for the use of the Penman-Monteith method

(Penman 1948; Xu and Singh 2002) as an alternative to

Thornthwaite for calculating PET for drought projections

(Dai 2011, 2013; Hoerling et al. 2012; van der Schrier

et al. 2013; Sheffield et al. 2012). Penman-Monteith is

based on surface moisture and energy balance consider-

ations (Xu and Singh 2002), and a commonly used version

is the formulation provided by the Food and Agricultural

Organization (FAO) of the United Nations (Allen et al.

1998):

PET ¼ 0:408DðRn � GÞ þ c 900
Taþ273

u2ðes � eaÞ
Dþ cð1þ 0:34u2Þ ð1Þ

where PET is potential evapotranspiration (mm day-1), D
is the slope of the vapor pressure curve (kPa �C-1), Rn is

surface net radiation (MJ m-2 day-1), G is the soil heat

flux density (MJ m-2 day-1), c is the psychometric con-

stant (kPa �C-1), Ta is the air temperature at 2-m (�C), u2 is
the wind speed at 2-m (m s-1), es is the saturation vapor

pressure (kPa), and ea is the actual vapor pressure (kPa).

The VPD is defined as es - ea. Penman-Monteith based

Fig. 1 Pearson’s correlation

coefficients calculated between

PDSI (a,c) and SPEI (b,d) and
annual average model soil

moisture from the approximate

top 30 cm of the soil column:

CanESM2 (a,b) and CCSM4

(c,d). Maps represent average

correlations across a five

member ensemble for each

model; the comparison interval

is 1901–2099

B. I. Cook et al.

123



Fig. 2 Grid cell comparisons between ensemble averaged annual

PDSI (PDSI-ALL) and PDSI-SUM (PDSI-PRE ? PDSI-ET) from

2080–2099 for each model in the ensemble. The dashed line indicates

the 1:1 line. For those models with multiple ensemble members, the

comparison is based on the ensemble average. PDSI-SUM scales

linearly with PDSI-ALL, close to the 1:1 line, with some minor

amplification of extreme wet or dry values in PDSI-SUM. This

suggests that PDSI-ALL is well approximated as a linear sum of the

pseudo-independent effects of precipitation and evapotranspiration

Global warming and 21st century drying
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Fig. 3 Same as Fig. 2, but for the 12-month SPEI-ALL and SPEI-SUM calculations
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PDSI has been used, with good success, to track both

observational changes in drought and changes in future

drought (Dai 2013; van der Schrier et al. 2013), and is not

subject to unrealistic temperature scaling outside of the

normalization interval as demonstrated for the Thorn-

thwaite-based PDSI (Hoerling et al. 2012; Sheffield et al.

2012). We therefore use Penman-Monteith PET in all of

our PDSI and SPEI calculations for two principal reasons.

First, our motivation is to analyze twenty-first century

projections of hydroclimate relative to a twentieth century

baseline, the former of which involves temperature

increases well outside the climatology of the latter. Second,

the more detailed and realistic formulation of PET in the

Penman-Monteith formalism allows us to separate specific

variable influences on PET and therefore characterize PET-

influenced drying in terms of the net radiation and VPD

changes that cause them.

2.3 Analyses

In the PDSI soil moisture calculation, we set the soil

moisture capacities for the top and bottom layers to the

standard values of 25.4 mm (1 in.) and 127 mm (5 in.). We

use the 1931–1990 period from the historical runs as our

baseline calibration period for the normalization, the same

time interval used by the National Oceanographic and

Atmospheric Administration for normalization of their

PDSI calculations. In order to maximize comparability

with the PDSI, we use a 12-month interval for accumu-

lating precipitation minus PET anomalies in our SPEI

calculations, and also use the same standardization interval

(1931–1990). PDSI and SPEI are calculated separately for

each individual ensemble member at the native resolution

of the model.

Diagnostics used from each GCM are monthly values

of precipitation, 2-m air temperature, surface pressure and

2-m surface specific humidity (used to calculate vapor

pressure), and surface net radiation. Ground heat flux and

surface wind speed diagnostics were more difficult to

obtain from these models. Relative to changes in energy

availability and the VPD, Penman-Monteith PET is rela-

tively insensitive to wind speed (e.g., Scheff and Frierson

2013); we therefore set u2 = 1. Additionally, ground heat

fluxes (G) are usually only a small fraction of the total

surface energy budget, about 10–15 % (Betts et al. 1996;

Sellers et al. 1997). Tests in which we alternately set G to

0 or 15 % of Rn indicated that the PDSI calculation is

largely insensitive to this parameter. For the analyses

presented herein, we therefore set G = 0.

For each continuous historical?RCP8.5 ensemble

member, we calculate three different versions of PDSI

and SPEI (Table 2) from 1900–2099 that serve as the

basis for the majority of our analyses. PDSI-ALL and

SPEI-ALL references the full calculation, incorporating

changes in both precipitation and PET by using the ori-

ginal values of all the model variables, including their

trends, from 1900 to 2099. In PDSI-PRE and SPEI-PRE,

we isolate the impact of precipitation by detrending the

temperature, vapor pressure, and net radiation variables

from 2000–2099, and setting the twenty-first century

mean to be equal to the mean of the last two decades of

the twentieth century (thus retaining the variability but

removing any trend from 2000 to 2099). In PDSI-PET

and SPEI-PET, we isolate the impact of changes in

evaporative demand by detrending the precipitation using

an identical procedure, and retaining the transient changes

in temperature, surface net radiation, and vapor pressure.

We also conduct additional PDSI and SPEI calculations to

examine specific impacts of changes in VPD only (by

detrending Rn and precipitation) and net radiation only

(by detrending T, vapor pressure, and precipitation). For

cross-model comparisons of PDSI, SPEI, and model

diagnostics, all models are spatially interpolated to a

common 2� 9 2� spatial grid. For models with multiple

ensemble members, the intra-model ensemble average is

calculated before the multi-model ensemble average to

maintain equal weighting across the 15 models. Changes

in model climate variables are calculated as 2080–2099

minus 1931–1990, the same modern baseline period for

the PDSI and SPEI normalizations.

To demonstrate the ability of the PDSI and SPEI to rep-

resent changes in surface moisture balance, we calculated

Pearson’s correlation coefficients between annual average

PDSI and SPEI and annual average standardized soil mois-

ture anomalies for each grid cell for two of the models:

CanESM2 andCCSM4 (Fig. 1) (level-by-level soil moisture

fields are not available from allmodels or ensemblemembers

in the employed suite of CMIP5 models). Soil moisture

anomalies are based on the approximate top 30 cm of the soil

column. The correlation maps show strongly positive cor-

relations between soil moisture and PDSI and SPEI, with

some isolated areas of weaker correlation. For CanESM2,

94 % of land grid cells (excluding Antarctica) have positive

and significant (p B 0.05) correlations between PDSI and

soil moisture, with similar results for SPEI (91 %). Results

are similar for CCSM4: 96 % of grid cells have significant

and positive correlations between soil moisture and PDSI or

SPEI. Differences between the soil moisture and PDSI/SPEI

fields likely arise through some of the aforementioned

structural differences between the GCM land surface models

and the PDSI/SPEI calculations. The strong and highly

positive correlations nevertheless indicate that PDSI and

SPEI represent well the variability in modeled surface

moisture balance.

The efficacy of using precipitation-only (PDSI-PRE

and SPEI-PRE) or PET-only (PDSI-PET and SPEI-PET)
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based indices to separate the influences of changing pre-

cipitation and evaporative demand on future drought

depends on these quantities being approximately inde-

pendent in their contribution to the full hydroclimate

response (PDSI-ALL and SPEI-ALL). While they are not

likely to be completely independent, because changes in

precipitation will, for many regions, affect surface radia-

tion, temperature, and other variables, we require that to

first order they sum linearly for our interpretations of

precipitation and evaporative demand contributions to

drought. We compare PDSI-ALL to the sum of PDSI-

PRE and PDSI-PET (PDSI-SUM; Fig. 2) and SPEI-ALL

to the sum of SPEI-PRE and SPEI-PET (SPEI-SUM;

Fig. 3) for each grid cell, averaged over 2080–2099. The

1:1 line, indicating a perfect match between PDSI-ALL

and PDSI-SUM or SPEI-ALL and SPEI-SUM, is plotted

as the dashed black lines in all the panels. For both PDSI

and SPEI, the ‘SUM’ and ‘ALL’ values for each model

track each other closely and scatter evenly around the 1:1

line. This close match indicates that our interpretations of

the ‘PRE’ and ‘PET’ calculations as separate and additive

constituents of regional drought trends are appropriate for

the models and range of climate changes considered

herein.

3 Results

3.1 Model climate response

The forced response in surface climate from our chosen

subset of CMIP5 models (Fig. 4) is consistent with pre-

vious analyses of the CMIP5 climate projections (e.g.,

Knutti and Sedlacek 2013). Cross-hatching in Fig. 4

indicates areas where at least 12 of the 15 models (80 %)

agree with the sign of the change in the multi-model

Fig. 4 Multi-model mean changes (2080–2099 minus 1931–1990) in

a surface net radiation (W m-2), b 2-m air temperature (K),

c precipitation (mm day-1), d vapor pressure deficit (kPa), e latent

heat fluxes (W m-2), and f evaporative fraction (fraction). a–d are

annual averages. In e–f averages north of the equator (the dashed line)

are for boreal summer (June–July–August) and south of the equator

are for austral summer (December–January–February). Cross hatch-

ing indicates areas where the sign of the change in at least 12 of the 15

models agrees with the sign of the multi-model mean
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mean. Surface net radiation increases primarily through

the inhibition of longwave cooling by increased anthro-

pogenic GHG concentrations (Fig. 4a). Land surface tem-

peratures increase everywhere (Fig. 4b), with amplified

warming in the Northern Hemisphere high latitudes. Precip-

itation responses (Fig. 4c) are spatially heterogenous, with

some regions showing drying (e.g., southwest NorthAmerica,

the Mediterranean, southern Africa) and others wetting (e.g.,

the high latitudes in theNorthernHemisphere), as per the rich-

get-richer/poor-get-poorer mechanism discussed previously.

Consistent with expectations, precipitation changes show

much less consistency across models than the changes in

surface net radiation or surface temperature. The VPD

increases across all land areas (Fig. 4d), primarily as a con-

sequence of the globallywidespreadwarming,with the largest

increases occurring in regions that are projected to warm and

dry (e.g., South America, southern Africa).

The models also show regional changes in summer

season (JJA in the Northern Hemisphere; DJF in the

Southern Hemisphere) actual evapotranspiration (latent

heat fluxes; Fig. 4e) and the ratio of latent heating to the

sum of sensible plus latent heating (evaporative fraction or

EF, Fig. 4f). Evapotranspiration (Fig. 4e) increases in

much of the wet tropics and the Northern Hemisphere high

latitudes, where evaporative demand is enhanced (via

increased VPD and surface net radiation) and precipitation

generally increases. These are areas where evaporation is

primarily energy (rather than moisture) limited and where

evaporation continues to be energy limited in the future. In the

sub-tropics, where evapotranspiration is primarily controlled

Fig. 5 Annual averaged PDSI-ALL from 2080–2099 for each model simulation under the RCP8.5 scenario. The number of ensemble members

is listed in each panel title; for models with multiple ensemble members, the maps represent the ensemble average

Global warming and 21st century drying
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by surfacemoisture availability, evapotranspiration decreases

as surface moisture is unable to satisfy the increased atmo-

spheric demand.

Changes in EF (Fig. 4f) provide a diagnostic for

changing moisture versus energy limitations to evaptran-

spiration in the future. Areas with declining EF are regions

where evapotranspiration rates are increasingly moisture

limited. This includes much of the sub-tropics, where

evapotranspiration is declining, but also areas of the mid-

latitudes where evapotranspiration is projected to increase

(e.g., Central Plains of North America and Europe). The

fact that EF decreases in areas of both increased and

decreased evapotranspiration is suggestive of an overall

decline in surface and soil moisture availability in these

regions. Increases in EF are confined primarily to areas

where precipitation is increasing and evapotranspiration is

limited by energy demand, such as the high latitudes of the

Northern Hemisphere.

3.2 Model PDSI and SPEI response

Annual average PDSI and SPEI values for each model and

for all calculations (ALL, PRE, PET) at the end of the

twenty-first century (2080–2099) are shown in Figs. 5, 6, 7,

8, 9 and 10. Multi-model means for these same quantities

are in Fig. 11; cross hatching indicates areas where the

multi-model mean PDSI anomalies exceed -1 or ?1 or

where multi-model mean SPEI values exceed -0.5 or ?0.5

(PDSI and SPEI are qualitatively similar, but use different

scalings), and where at least 12 of the 15 models also

Fig. 6 Same as Fig. 5, but for SPEI-ALL
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exceed these thresholds. The PDSI-ALL and SPEI-ALL

projections (Fig. 11a, b) indicate substantial and robust

drying over much of North America, the Amazon Basin,

southern Africa, the Mediterranean, Europe, southeast

China, and parts of Australia. Wetting occurs primarily at

high latitudes in the Northern Hemisphere and east Africa,

although these changes are more consistent across models

(cross-hatching) in the PDSI calculations than SPEI. Areas

of drying in PDSI-ALL and SPEI-ALL generally overlap

regions with declining EF (Fig. 4f), further supporting the

use of PDSI and SPEI as measures of surface moisture

availability. When precipitation effects are isolated (PDSI-

PRE and SPEI-PRE, Fig. 11c, d), the resulting pattern

closely mirrors the changes in precipitation (Fig. 4c), with

substantially reduced drying in many regions relative to

PDSI-ALL and SPEI-ALL, especially in the mid-latitudes.

These results clearly indicate that, while the global pattern

of hydroclimatic change is organized around the centers of

suppressed and enhanced precipitation, precipitation

changes alone cannot explain the full magnitude or spatial

extent of drying documented by the complete PDSI and

SPEI accountings, or seen in the multi-model mean EF

changes. Maps of PDSI-PET and SPEI-PET (Fig. 11e, f)

demonstrate that this additional drying is the result of

increased PET. Changes in PDSI-PET and SPEI-PET show

nearly uniform drying of all land areas, an expected con-

sequence of the more widespread and uniform nature of

changes in surface net radiation (Fig. 4a) and VPD

Fig. 7 Annual averaged PDSI-PRE (precipitation effects only) for each model simulation under the RCP8.5 scenario. The number of ensemble

members is listed in each panel title; for models with multiple ensemble members, the maps represent the ensemble average
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(Fig. 4d) compared to precipitation (Fig. 4c). When sur-

face net radiation and VPD contributions to the drying are

individually separated (Fig. 12), it is clear that the relative

impact of increases in the VPD is substantially larger than

the effect of surface net radiation, especially in the

Northern Hemisphere. The influence of net radiation versus

VPD changes on PET is discussed in more detail elsewhere

(Scheff and Frierson 2013).

While PDSI and SPEI are qualitatively similar, they use

different scalings and require some degree of renormal-

ization to be directly comparable. In order to calculate the

spatial extent of the drying in the various PDSI and SPEI

calculations, we renormalized the annual average PDSI and

SPEI values to have a mean of zero and inter-annual

standard deviation of one over the original standardization

period (1931–1990). These Z-indices are directly compa-

rable between PDSI and SPEI, and are used to calculate the

fraction of land area (excluding Antarctica) with negative

PDSI and SPEI anomalies exceeding 1, 2, or 3 standard

deviations at the end of the twenty-first century (Fig. 13).

Using a PDSI threshold of one standard deviation (Z B-1,

Fig. 13a), for example, precipitation changes alone (PDSI-

PRE) cause drying on only about 12 % of the global land

area in the multi-model mean. Considering only increases

in PET (PDSI–PET), however, leads to an equivalent

magnitude of drying on nearly 44 % of the global land

area, an expected result given the much wider and mono-

tonic pattern of PET increases in the models. For the fully

simulated hydroclimate response (PDSI-ALL), the percent

of land area exceeding the Z B-1 threshold is between

Fig. 8 Same as Fig. 7, but for SPEI-PRE
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these two estimates, at about 30 %. This reflects the fact

that, depending on the region, combined PET and precip-

itation effects will either act to reinforce the drying

(?PET, -precipitation) or act in opposition to each other,

resulting in either wetting (?precipitation[ [ ? PET),

drying (?PET[ [ ? precipitation), or little change

(?PET& ? precipitation). Results are similar for the

SPEI Z-indices (Fig. 13b), but SPEI indicates much more

widespread drying from the increases in PET, reflective of

what is a greater sensitivity of the SPEI to PET changes

than PDSI, especially in arid regions with little rainfall,

such as the Sahara and Middle East (Figs. 11, 12). PDSI is

constrained by a soil moisture accounting that depends on

it’s internally calculated actual evapotranspiration, using

the provided Penman-Monteith PET as an initial starting

value (Dai 2011). This constraint is especially important in

more arid regions where evapotranspiration rates are lim-

ited primarily by soil moisture availability, rather than

atmospheric demand reflected in the PET. SPEI, by con-

trast, has no such actual evapotranspiration or soil moisture

limitation built in, and will continually respond to changes

in PET, even when drying reaches the point that actual

evapotranspiration should be supply limited. In this way,

PDSI may offer some advantages over SPEI (Dai 2011).

This difference between the PDSI and SPEI accounting is

reflected in the overall higher correlations between PDSI

and model soil moisture (Fig. 1). Unfortunately, masking

of these arid regions in the models is difficult do in such a

Fig. 9 Annual averaged PDSI-PET (evaporative demand effects only) for each model simulation under the RCP8.5 scenario. The number of

ensemble members is listed in each panel title; for models with multiple ensemble members, the maps represent the ensemble average
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way that would allow easy cross-model comparisons:

because of model precipitation biases, these arid regions

vary across the GCMs in terms of their size and location.

Amplification of the drying by increases in PET is fur-

ther demonstrated in the zonal average PDSI and SPEI

calculated from the multi-model mean (Fig. 14). In PDSI-

PRE and SPEI-PRE (green lines), nearly the entire

Northern Hemisphere in the zonal mean gets wetter, with

the greatest increase occurring in the high latitudes where

precipitation increases are largest. PDSI-PRE and SPEI-

PRE changes in the mid-latitudes (30�–50�N) are near

neutral or slightly wetter; in these latitude bands, precipi-

tation increases in some regions are largely counteracted by

declines in other areas along this zonal band (Fig. 4c).

Increases in PET, reflected in PDSI-PET and SPEI-PET

(red lines), result in drying across all latitudes. When both

PET and precipitation are considered (PDSI-ALL and

SPEI-PET, brown lines), the net result is such that PET

increases counter a substantial fraction of the precipitation-

driven wetting in the high northern latitudes and actually

push the mid-latitudes (30�–50�N) into a drier mean state

(PDSI\0 and SPEI\0).

Four regions where the PET effects are especially

pronounced are the Central Plains of North America

(105� - 90�W, 32� - 50�N; Figs. 15a,16a), southeast

China (102� - 123�E, 22� - 30�N; Figs. 15b,16b), the

European-Mediterranean region (20�W - 50�E, 28� - 60�N;
Figs. 15c,16c), and the Amazon (70� - 45�W, 20�S - 5�N;
Figs. 15d, 16d). China and the North American Central

Plains are especially notable because, without the effect of

Fig. 10 Same as Fig. 9, but for SPEI-PET
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Fig. 11 Multi-model mean PDSI-ALL (a), SPEI-ALL (b), PDSI–
PRE (c), SPEI-PRE (d), PDSI-PET (e), and SPEI-PET (f) for

2080–2099. For PDSI, cross-hatching indicates cells where, for multi-

model mean PDSI anomalies exceeding -1 or ?1, at least 12 of the

15 models (80 %) also exceed these thresholds. For SPEI, the cross-

hatching threshold is for 80 % agreement with threshold values of

-0.5 or ?0.5 in the multi-model mean

Fig. 12 Multi-model mean PDSI (a, c) and SPEI (b,d) projections for
2080–2090, incorporating only trends in a surface net radiation and

b vapor pressure deficit. Note the range of values on the color bars are

half that of the other PDSI and SPEI maps, in order to better illustrate

the changes

Global warming and 21st century drying

123



increased PET, these regions would be expected to stay

near neutral (China, multi-model mean PDSI-

PRE= ? 0.11 and SPEI-PRE= ? 0.12), or even get wetter

(North American Central Plains, multi-model mean PDSI-

PRE= ? 0.63 and SPEI-PRE= ? 0.25). Instead, both

regions dry substantially in PDSI-ALL and SPEI-ALL,

shifting to mean values of PDSI = -1.85 and SPEI =

-0.90 over the North American Central Plains and

PDSI = -1.51 and SPEI = -0.67 over China. In other

regions, PET changes act to not only expand the spatial

footprint of the regional drying, but also to amplify the

changes that do occur because of reduced precipitation. In

the European-Mediterranean region, PET effects intensify

and expand the drying northward from the Mediterranean,

shifting the regional average PDSI from -0.50 (PDSI-

PRE) to -2.53 (PDSI-ALL), and SPEI from -0.17 (SPEI-

PRE) to -2.00 (SPEI-ALL). Similar intensification also

happens in the Amazon, where precipitation effects result

in a regional average drying (PDSI-PRE= - 1.40, SPEI-

PRE= - 0.41), with the added effect of increased PET

causing further drying in the region (PDSI-ALL = -3.25,

SPEI-ALL = -1.33).

4 Discussion

Developing and refining projections of hydroclimate,

drought, and water resources for the twenty-first century is

an active area of research (e.g., Barnett and Pierce 2009;

Dai 2013; Seager et al. 2013). Toward this end, significant

advances have already been made in key areas, especially

in our understanding of regional and seasonal precipitation

responses to warming (Chou et al. 2009, 2013; Held and

Soden 2006; Neelin et al. 2003; Seager et al. 2010). Pre-

cipitation, however, does not represent the only control on

ecologically and socially relevant water resources, such as

streamflow, reservoir storage, and soil moisture. Evapora-

tive demand from the atmosphere, driven by air tempera-

ture, humidity, and energy availability, can also play a

critical role. It is generally accepted that a warmer world

will increase evaporative demand and drying independent

of precipitation changes (Dai 2011). To date, however, few

efforts have been made to explicitly separate the relative

contributions to future drought trends from changes in

supply (precipitation) versus demand (PET).

Using the latest suite of state-of-the-art climate model

projections and two indices of surface moisture balance

(PDSI and SPEI), we find that robust regional changes in

hydroclimate are, to first order, organized around regional

changes in precipitation. Increases in precipitation cause

wetting in the high northern latitudes and east Africa, and

precipitation declines lead to drying in the sub-tropics and

Fig. 13 Percent land area (excluding Antarctica) with annual average

2080–2099 PDSI (a) and SPEI (b) exceeding 1, 2, or 3 standard

deviations. Bars represent the multi-model mean, and the error bars

are the ?/-1 standard deviation calculated across models. For models

with multiple ensemble members, the ensemble average is calculated

first and then used for the multi-model statistics

Fig. 14 Zonally averaged multi-model mean PDSI (a) and SPEI

(b) from 2080–2099
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Amazon. In areas where declines in precipitation already

push the climate towards drought (e.g., Central America,

the Amazon, southern Africa, the Mediterranean, etc),

increased PET amplifies the precipitation induced drying.

Critically, PET also plays a major role in enhancing drying

in the midlatitudes and along the margins of the sub-tro-

pics, where precipitation changes are small or even posi-

tive. Globally, increased PET nearly triples the fractional

land area that will experience drying exceeding one stan-

dard deviation of the PDSI index (Fig. 13) by the end of the

twenty-first century, from 12 % (precipitation effects only,

PDSI-PRE) to 30 % (precipitation?PET effects, PDSI-

ALL). In certain regions (e.g., western North America,

Europe, and southeast China), PET is in fact the sole or

primary driver shifting these areas into drought. Areas

dominated by the Asian monsoon (India, Indochina, etc)

are some of the few places where there is little change in

mean hydroclimate. In these regions, gains in moisture

from increased annual and monsoon precipitation (Lee and

Wang 2012; Seo et al. 2013) are large enough to com-

pensate for any increases in PET.

Both PDSI and SPEI provide useful metrics of surface

moisture balance as it relates to both supply and demand

considerations. One factor neglected by these indices as

formulated herein, however, is the potential effect of

enhanced carbon dioxide concentrations in the atmosphere

([CO2]), which are expected to have a direct physiological

effect on plants by reducing stomatal and canopy conduc-

tance, increasing the water use efficiency of plants, and

thus reducing evapotranspiration and soil moisture losses.

Several recent modeling studies suggest this effect could be

quite important for projections of soil moisture and water

resources (Cao et al. 2010; Wiltshire et al. 2013). We note,

however, that empirical evidence for this water use effi-

ciency effect as a large-scale control on the surface mois-

ture balance is still highly uncertain. For example, Domec

et al (2009) demonstrated for loblolly pine that the effect of

enhanced [CO2] on stomatal conductance manifested only

Fig. 15 Regionally averaged PDSI for each model, over a the Central
Plains of North America (105� - 90�W, 32� - 50�N), b southeast

China (102� - 123�E, 22� - 30�N), c the European-Mediterranean

region (20�W - 50�E, 28� - 60�N), and d the Amazon (70�- 45�W,

20�S - 5�N)
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during times of high soil moisture, rather than drought.

Naudts et al. (2013), in a simulated drought experiment,

found no significant (p\ 0.10) additional impact of ele-

vated [CO2] on soil wetness, either before or after a

drought manipulation (see their Fig. 4; Table 1). Other

experiments have found only modest changes (\15 %) in

evapotranspiration fluxes and soil water content with

enhanced [CO2] (e.g., Hussain et al. 2013; e.g., Inauen

et al. 2013; e.g., Stocker et al. 1997). Large uncertainties in

the effect of enhanced [CO2] on future hydroclimate pro-

jections, namely through the modification of stomatal

resistance, make characterizing the impact of this mecha-

nism on a global scale simply too difficult to quantify for

our purposes herein.

5 Conclusions

This analysis provides a comprehensive accounting of how

PET and precipitation changes will each affect global

hydroclimate at the end of the twenty-first century. For

many regions, focusing on the precipitation response alone

will be insufficient to fully capture changes in regional

water resources such as soil moisture, runoff, or reservoir

storage. Instead, increased evaporative demand will play a

critical role in spreading drought beyond the sub-tropics

and into the Northern Hemisphere mid-latitudes, regions of

globally important agricultural production. China, for

example, is the world’s largest rice producer, a crop that

serves as the primary nutrition source for more than 65 %

of the Chinese population (Peng et al. 2009). North

America and much of central Asia are major centers of

maize and wheat production; unlike China, they are also

important exporters of these crops to the global market-

place (Headey 2011). Increased temperatures, and the

associated heat stresses, are already expected to negatively

impact crop yields in these regions (Battisti and Naylor

2009; Teixeira et al. 2013), and our analysis suggests that

increases in PET due to warming and energy balance

changes will have additional impacts through regional

Fig. 16 Same as Fig. 15, but for SPEI
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drying. Yield losses can be at least partially mitigated

through management practices, such as modification of

planting and harvest dates (Deryng et al. 2011). However,

recent research suggests that climate change over the last

20 years is already having a deleterious impact on agri-

cultural production (Lobell et al. 2011), and the ability of

existing water resources to keep pace with future climate

impacts is in question (Wada et al. 2013; Zhang et al.

2013). Even with proactive management, our results sug-

gest increased drying, driven primarily by increases in

PET, will likely have significant ramifications for globally

important regions of agricultural production in the North-

ern Hemisphere mid-latitudes.
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