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Abstract

Paleoclimate Model-Data Comparisons of Hydroclimate over North America with a Focus

on Megadroughts

Sloan Coats

For the first time in the history of the Intergovernmental Panel on Climate Change, the

Paleoclimate and Coupled Model Intercomparison Projects Phases 3 and 5 produced an en-

semble of forced transient simulations of the last millennium. This wealth of model output,

when combined with a growing collection of high spatial and temporal resolution paleo-

climate estimates of past climate variability, represents an important and unprecedented

source of information on climate variability over decades to centuries. This dissertation thus

combines paleoclimate evidence with climate modeling to define a physical and statistical

paradigm through which to analyze these combined sources of information and subsequently

to characterize the features of the North American climate system that cannot be sufficiently

understood using instrumental data alone. This includes features that have long timescales

of variability or that are rare, and by consequence have few degrees of freedom over the short

instrumental interval (1850 C.E. to Present), as well as interannual dynamical relationships

that, while potentially well characterized by observations, are non-stationary. An integrative

approach to analyzing these features or relationships serves two fundamental purposes: 1) It

provides a more comprehensive characterization of past climate variability, albeit with the

caveat of model bias, to clarify understanding of the dynamics that produce these features

or relationships in the real world; and 2) it assesses whether coupled general circulation

models (CGCMs) are able to simulate these features or relationships, which is necessary to



determine that state-of-the-art CGCMs can accurately constrain the risk of future climate

change. The focus herein will be on multidecadal hydroclimate change, or megadroughts, in

the paleoclimate record of the American Southwest to better inform our understanding of

the risk of future hydroclimate change over the region. Two fundamental understandings are

derived from this work. Firstly, CGCMs are successful at simulating discrete periods of mul-

tidecadal hydroclimate change that are characteristic in length, magnitude, and frequency of

occurrence of megadroughts in the paleoclimate record. The simulated megadroughts are not

tied in any coherent way to exogenous forcing, however, suggesting that CGCMs simulate

large-magnitude internal variability on multidecadal timescales. Secondly, the dynamical

characteristics of CGCMs are important in determining the atmosphere-ocean variability

that drives multidecadal hydroclimate change. The dynamical characteristics of relevance

include teleconnection realism and stationarity, the magnitude of ocean variability, and the

relative magnitudes of different modes of atmosphere-ocean and purely atmospheric vari-

ability. Additionally, a new understanding of real-world megadrought dynamics is derived

herein, with the characteristics of some CGGMs providing a better representation of these

dynamics.
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Chapter 1

Introduction

1.1 What are paleoclimate model-data comparisons and

what is their value over the Common Era?

A fundamental limitation of our understanding of the climate system is the short length

of the instrumental interval — the period for which there are direct observations of the land,

atmosphere and ocean. Records of hydroclimate, in particular, tend to be spatially sparse,

temporally incomplete and short. To demonstrate this, Figure 1.1 shows the number of rain

gauge stations, the predominant method by which hydroclimate conditions are observed, in

both temperate and tropical locations as a function of time. In 1850 there were essentially

no direct observations of precipitation anywhere on the globe. More complex — and likely

more scientifically interesting and useful — hydroclimate variables like soil moisture have

even shorter and more incomplete observational records. Together this means that the ob-

served record of hydroclimate is at most 150 years in length.
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Figure 1.1: Number of rain gauge stations in temperate and tropical locations. Tropical
stations are between the Equator and 25◦ latitude, and temperate stations are between 25◦

and 60◦ latitude in both the Northern and the Southern Hemispheres. The two lines in the
plot are separate data sets, rather than cumulative numbers. Taken from Wohl et al. (2012).

150 years is too short to constrain many aspects of the climate system that are im-

portant both societally and scientifically. For instance, decadal-to-multidecadal timescale

modes of atmosphere-ocean variability such as the Pacific Decadal Oscillation (PDO —

Mantua & Hare, 2002) and the Atlantic Multidecadal Oscillation (AMO — Enfield et al.,

2001) have global temperature and hydroclimate impacts. In some regions the magnitude

of these impacts can rival those of interannual (and therefore perhaps better understood)

modes of variability like the El Niño-Southern Oscillation (ENSO); see for instance Kushnir

et al. (2010) for the impact of the AMO on North American (NA) hydroclimate. The in-

strumental interval, however, is too short to effectively characterize the PDO and AMO. In

particular, the AMO is estimated to have a dominant periodicity of approximately 65 years

(Schlesinger & Ramankutty, 1994). The 150-year instrumental interval would thus provide

only two degrees of freedom by which to characterize the AMO and its impacts.

The paleoclimate record of the Common Era (C.E.) is an important target for ex-

tending the record of climate variability beyond the instrumental interval. Critically, the

paleoclimate record of the C.E. has similar temporal and spatial resolution to climate obser-

vations. It can thus provide longer records of important aspects of the climate system like

the AMO. Nevertheless, the paleoclimate record is inherently more uncertain than observa-
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tions, as corals, tree rings, speleothems and other proxies provide only indirect measurements

of the climate system. Most importantly, however, the C.E. paleoclimate record does not

provide a comprehensive view of the atmosphere and ocean. It thus is of limited use in

understanding climate dynamics, for instance not just defining the past state of the AMO

but understanding the origin of that variability.

Over the last ten years, advances in computation have allowed for the simulation of

climate on timescales longer than the instrumental interval. These Coupled General Circula-

tion Model (CGCM) simulations can provide another constraint on our understanding of the

climate system. Unlike the C.E. paleoclimate record, CGCMs provide a comprehensive view

of the atmosphere and ocean and can thus be used to derive a fundamental understanding

of climate dynamics. This view is compromised, however, by the fact that CGCMs are an

imperfect representation of the actual climate system. This leads to biases that at best must

be accounted for when analyzing CGCM output and at worst can severely compromise the

ability of CGCMs to provide insight into certain climatic processes.

Paleoclimate model-data comparisons seek to partially overcome the limitations of

these individual data sources by performing combined analyses of the C.E. paleoclimate

record, instrumental data and long climate integrations from CGCMs. They have become

an important tool for studying climate features that have long timescales of variability or

that are rare, and by consequence have few degrees of freedom over the short instrumental

interval, as well as interannual dynamical relationships that, while potentially well char-

acterized by observations, are non-stationary. Specific studies include assessments of the

impact of volcanic eruptions on surface temperature (Anchukaitis et al., 2012) and the tem-

perature sensitivity to natural forcing over the last millennium (Fernández-Donado et al.,

2013), as well as the use of paleoclimate data to distinguish among disparate future climate

projections (Schmidt et al., 2013). To date, however, paleoclimate-model data comparisons

have rarely been used in studies of hydroclimate, particularly on the regional spatial scales

that tend to be socio-economically important. The purpose of this thesis, therefore, is to

3



develop paleoclimate model-data comparison frameworks to better constrain the dynamics

of hydroclimate change over the American Southwest (roughly from the northern border

of California to the southern border of the United States, and from the high plains to the

Pacific coast; hereinafter ASW).

1.2 Why study hydroclimate over the ASW?

Before outlining the specific understandings that we will target with paleoclimate

model-data comparisons of hydroclimate over the ASW, it is important to motivate the

need to study hydroclimate change in this region. The ASW accounts for more than 20%

of the United States population — a proportion that is growing — and greater than half of

domestic food crop production. The ASW grows this food despite a fickle and unpredictable

water supply that relies heavily on large-scale irrigation infrastructure that is static in space

and time (Tanaka et al., 2006). Historically, water management systems in the ASW have

been designed under the assumption that natural systems fluctuate within an unchanging

envelope of variability (stationarity — Milly et al., 2008) and any responses to hydroclimate

change have been dominated by reactive technical solutions (Pahl-Wostl et al., 2007). It has

become clear, however, that anthropogenic and natural climate change can fundamentally

alter the hydrologic cycle, both the baseline and the extremes. Consequently, increasing

the adaptability, flexibility, and resiliency of resource management systems in the ASW is

imperative. Such efforts will necessarily include changes to both the demand and supply side

of water management. Changes to the latter, which will be dictated by the ASW’s aging

water supply systems even with full adoption and implementation of adaptable management

practices, will require knowledge of the spatial and temporal characteristics of future hydro-

climate five to fifty years in advance.

4



Figure 1.2: Global Palmer Drought Severity Index (PDSI — Palmer, 1965), a common met-
ric of hydroclimate variability that is thoroughly outlined in the Methods section, averaged
from 2080–2099 for the RCP8.5 future emissions scenario. PDSI values approximately repre-
sent the standardized departure from mean hydroclimate conditions during the instrumental
interval, with negative PDSI indicating dry conditions. The models and number of ensemble
members is listed in each panel title; for models with multiple ensemble members, the maps
represent the ensemble average. Taken from Cook et al. (2014a).

Such information can best be provided by CGCM simulations. Figure 1.2 shows global

hydroclimate projections for the end of the current century from the CMIP5 multi-model

ensemble (Cook et al., 2014a), which can be interpreted as the change relative to a 20th

century baseline. These projections use the RCP8.5 future emissions scenario and while

this represents the worst case for future emissions, it is consistent with the current lack of

international action to limit greenhouse gas emissions (e.g. Seager et al., 2013). In each case

the plotted variable is the Palmer Drought Severity Index (PDSI — Palmer, 1965), an offline

model of soil moisture balance that is a standard metric of hydroclimate conditions. The

CGCMs consistently indicate that the ASW will dry over the coming century. Nevertheless,

there are intermodel differences in the hydroclimate projections for this region, particularly

with regard to the severity of drying. The ISPL and MIROC models, for instance, simulate

much more severe drying than the MRI and GFDL models.
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Figure 1.3: Global PDSI averaged from 2080–2099 for the RCP8.5 future emissions scenario.
Panel A shows PDSI values calculated with precipitation detrended over the period 2000–
2099 and the 21st-century mean set equal to the mean of the last two decades of the 20th-
century to isolate the impact of changes in evaporative demand on PDSI. Panel B shows the
same but for detrended evaporative demand. The model and number of ensemble members
is listed in each panel title; for models with multiple ensemble members, the maps represent
the ensemble average. Taken from Cook et al. (2014a).

ASW drying can be split into a contribution from changes in precipitation as opposed

to changes in evaporative demand. To do so, the PDSI is recalculated with either the pre-

cipitation or evaporative demand detrended over the period 2000–2099 and the 21st-century

mean set equal to the mean of the last two decades of the 20th-century. In the former case

this would isolate the impact of changes in evaporative demand on PDSI (vice versa for the

latter). Figure 1.3 plots the recalculated PDSI. While the CGCMs disagree on the impact

of changes in evaporative demand globally, they are in generally good agreement over the

ASW (Panel A of Figure 1.3). Panel B of Figure 1.3, however, indicates that the spatial

pattern and magnitude of future precipitation changes over the ASW are less certain. When

taken together, Figures 1.2 and 1.3 suggest that the ASW will dry over the coming century.

The severity of this projected drying, however, is uncertain — particularly the contribution

to drying from changes in precipitation. To constrain this uncertainty, the fidelity of each

CGCM can be used to distinguish among disparate hydroclimate projections. Unfortunately,

we have only limited information on the error and bias structures of CGCMs, particularly
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on long timescales (Figures 1.2 and 1.3 plot twenty-year averages at the end of the century).

In lieu of better characterizations of CGCMs, there is statistical evidence that a “one model,

one vote” approach is the best and most skillful option [Weigel et al. (2010); Knutti et al.

(2010)].

Figures 1.2 and 1.3 represent hydroclimate conditions at the end of the century. For a

high emissions scenario like RCP8.5, end-of-century precipitation and evaporative demand,

relative to the recent past, will be dominated by the response to anthropogenic greenhouse

gas forcing. Over the near-term decades, however, hydroclimate change will involve a smaller

forced change and a relatively larger contribution from decadal-to-multidecadal internal vari-

ability. Hydroclimate projections and associated risk assessments, therefore, require that

CGCMs capture both forced change and the amplitude and character of internal variabil-

ity. Very little is known, however, about internal variability on decadal-to-multidecadal

timescales (for the reasons outlined in Section 1.1). This includes the ratio of internal to

forced variability, which has consequences for the predictability of future hydroclimate, par-

ticularly hydroclimate change related to anthropogenic greenhouse gas forcing.

The tropical Pacific ocean provides a stark example of these issues. A wealth of

research has implicated tropical Pacific sea surface temperatures (SSTs), and specifically

the ENSO, as the dominant driver of drought over the ASW. Schubert et al. (2004a,b),

for instance, simulated the 1930s Dust Bowl, the most severe drought of the instrumental

interval, as a response to tropical Atlantic and Pacific SST anomalies. Seager et al. (2005b)

and Herweijer et al. (2006) subsequently reproduced all of the major droughts of the in-

strumental interval using an atmospheric general circulation model (AGCM) forced with

observed SSTs. Any changes to the tropical Pacific boundary conditions, whether forced or

due to internal variability, thus have the potential to impact future hydroclimate over the

ASW. Nevertheless, little is known about the characteristics of the tropical Pacific on the

decadal-to-multidecadal timescales, which are most relevant for near term climate change.

In fact, multiple hypotheses for the origin of decadal-to-multidecadal shifts in the tropical
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Pacific have been presented in the literature. Vecchi et al. (2006), for instance, use AGCMs

to indicate that high forcing conditions should weaken the atmospheric Walker circulation

producing warm, or El Niño-like conditions in the tropical Pacific. This is in contrast to

Clement et al. (1996) who show that an ocean model with high forcing conditions simu-

lates La Niña-like conditions via the thermostat mechanism. In support of this argument,

the tropical Pacific has become La Niña-like over the latter half of the 21st century (Cane

et al., 1997; Karnauskas et al., 2009). It is unclear, however, if this is a response to high

forcing conditions from anthropogenic greenhouse gas emissions because internal variability

in CGCMs can produce La Niña-like trends of this magnitude (Karnauskas et al., 2012).

Potential changes to the variability, not the mean-state of ENSO, are even more poorly con-

strained (Vecchi et al., 2008; Stevenson et al., 2012), although CGCMs suggest that large

changes are possible on multidecadal timescales (Wittenberg, 2009). Most importantly, the

CMIP5 CGCMs are in disagreement on the future state of the tropical Pacific (IPCC AR5

— Sections 1.3.2.4.3, 11.3.3.1, 14.4.1 and 14.4.2), although the majority simulate a reduced

tropical Pacific gradient, a result that may explain the disparities in hydroclimate projec-

tions for the ASW (Figures 1.2 and 1.3 and Seager & Vecchi (2010)).

Despite CGCM agreement on the sign of future changes in hydroclimate over the

ASW, much remains to be understood about hydroclimate variability on decadal-to-multidecadal

timescales. To improve the basis for accurate predictions of future hydroclimate over the

ASW a paleoclimate-model data comparison framework is developed herein (e.g. Section

1.2). To begin, however, we must determine which climate features can inform our un-

derstanding of the future. Along these lines, Section 1.3 presents an outline of the C.E.

paleoclimate record over the ASW, particularly as it pertains to decadal-to-multidecadal

hydroclimate change.
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1.3 How might the past inform the future?

Hydroclimate change on decadal-to-multidecadal timescales has been a consistent,

though infrequent, feature of the C.E. over the ASW. These so-called megadroughts are un-

like any drought observed over the instrumental interval, including the relatively persistent

and severe 1930s Dust Bowl and 1950s droughts. While the severity of megadroughts is on

par with observed droughts, they are estimated to have been up to a century in length (e.g.

Stine, 1994). Megadroughts occurred predominantly during the Medieval Climate Anomaly

(MCA), a period of global climate change between approximately 900–1300 C.E. (e.g. Jansen

et al., 2007). Nevertheless, they have occurred as recently as the 16th century (Stahle et al.,

2007). Understanding the causes of megadroughts is critical for assessing their likelihood of

occurrence in the future. In particular, constraining the relative impact of internal versus

forced variability on megadrought occurrence will help determine if their risk probabilities

will be influenced by anthropogenic greenhouse gas forcing. Likewise, megadroughts rep-

resent hydroclimate change on the timescale and of the magnitude projected by CGCMs

for the ASW. It is thus critical to determine whether CGCMs are capable of simulating

megadrought events and for the correct dynamical reasons. Such evaluations will provide

confidence that future projections of drought risk derived from CGCMs adequately incorpo-

rate decadal-to-multidecadal hydroclimate variability (e.g Ault et al., 2013, 2014).

It is important to note that megadroughts are a robust feature of the paleoclimate

record. They were first identified in submerged tree stands in the Mono Lake Basin of

California by Stine (1994) and then independently corroborated using the North American

Drought Atlas (NADA — Cook et al., 2007; Herweijer et al., 2007), a tree-ring based re-

construction of hydroclimate variability over NA for the entirety of the C.E. Cook et al.

(2010b) note that megadroughts are also a feature of the anthropological record, with Dou-

glass (1935) suggesting that multidecadal drought led to the 12th century abandonment of

Pueblo Bonito, a Pueblo settlement of approximately 900 individuals in modern day New

Mexico.
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Beyond their occurrence and character, however, little is known about megadroughts.

In particular, research characterizing the dynamics of megadroughts is in its nascency. Sea-

ger et al. (2008a) simulated megadroughts during the MCA with an AGCM forced with

SSTs estimated from a single tropical Pacific coral record (Cobb et al., 2003). These simu-

lated megadroughts were analyzed by Burgman et al. (2010), who noted similarities between

the global pattern of modeled MCA hydroclimate and the one estimated from paleoclimate

proxies. Herweijer et al. (2007) further analyzed megadroughts in the paleoclimate record,

employing tree-ring reconstructions from the NADA to compare modern droughts to the

megadroughts of the MCA. They proposed that the well-documented ENSO-ASW telecon-

nection of the instrumental interval (e.g Seager et al., 2005b; Herweijer et al., 2006) was the

likely forcing of persistent drought during the MCA, with the difference in drought persis-

tence arising from the duration of drought-favorable SST conditions in the tropical Pacific

Ocean. Similar work from Graham et al. (2007), using multi-proxy and modeling methods,

also implicates the tropical Pacific along with Indian Ocean SSTs as the principal influences

on MCA hydroclimate change. More recently, Feng et al. (2008) and Oglesby et al. (2012)

have suggested that the tropical Atlantic played a role in forcing the MCA megadroughts,

while Cook et al. (2013) have argued for the importance of dust aerosol forcing from dune

mobilization (Forman et al., 2001; Hanson et al., 2010) on both the spatial character and

persistence of droughts in NA during the MCA.

Despite the breadth of research, it is clear that a prominent hypothesis is that

megadroughts are driven by persistent La Niña-like states in the tropical Pacific. This

hypothesis relies in part on the strong control of the tropical Pacific on hydroclimate over

the ASW during the instrumental interval. It also invokes the characteristic spatial patterns

of megadroughts, which with the exception of the late 16th century event (Stahle et al.,

2007) tend to be close to that of a canonical La Niña event (e.g. Herweijer et al., 2007).

Perhaps most importantly, there is prominent paleoclimate evidence that suggests that the

MCA, the period with the greatest incidence of these features, was characterized by multiple
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centuries of persistently La Niña-like conditions.

The highest profile paleoclimate evidence for a persistently La Niña-like MCA comes

from Mann et al. (2009). Therein a global dataset comprising multiple proxies is used in a

multivariate linear regression framework to reconstruct spatial maps of surface temperature

on a regular latitude-longitude grid. A comparison of the MCA temperature field (averaged

from 950–1250 C.E.) to the Little Ice Age (LIA — 1400–1700 C.E.) reveals a La-Niña-like

pattern of cool temperatures in the eastern tropical Pacific. While this work provides the best

direct evidence for cold tropical Pacific conditions contemporaneous with the occurrence of

megadroughts, climate field reconstructions (CFRs) like those applied in Mann et al. (2009)

contain considerable uncertainties. Pseudoproxy experiments (PPEs — Smerdon, 2012),

which use CGCMs as a test bed for CFRs, represent one method by which to constrain this

uncertainty. A PPE involves extracting a portion of the spatiotemporally complete CGCM

field in a way that mimics the available proxies and instrumental calibration data and then

using this subset of CGCM output within a reconstruction framework. The derived recon-

struction can then be compared to the inherent CGCM output to assess uncertainty resulting

from the reconstruction framework, calibration data, spatial and temporal proxy sampling

and the presence of noise within proxy and instrumental data (Smerdon, 2012). Recent work

from Smerdon et al. (2011, 2015a) uses PPEs to suggests that all CFR methods produce

spatially dependent reconstruction errors, including large mean biases, poor representation

of variability in areas with sparse proxy sampling including many dynamically important

regions, and biases in the ratio of spectral power at low to high-frequencies.

Of specific relevance to the hypothesis of a cold tropical Pacific Ocean during the

MCA, the methodology and proxy network employed by Mann et al. (2009) was analyzed

in Smerdon et al. (2015a) with respect to differences in the mean temperature field between

the MCA and LIA. Neither the inherent CGCM output nor the PPE reconstructions contain

large differences in the Niño3 index, a standard measure of ENSO, between the MCA and

LIA. Nevertheless, PPEs can be used to determine if the reconstruction framework of Mann
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et al. (2009) can erroneously produce the 0.21 ◦C difference in in the Niño3 index between

the MCA and LIA (as shown in Mann et al., 2009). Randomly chosen and independent

300-year periods (the length of the MCA and LIA) were selected, repeated 1000 times, from

both the inherent CGCM output and the associated PPEs. Figure 1.4 plots the fraction of

the time that the squared difference in the mean Niño3 indices between the two randomly

drawn periods is as large as the difference in Mann et al. (2009) (differences are squared

to avoid the arbitrary distinction of which period is warmer or colder in this experiment).

Only the IPSL model contains any paired periods in which the inherent CGCM output has

a mean Niño3 temperature difference that is equal or greater than the MCA-LIA difference

in the Mann et al. (2009) reconstruction. More remarkably, however, the CCSM and GISS

PPEs both yield reconstructions that generate periods in which the differences in the Niño3

index are above the value of the Mann et al. (2009) MCA-LIA difference, even when the

inherent CGCM output contains no such periods. This suggests that the Mann et al. (2009)

reconstruction framework can produce a La Niña-like MCA erroneously and by consequence

that this result is potentially not robust. More generally, these findings imply that the

atmosphere-ocean state during the MCA and the association between megadroughts and the

tropical Pacific Ocean deserves further study.
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Figure 1.4: Fraction of 1000 randomly selected 300-year pairs with a squared difference in
the mean Niño3 index (◦C2) larger than the MCA and LIA squared difference in the Niño3
index from Mann et al. (2009). The circles are based on the Niño3 index taken from the
PPEs from each model and the crosses are based on the true model Niño3 index. From
Smerdon et al. (2015a).

1.4 What questions are addressed in this dissertation?

Herein we will use a paleoclimate-model data comparison framework to study megadroughts

over the ASW. Specifically, whether or not state-of-the-art CGCMs simulate megadroughts,

and if so, what are the dynamics that underlie these features (Chapters 3 and 5). A par-

ticular focus will be given to the impact of forcing, relative to internal variability in driving

simulated megadroughts. Additionally, the model dynamics will be characterized to deter-

mine why forced or internal variability is important, as well as to better understand the

atmosphere-ocean dynamics through which this variability is expressed (Chapter 4). Fi-

nally, the seasonality and spatial features of simulated megadroughts will be analyzed and

compared to the paleoclimate record (Chapter 6). Together these studies will additionally

be used to constrain uncertainty in real-world megadroughts dynamics, with Chapter 7 using

the paleoclimate record to estimate the atmosphere-ocean state that produced these features.

The paleoclimate-model data comparison framework will employ the most recent ver-

sions of the NADA (Cook et al., 2007, 2014b) and other independent (Griffin et al., 2013)

tree-ring based reconstructions of hydroclimate variability for the C.E. in combination with
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forced transient simulations of the last millennium and 500-year pre-industrial control runs

from the Paleoclimate Model Intercomparison Project Phase 3 (PMIP3 — Schmidt et al.,

2011) of the Coupled Model Intercomparison Phase 5 (CMIP5 — Taylor et al., 2012) and

other sources (González-Rouco et al., 2006). The motivating questions are:

1) How will ASW hydroclimate respond to increasing greenhouse gas concentrations over

the next decade to century?

2) How will these forced changes combine with internal variability to determine the actual

impacts of hydroclimate change?

3) Are CGCMs able to capture the full range of the internal and forced components of past

hydroclimate change on decadal-to-multidecadal timescales?

4) Can these CGCMs potentially inform our understanding of past hydroclimate change on

decadal-to-multidecadal timescales?
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Chapter 2

Methods

2.1 Data

2.1.1 Paleoclimate

Reconstructed PDSI data in Chapters 3 and 5 are from the NADA version 2a, the full

details of which can be found in Cook et al. (2007). The data are reconstructed on a 2.5◦

latitude by 2.5◦ longitude grid of summer [June, July, August (JJA)] average PDSI values for

the United States, as well as southwestern Canada and northern Mexico (286 grid points in

total). The summer PDSI is reconstructed from a network of 1854 annual tree-ring records

using a nested point-by-point regression method to produce records of maximal length. Ver-

ification statistics indicate that all grid points for the chosen analysis period (at most back

to 850 C.E.) and western NA region are highly statistically significant (decadal values of

multiple determination, reduction of error, and coefficient of efficiency are greater than 0.7

for a 33-year verification interval over much of the ASW; Cook et al., 2010b). Chapters

6 and 7 use an updated version of the NADA version 2a, with improved spatial coverage

and resolution, the full details of which can be found in Cook et al. (2014b). The data are

reconstructed on a 0.5◦ latitude by 0.5◦ longitude grid of JJA-average PDSI values.
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In Chapter 7 we use two additional tree-ring based PDSI reconstructions for other

Northern Hemisphere (NH) regions. The first is the Old World Drought Atlas (OWDA —

Cook, in review), also reconstructed on a 0.5◦ latitude by 0.5◦ longitude grid of JJA aver-

age PDSI values using 106 tree-ring chronologies from across Europe. Both the NADA and

OWDA in Chapter 7 are used over the period 1000–2005 C.E. The second is the Monsoon

Asia Drought Atlas (MADA — Cook et al., 2010a), reconstructed on a 2.5◦latitude by 2.5◦

longitude grid of JJA average PDSI values using 327 tree-ring proxy records. The MADA

will be employed over the period 1250–2005 C.E. for which there is sufficient sample depth

over the spatial range (Anchukaitis et al., 2012). In Chapter 7 all three reconstructed PDSI

datasets have been regridded to a common 2.5◦ latitude by 2.5◦ longitude grid.

To assess the seasonality of megadroughts in Chapter 6 we employ an additional tree-

ring based reconstruction of hydroclimate variability from Griffin et al. (2013). Therein,

Standardized Precipitation Index (SPI — McKee et al., 1993) values are reconstructed

from a collection of more than 50 tree-ring chronologies with seasonal resolution. The data

are reconstructed as a single timeseries for the North American Monsoon (NAM) 2 region

(113.25◦W–107.75◦W, 30◦N–35.25◦N — Gochis et al., 2009), a subset of the larger ASW re-

gion. The reconstruction uses forward stepwise multiple linear regression independently for

both the winter (cool — October to April) and summer (warm — June to August) seasons

between the period 1539–2008 C.E. This involves separating the systematic dependence of

latewood (the dark, dense component of tree rings with a greater warm-season signal) vari-

ability from the earlywood (light, less dense component with a greater cool-season signal)

variability using linear regression, with the effect of this adjustment being an increase in the

summer precipitation signal (Griffin et al., 2011). The relationships between the instrumen-

tal and reconstructed variables in Griffin et al. (2011) are highly significant, positive and

stable.
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2.1.2 Observed

Observed sea surface temperature (SST) data are from two sources. In Chapters 3 and

6 we use the Kaplan extended SST V2 product, which is a 5◦ latitude by 5◦ longitude grid-

ded SST field for the period 1856–present (Kaplan et al., 1998). In Chapters 6 and 7 we

additionally use the National Oceanic and Atmospheric Administration (NOAA) extended

reconstructed SST dataset (Smith & Reynolds, 2003) covering the period 1854–present.

These are both standard and comparable datasets that are well validated in the literature.

Observed hydroclimate data are from two sources. In Chapters 3 and 6 precipitation

data comes from the the Global Precipitation Climatology Center (GPCC — Becker et al.,

2013). In Chapter 6, PDSI data are from a global dataset for the period 1870–2012 C.E.

(Dai et al., 2004). This dataset was derived on an even 2.5◦ latitude by 2.5◦ longitude grid

using observed precipitation and temperature data as inputs. For the analyses herein, the

JJA monthly PDSI values have been averaged to create a single PDSI anomaly for each year.

Additionally, only the period after 1950 C.E. will be employed, as this is the period over

which the full NA PDSI grid is available.

Chapter 4 additionally uses reanalysis SST and geopoentential height data from the

National Oceanic and Atmospheric Administration NCEP-NCAR Climate Data Assimila-

tions System 1 project (Kalnay et al., 1996). The monthly-resolved data span the period

1949–2012 C.E. on a 2.5◦ latitude by 2.5◦ longitude grid. The reanalysis product uses a frozen

analysis/forecast system with data assimilation of past observations and is an established

data set for assessment of interannual upper-air variability. Chapter 7 also employs reanal-

ysis upper-air data, however, the analyses require a longer record than that provided by

the NCEP-NCAR reanalysis. By consequence, the NOAA 20th century reanalysis (Compo

et al., 2011) is used in Chapter 7.
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2.1.3 Model

Chapter 3 uses output from the ECHO-G CGCM that combines the ECHAM4 and

Hamburg Ocean Primitive Equation global (HOPE-G) atmospheric and ocean models, re-

spectively (Legutke et al., 1999). The resolution of the atmosphere is T30 horizontal (3.75◦)

by 19 vertical levels, while the ocean resolution is 2.8◦ in the zonal direction (T42) with

equatorial refinement in the meridional direction that varies from 2.8◦ latitude at the poles

to 0.5◦ at the equator with 20 vertical levels. The model employs a time-invariant adjust-

ment of heat and freshwater fluxes. We use model SSTs, 2-m surface air temperature (SAT),

precipitation, evaporation, sea level pressure, and soil moisture. The ECHO-G soil moisture

model component is a single-layer bucket model with reservoir capacity varying based on

soil type (Legutke et al., 1999). For our purposes herein, the SAT, precipitation, and soil

moisture are regridded from their native resolution to an even 2.5◦ latitude by 2.5◦ longitude

grid.

We use two ECHO-G simulations. The first is a 1000-year control simulation (clipped

to 989 years to match the length of the forced simulation used herein) that is run with

constant external forcing set to mid-20th-century conditions. The second simulation is the

ERIK2 forced transient run (González-Rouco et al., 2006) spanning 990 years (1000–1990

C.E.; note that subsequent analyses are over 989 years, 1000–1989 C.E., owing to the em-

ployed yearly averaging interval of October-September) and driven by an estimated suite

of external forcing factors including radiative effects of volcanic aerosols, concentrations of

atmospheric constituents, and solar irradiance (Zorita et al., 2005). The run was initialized

with pre-20th-century conditions and spun up for 100 years to the historical forcing of 1000

C.E. (González-Rouco et al., 2006).

Internal variability of 2-m SAT, sea level pressure (SLP), and precipitation in the

ECHO-G control run was evaluated by Min et al. (2005a), who demonstrate that the model

is capable of producing overall observed variability for all three of these variables. In a com-

panion paper, Min et al. (2005b) addressed the model treatment of interannual to decadal-
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scale internal variability using the same control run. They found that ENSO in the ECHO-G

model exhibits stronger than observed amplitude and is too frequent and regular, with an

excessive spectral peak at 2 years and muted variability in the 3–9-year range. Impor-

tantly, the model produces reasonable ENSO spatial structures and teleconnections (Min

et al., 2005b). Collectively, the ECHO-G simulations have been extensively analyzed (e.g.

Von Storch et al., 2004; Zorita et al., 2003; Stevens et al., 2007; González-Rouco et al., 2009;

Karnauskas et al., 2012). At the beginning of the project these simulations were the only

available millennium-length forced and control runs using the same model, configuration and

resolution. This, along with the well characterized and vetted performance of the model,

made the ECHO-G simulations a comprehensive and consistent framework for an initial as-

sessment of megadrought dynamics.

Chapters 5, 6 and 7 use model output from the CMIP5/PMIP3 archive. We employ

six last-millennium (LM) transient simulations forced with reconstructed time-varying ex-

ogenous forcings from 850 to 1850 C.E. (Schmidt et al., 2011). These simulations have been

appended to the first ensemble member of the CMIP5 historical runs that span the period

1850–2005 C.E. to produce a model record from 850 to 2005 C.E. Although these simulations

are not continuous, both the historical and LM simulations have the same model configura-

tion and resolution. Consequently, if the simulations have no drift, the discontinuity at 1850

C.E. should fall within the range of simulated climate variability. A large temperature drift

in the MIROC LM simulation (Sueyoshi et al., 2013) likely violates this assumption, while a

drift in the early centuries of the GISS LM simulation (Bothe et al., 2013) is likely to have less

of an impact. While model drift undoubtedly impacts the hydroclimate variables assessed in

this study, the effects are presumed to be moderate given the absence of drift in precipitation

(Gupta et al., 2013). The 500-year control simulations with constant preindustrial forcing

conditions (also from CMIP5) were additionally analyzed to aid in the interpretation of the

LM model results. All model output has been regridded to a common 2.5◦ latitude by 2.5◦

longitude grid (this represents a coarsening of the model resolution for four out of the six
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models). Chapter 4 uses the six forced and control simulations as well as eleven additional

500-year control runs that are also from the CMIP5. As a compliment to the fully-coupled

runs in Chapter 4, we additionally use an uncoupled atmosphere-only ensemble comprising

10 sets of atmosphere model simulations with ensemble sizes between 1 and 10 from the

Atmospheric Model Intercomparison Project (AMIP — a total of 32 simulations) also of

the CMIP5. Each ensemble member consists of an atmospheric simulation forced with the

same observed SST boundary conditions for the period 1979–2008 C.E. For all model simula-

tions we use inherent model output such as surface temperature, precipitation, geopotential

height, sea level pressure, surface pressure, land-sea mask and soil moisture, as well variables

derived from inherent model outputs using standard definitions (surface net radiation and

vapor pressure). The analyzed models and expanded model names are provided in Figure

2.1.

The CMIP5/PMIP3 was the first coupled model intercomparison project in which

multiple last-millennium (LM), historical, control and future simulations using the same

model configurations and resolutions were produced (Taylor et al. 2012). This develop-

ment makes possible a wide range of model analyses and comparisons between paleoclimatic

data and LM simulations with direct quantitative applicability to historical simulations and

future projections. Importantly, the CMIP5/PMIP3 simulations are produced using state-

of-the-art CGCMs and therefore embody our latest efforts to model the coupled components

of the climate system. This includes future projections derived from these CGCMs, which

are our current best guess at the future state of the climate system under different emis-

sions scenarios. Together this makes the CMIP5/PMIP3 archive an important target for the

study of megadroughts and more generally hydroclimate change over the ASW. Additionally,

the CMIP5/PMIP3 model dynamics have been thoroughly vetted over NA (Sheffield et al.,

2013a,b; Maloney et al., 2014; Seager et al., 2014b), including hydroclimate dynamics on up

to decadal timescales (Sheffield et al., 2013b; Langford et al., 2014). This represents an ideal

starting point for the analysis of megadrought dynamics in Chapters 4, 5 and 6.
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Institute!for!Numerical!Mathematics! INM! INM@CM4!
Institute!Pierre@Simon!Laplace! IPSL! IPSL@CM5A@LR!
Japan!Agency!for!Marine@Earth!
Science!and!Technology,!Atmosphere!
and!Ocean!Research!Institute!(The!
University!of!Tokyo),!and!National!
Institute!for!Environmental!Studies!

MIROC! MIROC@ESM!

Max@Planck@Intitut!für!Meteorologie!
(Max!Planck!Institute!for!
Meteorology)!

MPI@M! MPI@ESM@LR,!MPI@
ESM@P!

Meteorological!Research!Institute!! MRI! MRI@AGCM2@2H,!MRI@
CGCM3!

Norwegian!Climate!Centre! NCC! NorESM1@M!

Figure 2.1: Information on the CMIP5/PMIP3 models.

2.2 Drought Variables

2.2.1 Soil Moisture

To assess modeled drought conditions in Chapter 3 we use soil moisture (normal-

ized over the length of the simulation) from the ECHO-G forced and control model runs.

We use annually-averaged soil moisture from the model, while the NADA PDSI used for

comparison represents a JJA average. There were three principal motivations for using

the annually-averaged soil moisture instead of the JJA average or the model-derived PDSI.

21



First, annual-mean soil moisture provides a wide enough temporal window for addressing

megadroughts and their dynamical causes. In particular, droughts driven by winter precipi-

tation in the ECHO-G model (as are common for the ASW) will not necessarily produce a

strong hydroclimate signal in mean summer (JJA) soil moisture (the modeled soil moisture

memory timescale is 4–5 months versus 12–18 months for the PDSI). Secondly, soil mois-

ture is the model variable of most direct physical relevance to drought. Thirdly, the PDSI

formulation has an unrealistic dependence on temperature that causes a strong drift toward

negative values in the modeled during the 20th century, which is in neither the NADA PDSI

nor the model soil moisture (not shown). The negative drift of PDSI is a consequence of

the temperature dependence of the Thornthwaite (Thornthwaite, 1948) equation for poten-

tial evaporation used in the PDSI calculation and the excessive contemporary temperature

trends in the model. Similar issues with the temperature dependence of PDSI have been

raised in the literature (Sheffield et al., 2012; Burke & Brown, 2008; Milly & Dunne, 2011).

Normalized soil moisture is thus chosen as it provides a comparable analog to the PDSI,

which is intended to represent a locally normalized anomaly of moisture supply and demand

(Dai et al., 1998, 2004).

Although the simple bucket soil moisture scheme in the ECHO-G model may be

problematic, soil moisture captures the influence of temperature and precipitation variabil-

ity and considers snow water storage and melt, water interception by vegetation during rain

or snow-melt episodes (skin reservoir), and water infiltration and runoff (Dumenil, 1992).

Nevertheless, it must be noted that more complicated soil vegetation atmosphere transfer

(SVAT) schemes have the potential to alter results.

2.2.2 PDSI

In Chapters 5 and 6 we use PDSI derived from the models. The motivation for this

choice is the range in the complexity and resolution of soil moisture schemes in the CMIP5

models. These inter-model differences make a direct comparison of inherent model soil mois-

ture impossible. PDSI, however, is an offline estimate of soil moisture balance that can be
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calculated consistently across the model simulations to provide a directly comparable metric

of hydroclimate variability. It has the added benefit of being the varaible reconstructed in

the NADA, the paleoclimate product that is used for comparison in Chapters 5 and 6. We

will thus calculate PDSI for each model simulation.

PDSI is calculated from supply via precipitation and losses due to evapotranspiration

(ET). PDSI ET is estimated by means of scaling potential evapotranspiration (PET) using

a fixed beta function that is meant to represent vegetative controls on transpiration (e.g.,

stomata closure to reduce moisture stress). PET is often estimated using surface tempera-

ture via the Thornthwaite method (Thornthwaite, 1948). Because Thornthwaite-estimated

PET is essentially a rescaling of surface temperature, it overestimates the PET influence on

PDSI when temperatures far exceed the climatology of the PDSI standardization interval (as

noted in Section 2.3.1 as the motivation for using soil moisture as the hydroclimate metric

in Chapter 3; see also Milly & Dunne, 2011; Sheffield et al., 2012; Dai, 2013; Smerdon et al.,

2015b). For a detailed treatment of the differences in PET estimates based on temperature,

net radiation, and other physical variables, see the supplementary material of Sheffield et al.

(2012). In this case we use model surface net radiation (RNET) to estimate PET. To do so,

simulated monthly RNET (W/m2) was set equal to PET (mm/day). This is equivalent to

assuming that RNET is exactly balanced by latent heat through ET (with sensible heat flux

equal to zero). The ideal method for computing PDSI is to estimate PET via the Penman-

Monteith (PM) method, which includes the effect of the vapor pressure deficit along with

the impact of RNET (a more detailed treatment of PM PDSI can be found in Sheffield et al.,

2012; Cook et al., 2014a; Smerdon et al., 2015b). Unfortunately, the necessary model fields

to compute PM PET were only available for three out of the six analyzed LM simulations.

A comparison of the RNET and PM PDSI for these three simulations is included in Section

2.5.2. Unless otherwise specified, PDSI will be used throughout the remainder of this dis-

sertation to specifically designate PDSI calculated using the RNET formulation.

For the analyses performed herein, model PDSI is derived on an even 2.5◦ latitude by
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2.5◦ longitude grid. At each grid point, PDSI was calculated and then standardized against

an instrumental normalization period (1931–1990 C.E.) for the forced simulations and the

full 500-year period for the control simulations. The instrumental normalization period is the

same time interval used by the National Oceanic and Atmospheric Administration for nor-

malization of their PDSI calculations (Cook et al., 2014b), which were subsequently used as

the target PDSI for the paleoclimate reconstructions described below. Soil moisture capac-

ity was specified as 25.4 and 127 mm in the top and bottom layers of the PDSI calculation,

respectively. The PDSI was averaged over JJA to produce a single average for each year;

hereinafter, any mention of PDSI will be with regard to the JJA average values. PDSI with

an absolute value over 10 was removed by replacement with the average PDSI of the eight

neighboring grid points at that time step as a means of removing unrealistically anomalous

PDSI values. This method for removing outliers is consistent with that used by van der

Schrier et al. (2011) in the calculation of their observed PDSI dataset.

2.2.3 SPI

To provide a direct comparison to the Griffin et al. (2013) reconstruction in Chapter

6 we will additionally calculate the model SPI. For each CMIP5/PMIP3 model simulation,

precipitation totals were converted to SPI for October–April (winter or cool season) and

June–August (summer or warm season), with the α and β parameters of the gamma distri-

bution computed for the 1896–2005 C.E. period. These choices match the SPI-reconstructed

target variable in Griffin et al. (2013).

2.3 ASW and SW Regions

The ASW is defined in Chapters 3, 5 and 7 as 25◦–42.5◦N, 125◦–105◦W. This box is

somewhat more restricted than that of Meehl & Hu (2006) and Herweijer et al. (2007), who

also analyzed megadroughts over southwestern NA. The more restricted ASW definition was
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chosen in order to maintain a homogeneous sample area, as determined by analyses of the

spatial variance of soil moisture in the forced and control runs from the ECHO-G model

(not shown). Chapter 6 uses a more latitudinally confined definition of the ASW in order to

maintain consistency with an analysis of pancontinental drought from Cook et al. (2014b).

The analysis region in Chapter 6 is 32◦–40◦N, 125◦–105◦W and this will be called the SW

hereinafter in order to differentiate from the ASW in Chapters 3 and 5. A comparison of

PDSI from the NADA (Cook et al., 2014b) averaged over these two regions for the period

1000–2005 C.E. indicates that there is good agreement in variability between the SW and

ASW with a correlation of 0.99 on both interannual and decadal timescales. The SW and

ASW are thus comparable regions for analysis of megadrought dynamics. We additionally

use the NAM2 region (113.25◦W–107.75◦W, 30◦N–35.25◦N — Gochis et al., 2009) in Chapter

6 to match the reconstruction of Griffin et al. (2013). The same comparison between the

ASW and NAM2 regions in the NADA gives correlations of 0.88 and 0.85 on interannual

and decadal timescales, respectively.

Importantly, the ASW encompasses two distinct hydroclimate regimes, with winter

precipitation produced by midlatitude eddies and summer precipitation controlled by NAM

dynamics. To the extent possible, model biases in the simulation of these hydroclimate

regimes will be related to the model-derived PDSI used in Chapters 5 and 6 in Section 2.5.3.

Relating model biases in the simulation of precipitation to the soil moisture used in Chapter

3 is less important, as soil moisture is an inherent model output with much shorter memory

timescales. Nevertheless, ECHO-G soil moisture will dominantly reflect winter precipitation

conditions because the model lacks a NAM (not shown) likely as a result of the coarse model

resolution (e.g. Langford et al., 2014), although Cook & Seager (2013) found no relationship

between model resolution and the simulation of the NAM.

For the majority of analyses herein the drought variables at each grid point in the

ASW or SW were averaged to create single timeseries of drought variability. This timeseries

will be used for the identification of megadroughts, the methodology for which is explained
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in Section 2.4.

2.4 Metrics

2.4.1 Drought Identification

Drought definitions vary in terms of both input data (e.g., PDSI versus precipitation)

and criteria. We employ a drought definition similar to that described in Herweijer et al.

(2007), with a drought commencing after two consecutive years of negative soil moisture

(Chapter 3), PDSI (Chapters 5, 6 and 7) or SPI (Chapter 6) anomalies and continuing until

two consecutive years of positive anomalies (the 2S2E definition). Herweijer et al. (2007)

required one year to start a drought and included a criterion based on spatial extent, which is

not used herein. The adopted definition is different but broadly consistent with the drought

definition of Meehl & Hu (2006), who define drought as consistently negative anomalies in an

11-year running mean timeseries of box average precipitation (droughts begin with the first

year of anomalously negative precipitation and end in the first year of anomalously positive

precipitation in the filtered timeseries).

2.4.2 Drought Ranking

Megadroughts are the most persistent and severe of drought features in the ASW over

the C.E. The droughts identified using the 2S2E definition thus must be ranked to determine

which are the most persistent and severe and by consequence characteristic of megadroughts.

To do so, the identified droughts were ordered by creating a cumulative drought severity or

drought density rank. For each drought period, the soil moisture (Chapter 3), PDSI (Chap-

ters 5, 6 and 7) or SPI (Chapter 6) was summed from the first to the last year of the drought.

These values were subsequently ranked by the negative value of the sum. This cumulative

drought severity ranking was chosen over a purely length-based ranking in order to incorpo-

26



rate both the persistence and severity of each drought. The 2S2E and cumulative drought

severity method will hereinafter be referred to as the drought identification metric.

We will predominantly analyze the top five highest-ranking (or most persistent and

severe) droughts. Although this cutoff is arbitrary, the analysis of five events is sufficient

to determine if there is consistency in the simulated atmosphere-ocean states during persis-

tent and severe drought. More generally, the choice of drought identification metric and the

analysis of the top five highest-ranking droughts, while defensible, is not highly important

as understanding the dynamics underlying persistent and severe drought does not require an

objective determination of the timing of each drought and its severity.

2.5 Variable Comparison

2.5.1 ECHO-G Soil Moisture

The annually and spatially averaged normalized precipitation, precipitation minus

evaporation (P-E), and soil moisture over the ASW region are highly correlated in the

ECHO-G simulations (e.g., there is a 0.86 correlation between the soil moisture and pre-

cipitation ASW indices). Furthermore, yearly averaged soil moisture closely resembles the

JJA average soil moisture for the ECHO-G model with a correlation of 0.70 between the two

indices for the control run. The use of yearly average soil moisture is further justified by

the agreement between the droughts identified in the annual and JJA soil moisture indices

from the ECHO-G control run (8 of the 10 highest-ranking droughts in the control run are

in agreement using the drought identification metric).

We also calculated model PDSI to allow for a direct comparison between simulated

soil moisture and PDSI variability in the ECHO-G model (following Cook et al., 2013).

Model PDSI is derived on an even 2.5◦ latitude by 2.5◦ longitude grid using simulated pre-

cipitation and surface temperature as inputs. At each grid point PDSI was calculated and

then standardized against a preindustrial normalization period (1000–1850 C.E.). Soil mois-
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ture capacity was specified as 25.4 and 127 mm in the top and bottom layers, respectively,

and evapotranspiration was calculated using surface temperature via Thornthwaite (1948).

While additional PDSI formulations have been investigated and shown to be preferable over

the Thornthwaite formulation (see Sections 2.2.1 and 2.2.2), this original calculation (using

the standard formulation at the time of analysis) was sufficient for testing the relationship

between PDSI and soil moisture in the ECHO-G simulation.

Figure 2.2: (a) Unnormalized forced soil moisture (m) and (b) Forced PDSI from the ECHO-
G simulations and (c) The NADA PDSI; all variables are averaged over the ASW region.
The soil moisture is a yearly average, while the PDSI is a JJA average. The top five highest-
ranking droughts using the drought identification metric are highlighted in red, with the
20-yr low-pass filtered timeseries plotted in blue.

The simulated ASW soil moisture variability in the ECHO-G model correlates well

(correlation coefficient of 0.75) with calculated model PDSI. The two records diverge in the

postindustrial period owing to an unrealistically large negative 20th-century PDSI trend in

the model simulation that can be attributed to an excessively positive temperature trend

— more than twice the observed trend — and slightly negative precipitation trend (Figure

2.2). If the modern/postindustrial period is neglected, the identified droughts using the two

variables are consistent in three out of five cases. The exceptions are the late 1500s drought,
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which is the least severe of the five droughts identified in the soil moisture timeseries, and the

12th-century and late 19th-century droughts in the PDSI timeseries; this latter two droughts

are present but much smaller in magnitude for the soil moisture timeseries (and thus not

identified as one of the five highest-ranking droughts in the timeseries). The disagreements

in drought timing and magnitude seem to be associated with strong temperature controls

on calculated PDSI that are not reflected in the modeled soil moisture response. This can

be observed most dramatically in the PDSI estimates for the 20th century in the forced run.

In terms of drought severity, the model exhibits approximately as much interannual

and longer timescale PDSI variability in the ASW region as the proxy record (see the bottom

two panels of Figure 2.2). Although the PDSI has been noted to be difficult to compare

in an absolute sense (Dai et al., 1998, 2004), the model megadroughts appear similar in

severity to those in the paleoclimate record. An analogous comparison between the forced

and control simulations indicates that soil moisture variability is comparable in each. In

particular, both model simulations have the same soil moisture variance in the ASW (30.25

mm2). Subsequent comparisons (Chapter 3) of forced and control responses in normalized

soil moisture timeseries, therefore, can be interpreted as equivalent in their range of variance

and can be compared to the NADA PDSI timeseries.

2.5.2 CMIP5/PMIP3 PDSI

As stated in Section 2.2.2, the excessive temperature dependence of the Thornthwaite

(1948) PDSI formulation (used in the previous section) necessitates the use of alternative

PDSI formulations for the multi-model comparisons completed herein (Chapter 5). Two

options are the RNET and PM PDSI formulations and RNET PDSI will be used instead

of PM PDSI for the following three reasons: 1) the required input fields for PM PDSI are

only available for three of the six employed models; 2) there is general agreement in drought

timing and severity between the PM and RNET PDSI when using the drought identification

metric; and 3) there is close agreement between the RNET and PM PDSI on both interan-

nual and decadal timescales. We demonstrate support for justifications two and three in the
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remainder of this section.

Figure 2.3: (left) RNET and PM PDSI timeseries for the period 850–2005 C.E. averaged over
the ASW region for the three simulations that have provided the necessary output fields.
Annual anomalies (black lines) are shown, along with smoothed versions using a 20-year
low-pass filter (blue lines). The red highlighted periods in the annual timeseries are the five
highest-ranking droughts in each model, as determined by the drought identification metric.
(right) The ASW average PM PDSI is plotted against RNET PDSI over the same period
used for the (left) timeseries plots and indicates the two calculated indices to be very similar
(one-to-one lines are shown as black solid lines in each plot).

The right panels in Figure 2.3 show a comparison of the PM and RNET PDSI for the

CCSM, GISS and MIROC simulations. There is good agreement between the ASW average

PM and RNET PDSI timeseries, with R2 values on interannual and decadal (not shown)

timescales of approximately 0.99. Figure 2.3 also identifies for each model the five highest-

30



ranking droughts in the PM and RNET PDSI timeseries using the drought identification

metric. For 11 of 15 cases, the same drought was identified in the two PDSI timeseries, and

each of the five highest-ranking droughts identified in the RNET PDSI are also droughts in

the PM PDSI. These results indicate that any differences in drought identification between

PM and RNET PDSI result from a reordering of the droughts as ranked by cumulative

drought severity. Additionally, it is important to note that simulated PDSI compares well

with other soil moisture metrics (e.g., the standardized precipitation evapotranspiration in-

dex; Vicente-Serrano et al., 2010; Cook et al., 2014a) and model soil moisture (Section 2.5.1

and Cook et al., 2014a, 2015; Smerdon et al., 2015b).

2.5.3 CMIP5/PMIP3 Biases and PDSI

The PDSI calculation used herein incorporates model precipitation and net radiation

to estimate soil moisture balance. Observations of surface energy balance are difficult to

come by (e.g. Wild et al., 2013), and because PDSI is dominated by precipitation variability

(e.g. van der Schrier et al., 2011), simulated surface net radiation biases will not be analyzed.

Biases pertaining to model simulation of the spatial and temporal distribution of precipita-

tion, however, are well documented (e.g. Stocker et al., 2014, , sections 9.5.2.4 and 9.6.1.1).

The ASW encompasses a significant portion of the NAM region (Gochis et al., 2009) and thus

has both winter and summer precipitation driven by largely independent atmosphere-ocean

dynamics (winter precipitation is related to transient midlatitude eddies, while summer pre-

cipitation is controlled by the monsoon dynamics). Here we compare the model precipitation

to observed data from the Global Precipitation Climatology Centre (GPCC) for the period

1951–2010 C.E., for which there are 26 precipitation stations over the ASW (Becker et al.,

2013).

The spatial distribution of precipitation for the winter [November–April (NDJFMA)]

and summer [May–October (MJJASO)] half years is plotted in Figure 2.4. Models repro-

duce many elements of the observed precipitation distribution, the main exceptions being a
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tendency to simulate precipitation that is not limited spatially to the western coastal region

in winter and to the southeastern portion of the ASW in summer, and difficulty simulating

summer precipitation that peaks sharply in midsummer. In each case, these model biases

can be related to the relatively coarse inherent model resolution that prevents a realistic sim-

ulation of orographic features. The erroneous spread of winter precipitation away from the

coast, for instance, is largely due to the models not resolving the western NA coastal moun-

tain ranges that effectively remove moisture from incoming westerlies and storm systems

(e.g. Sheffield et al., 2013a). Additionally, realistic simulation of the NAM is predominantly

found in the CMIP5 models with high spatial resolution (Langford et al., 2014).

Of the models analyzed herein, the MPI model simulates the observed spatial and

temporal precipitation characteristics with the greatest fidelity. MIROC exhibits a large

summer precipitation bias over the northeastern half of the ASW and, along with BCC,

simulates winter precipitation that is not localized along the western coastal region as ob-

served. In contrast, CCSM, GISS, and IPSL all simulate a reasonable spatial distribution

of winter precipitation, although the amount of precipitation is too large in all of the model

simulations. For summer precipitation, neither GISS nor IPSL simulates summer precipita-

tion in the southeastern portion of the ASW. CCSM, on the other hand, simulates relatively

realistic summer precipitation, but it does not peak sharply in midsummer as observed. The

BCC model has a summer precipitation maximum in the ASW that is approximately correct

in its spatial distribution, but the feature extends too far eastward outside of the ASW box,

and it likewise does not peak in midsummer. Additionally, all of the models overestimate

the magnitude and variability of ASW precipitation (not shown).
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FIG. 2. Fraction of precipitation at each grid point for the mean winter (NDJFMA) and
summer (MJJASO) half years. Each value is scaled by the ratio of the yearly integrated pre-
cipitation at that grid point to the largest yearly integrated precipitation in the NASW to
provide a sense for the contribution of each grid point’s half-year integrated precipitation to the
yearly integrated NASW spatial average precipitation.
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Figure 2.4: Fraction of precipitation at each grid point for the mean winter (NDJFMA) and
summer (MJJASO) half years. Each value is additionally scaled by the ratio of the yearly
integrated precipitation at that grid point to the largest yearly integrated precipitation of all
grid points in the ASW to provide a sense for the contribution of each grid point’s half-year
integrated precipitation to the yearly integrated ASW spatial average precipitation.
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It is important to characterize how these biases may impact the results presented

herein. JJA PDSI reflects hydroclimate conditions for the past 12–18 months because of per-

sistence built into the PDSI calculation, and as a consequence, precipitation biases in both

seasons will impact PDSI. Nevertheless, tree-ring reconstructed PDSI has been shown to pre-

dominately reflect winter season precipitation variability over the ASW region (St. George

et al., 2010; Griffin et al., 2013), a characteristic that is likely shared by the models. If this is

the case, the impact of underestimating summer precipitation on comparisons between model

and reconstructed PDSI may be minimal. Nevertheless, the paleoclimate model-data com-

parison in Chapter 5 will be limited to determining if models can simulate drought features

with similar persistence and severity to megadroughts. The limitations of the paleoclimate

record, however, make it unclear if the models are simulating these features for the right

reasons (e.g., do reconstructed megadroughts result from winter, summer, or dual-season

precipitation shortages?). Nevertheless, Chapter 6 will approach this question using an ad-

ditional hydroclimate reconstruction from Griffin et al. (2013).

2.6 Modes of Variability

2.6.1 Definitions

The dynamical modes will be defined as listed below, with seasonality determined

by the peak season of the impact of that mode of variability on the ASW (see also Figure

2.5). The input data to these calculations will be either the observed data or model output

outlined in Sections 2.1.2 and 2.1.3. The methods for calculating any additional modes of

atmosphere-ocean variability, principally those not used in Chapter 5 or multiple chapters,

will be outlined in chapter specific methods sections (e.g. Chapter 7).
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1) JJA AMO (10-year low-pass filtered extratropical North Atlantic minus

global SST anomaly following Enfield et al., 2001);

2) DJF PDO (leading empirical orthogonal function (EOF) of monthly SST

anomalies poleward of 20◦N following Zhang et al., 1997; Mantua et al., 1997);

3) DJF central equatorial Indian Ocean (CEI; SST anomaly over 15◦N–0◦,

50◦–80◦E, following Goddard & Graham, 1999);

4) JJA tropical Atlantic Ocean (annually averaged anomaly of Atlantic SSTs

from the equator to 20◦N); and

5) DJF ENSO — tropical Pacific gradient (TPGR), following Karnauskas

et al. (2009), Niño1+2 (average SST anomaly over 10◦S–0◦, 90◦–80◦W),

Niño3 (average SST anomaly over 5◦S–5◦N, 150◦–90◦W), Niño3.4 (average

SST anomaly over 5◦S–5◦N, 170◦–120◦W), and Niño4 (average SST anomaly

over 5◦S–5◦N, 150◦W–160◦E).

The tropical Atlantic SST index was chosen based on prior work that shows it to be the

equatorial component, as opposed to the extratropical component, of the AMO that influ-

ences NA hydroclimate (e.g. Schubert et al., 2004b; Sutton & Hodson, 2005; Kushnir et al.,

2010). However, as shown in Ting et al. (2011), models tend to have weak expressions of the

AMO in the tropical region.

The use of five different indices of tropical Pacific variability, with centers of action

in different regions of the tropical Pacific basin, guards against the possibility that a single

ENSO index may not adequately capture ENSO variability across all of the models. The

TPGR index is a measure of the difference between SSTs averaged over 5◦S–5◦N, 150◦E–

160◦W and 5◦S–5◦N, 130◦–80◦W, and it reflects the zonal temperature gradient between

the western and eastern ends of the equatorial tropical Pacific basin. The Niño1+2, Niño3,

Niño3.4, and Niño4 indices, by contrast, reflect the average SST anomaly over a single spatial

region in the tropical Pacific.

Our understanding of the above-listed modes of variability and their “drying” (driving
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anomalously dry conditions) or “wetting” (driving anomalously wet conditions) impact on

the ASW is based on the literature in the “ASW impact” section of Figure 2.5. In each case,

the (cool or warm) phase of the mode that drives drying in the ASW will be listed along with

the corresponding (positive or negative) orientation of the associated index. These studies

variously employ the paleoclimate record, observations, modeling results, physical theory, or

some combination thereof to define the ASW hydroclimate state during each phase of the

various indices (e.g., a La Niña-like or positive state in the TPGR index is associated with

drying in the ASW).

! Index& Phase& Index&Sign& ASW&Impact&
ENSO/Tropical!!
Pacific!

TPGR!
(Karnauskas!et!
al.!2009)!

Cool! Positive! Cane!and!Sarachik!
(2010)!

ENSO/Tropical!!
Pacific!

Niño1+2,!
Niño3,!Niño3.4!
and!Niño4!

Cool! Negative!! Cane!and!Sarachik!
(2010)!

AMO! (Enfield!et!al.!
2001)!

Warm! Positive! McCabe!et!al.!
(2004)!

PDO! (Zhang!et!al.!
1997)!

Cool! Negative! McCabe!et!al.!
(2004)!

Equatorial!!
Atlantic!

Annually!
averaged!SST!
anomaly!from!
equator!to!
20°N!in!
Atlantic!

Warm! Positive! Oglesby!and!Feng!
(2011)!

Global!!
Temperature!

Annual!and!
globally!
averaged!
temperature!

Warm! Positive! Held!and!Soden!
(2006);!Seager!and!
Vecchi!(2010)!

Indian!
Ocean!
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!
Figure 2.5: Modes of atmosphere-ocean and exogenous variability and the impact of these
on the ASW. The “Index” column notes the reference or method for calculating the index
for the mode listed in the first column. The “Phase” is that which drives drying in the ASW
as concluded by the reference in the “ASW Impact” column. The “Index Sign” is the sign
of the index during that phase.
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2.6.2 Characteristics

Figure 2.6: ]

(left) Correlation between the DJF Niño3.4 index and the DJF SST field for each model and

the observed SST dataset. (right) The autocorrelation of the Niño3.4 index for 1–6-year lags

is plotted, with the red line indicating significance at the 95% level (2 times the large-lag

standard error). The plotted domain is longitudinally global beginning at 0◦ and spans the

latitudes 40◦S–40◦N.
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Figure 2.7: (left) The PDO pattern for each model and the observed SST dataset, calcu-
lated as the correlation between the DJF PDO index and the DJF SST field. (right) The
autocorrelation of the PDO index for 1–6-year lags is plotted with the red line indicating
significance at the 95% level (2 times the large-lag standard error). These values are plotted
for both the control (black) and forced (blue) simulations from each model. The plotted
domain is longitudinally global beginning at 0◦ and spans the latitudes 20◦S–70◦N.

Figure 2.8: (left) Correlation between the JJA AMO index and the JJA SST field for each
model and the observed SST dataset. (right) The autocorrelation of the AMO index for
1–6-year lags is plotted with the red line indicating significance at the 95% level (2 times the
large-lag standard error). These values are plotted for both the control (black) and forced
(blue) simulations from each model. The plotted domain is longitudinally global beginning
at 180◦ and spans the latitudes 20◦S–70◦N.
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Figure 2.9: The (left) variance of the Niño3.4 index, (middle) percent variance explained in
Pacific SSTs by the PDO mode of variability, and (right) variance of the 10-year low-pass-
filtered AMO index. These were computed for each full control run and for the observed
dataset over the period 1854–2005 C.E.

The ENSO, AMO and PDO are the dominant modes of variability that impact hydro-

climate over NA. In this section we provide a brief assessment of the characteristics of these

modes in the CMIP5/PMIP3 models and observations. Figures 2.6 through 2.8 show the SST

spatial pattern and autocorrelation of the ENSO, PDO, and AMO for the full model simula-

tions and observations. Figure 2.9 additionally shows the variance of, or variance explained

by, these dynamic modes. Models are generally successful at simulating a reasonable ENSO

spatial pattern, although the SST anomalies extend too far west (Figure 2.6). Additionally,

the simulated ENSO autocorrelation structures are largely characteristic of the observations,

with oscillatory behavior that varies between negative and positive. This oscillation looks to

be most realistic in CCSM, IPSL, and MPI, with a cycle of variability that is too short and

regular in BCC and GISS. The magnitude of the ENSO variability is not consistent across

the models, with CCSM having too much variance, while GISS, IPSL, and MIROC have

too little, as compared to the observations (Figure 2.9). The PDO and AMO patterns in

the models are less characteristic of the observed patterns than for ENSO. Additionally, the

BCC and GISS models fail at simulating the magnitude of the observed tropical expression

of the PDO, with all of the models overestimating the high-latitude North Pacific expression

39



of the PDO relative to the expression in the tropics. This is critical because the PDO forcing

of hydroclimate variability has been shown to originate in the tropical Pacific (Seager et al.,

2015).

The persistence characteristics of the PDO and AMO are plotted for both the forced

and control simulations in the right-hand panels of Figures 2.7 and 2.8, respectively. While

the models have a reasonable PDO autocorrelation structure (BCC and the forced GISS and

IPSL simulations, however, each have too much persistence), with the exception of CCSM

and GISS they struggle at simulating the AMO with enough persistence (this is consistent

with the behavior of the CMIP3 model ensemble in Ting et al., 2011). This lack of persis-

tence suggests that models will have difficulty in simulating the observed drought persistence

in regions that are tightly coupled to the AMO in the real world (e.g., the Great Plains and

Southeastern United States — Kushnir et al., 2010; McCabe et al., 2004, 2008; Nigam et al.,

2011; Ting et al., 2011). Finally, the magnitude of the PDO and AMO will partially deter-

mine the impact of these modes of variability, relative to the impact of ENSO and purely

atmospheric variability, on NA hydroclimate. There is a large inter-model spread in the

variance or variance explained by both modes, with CCSM and MIROC having too much

and BCC, GISS, IPSL, and MPI having too little PDO variability compared to observations,

and BCC, CCSM, GISS, and MPI having less AMO variability than observed (Figure 2.9).

2.7 Statistical Significance

To test the statistical significance we use an autocorrelation and distribution preserv-

ing bootstrapping method (Schreiber & Schmitz, 2000), which first sorts (ranks) a collection

of Gaussian-distributed random numbers of the length of the input index (e.g. the modes

of atmosphere-ocean variability in Chapter 5). Each input index is likewise sorted (ranked)

and the k-th largest value of the index is replaced with the k-th largest Gaussian distributed

random number. This modified index is phase randomized to produce 5000 Gaussian dis-

tributed surrogate indices. In order to preserve the distribution of the original index, the
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k-th largest value of each artificial Gaussian index was then replaced with the k-th largest

value of the original index. These new surrogate indices exactly preserve the distribution of

the original index while largely preserving the spectral characteristics (there will be a slight

whitening of the surrogate spectrum).
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Chapter 3

ECHO-G Megadroughts

3.1 Motivation and Questions

Despite the large collection of literature in related areas (e.g. Chapter 1), there are

few analyses of megadrought occurrences and characteristics in simulations using CGCMs.

Meehl & Hu (2006), hereinafter MH06, use a 1000-year control run from the National Center

for Atmospheric Research (NCAR) Parallel Climate Model (PCM) fully coupled CGCM and

find drought features of comparable length to proxy-estimated megadroughts that are mech-

anistically linked to low-frequency variability in tropical Pacific SSTs. Additionally, Hunt

(2011) analyzes global multiyear drought and pluvial occurrences in a 10000-year control

run of the CSIRO CGCM and finds that persistent hydroclimate features can result from

internal climatic variability, with stochastic atmospheric variability playing an important

role.

The following study builds on the work of MH06, Hunt (2011), and Herweijer et al.

(2007, — see Chapter 1) but differs in that we analyze both a forced transient millennium-

length simulation and a 1000-year control run together with 1000 years of proxy-estimated

drought conditions. Two principal questions are addressed: 1) is the model capable of pro-

ducing megadroughts that are characteristic of the paleoclimate record and 2), if so, are
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these drought features the result of internal variability or do they have a forced compo-

nent? As is noted in Chapter 1, answering these questions is fundamental to understanding

megadrought dynamics and interpreting simulations of future hydroclimate variability, which

are in turn essential for future water supply management, risk assessment and infrastructure

development in the ASW.

3.2 Paleoclimate Model-Data Comparison

Figure 3.1: Normalized soil moisture anomalies (forced and control model runs) and PDSI
(NADA) for the period 1000–1989 C.E. averaged over the ASW region: (a) the control soil
moisture index, (b) the forced soil moisture index, and (c) the NADA PDSI index. Annual
anomalies (black lines) are shown along with smoothed versions using a 20-year low-pass
filter (blue lines). The red highlighted periods in the annual timeseries are the five highest-
ranking droughts using the drought identification metric. The gray shaded regions are the
five largest droughts determined by the MH06 drought definition. (d) The volcanic and
solar forcing timeseries (W/m2) used in the forced ECHO-G run for comparison to forced
and NADA drought timing. Note that the bottom three panels are for the 1000–1989 C.E.
period; the timing of the control run in (a) is arbitrary.
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There is little or no agreement in timing between droughts in the forced simulation and

the NADA PDSI indices (Figure 3.1). There are, however, droughts in both control and

forced runs that are characteristic of the proxy estimates. In particular, the three timeseries

in Figure 3.1 demonstrate that megadroughts in both model runs are of comparable duration

to those of the paleoclimate record. Although the model exhibits more positive excursions

during a given drought period in some cases, the average length of the five highest-ranking

forced and control-run droughts is approximately equal to that of the NADA estimates (19,

22, and 21 years, respectively).

The presence of droughts in the control run that are comparable in length and severity

to the forced run suggests that internal climate variability can cause megadroughts in the

model. Although it is unclear if observed megadroughts are the result of radiative forcing,

overlap between the forced model and proxy-estimated drought timeseries would be expected

if the reconstructed forcing used to drive the model is realistic and the modeled megadroughts

are a forced response. This is not the case. For instance, the low-pass correlation between

the forced drought index and NADA PDSI index (0.023) is not significantly different from

the range of low-pass correlations between the forced drought index and 1000 red noise series

with the same persistence as the NADA PDSI index (r=-0.014 and r=0.075 are the 25th and

75th percentiles, respectively). Furthermore, the control drought index is just as temporally

synchronous with the NADA record as the forced drought index, also indicating that any

overlap between the historical droughts and those in the forced run occur by chance. Finally,

a direct comparison to the forcing timeseries can be made in Figure 3.1, which indicates that

modeled megadroughts do not have a preferred forcing state. For instance, the 1800s model

drought occurs during a period of relatively low solar forcing and high volcanic activity while

the 1300s and 1500s model droughts are contemporaneous with relatively high solar forcing

and low volcanic activity. These results provide evidence that low-frequency ASW hydro-

climate variability in the ECHO-G simulations is not solely a response to radiative forcing

changes.
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As a further line of inquiry, the number of droughts greater than a threshold length

are plotted in Figure 3.2. The model produces more droughts in each threshold length than

the NADA record, but the number of droughts in the model and NADA fall within a nar-

row range. Also in Figure 3.2, the droughts in each dataset are compared to those of 1000

first-order autoregressive (AR1) red-noise timeseries with the same characteristics as the

corresponding model or observation (i.e., AR1 coefficient, variance, and mean). Historical

and modeled droughts are more prevalent than those in the red-noise timeseries for longer

timescales (greater than the 90th percentile for all three datasets for droughts of 15+ and

20+ years) but not for the 10-year threshold (Figure 3.2). This latter observation is not

surprising as noise series with some persistence should be capable of producing periods of

persistent negative anomalies. The greater drought persistence in the observed and modeled

data for longer timescales nev-ertheless indicates that there are likely mechanisms creating

persistence beyond first-order autoregressive variations that are responsible for megadrought

occurrences. Interestingly, the box plots indicate that there is more persistent drought in

the control simulation than in the forced simulation. A comparison of the spectra of the

control and forced drought indices (Figure 3.2) suggests that the control run does in fact

exhibit more power in the decadal-to-multidecadal range.

Figure 3.2: The black dots are the number of droughts in the ASW region in the forced (For)
and control (Con) simulations and the NADA that are at least (from left to right) 10, 15,
or 20 years in duration. Box plots are determined from 1000 AR1 red-noise timeseries with
the same AR1 coefficient, variance, and mean as the corresponding model or NADA indices
(middle bar is the median, top and bottom bars are the 75th and 25th percentiles, and the
whiskers are the full data range). (far right) The spectra using the multitaper method (Mann
& Lees, 1996) for the forced (red) and control (blue) soil moisture indices with dashed lines
for the 5th and 95th percentile confidence intervals of the forced multitaper spectrum.
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3.3 Drought Spatial Patterns and Teleconnections

To investigate the influence of the tropical Pacific on drought variability in the ASW,

we calculate the correlation of the yearly SST field with the ASW drought index: the for-

mer was averaged from May to April, and for the model output the latter was averaged

from October to September to reflect a lag between the ENSO-driven precipitation anomaly

and the soil moisture anomaly (the NADA PDSI is JJA average). These calculations were

performed for the full period in the two model simulations and the 133-year time overlap

between the NADA and Kaplan SST datasets (1857–1989 C.E.). Three analyses were com-

pleted: one with raw data, one with 10-year low-pass filtered data, and one with high-pass

filtered data (separated using a 10-point Butterworth filter). Results are shown in Figure 3.3.

Figure 3.3: Correlation coefficient maps between soil moisture (models) or PDSI (NADA)
ASW indices and SST fields. (from top to bottom) The correlation of the overlapping period
of the NADA with the Kaplan SST dataset, the full control simulation, the forced simulation
for the modern period (1857–1989 C.E.), and the forced simulation for the period 1000–1856
C.E. (left) The full unprocessed data, (middle) the 10-year low-pass filtered data, and (right)
the 10-year high-pass filtered data.
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The ASW region has a weaker connection to the tropical Pacific in the annual and high pass

correlations for both the forced and control runs than in the observational data. Despite the

discrepancy, the model index is still highly correlated with the tropical Pacific Ocean. Fur-

thermore, it captures the major spatial features of the observed correlation map, indicating

that the model contains realistic though weaker teleconnections.

The low-pass correlation map is relevant for the purpose of understanding what drives

multidecadal drought variability. For the observations, the connection of ASW PDSI to

the tropical Pacific is only slightly lower for low-frequency variations as compared to high-

frequency variations. In the model simulations the control run maintains a connection to

the tropical Pacific Ocean when low-pass filtered data are used (similar to MH06). The

forced run, on the other hand, does not maintain this connection; this results from a strong

positive trend in eastern Pacific SSTs in the modern period (1870–1989 C.E.) that coincides

with a slightly negative trend in the forced soil moisture index and washes out the phase

connection between the two fields. With the modern period removed there is a moderately

positive correlation for low frequencies in the tropical Pacific Ocean, but still much weaker

than the observational record (the average correlation between ASW soil moisture and Niño3

SSTs is 0.16 in the forced run versus 0.36 for the paleo-observed record). The frequency-

dependent relationships are further illustrated in Figure 3.4 in which the wavelet coherence

of the ASW box average NADA PDSI and the Niño3 index is shown for the full 133 years of

the instrumental period. Shown below the instrumental plot are wavelet coherence spectra

between three randomly selected 133-year segments of soil moisture and the corresponding

Niño3 SST indices from the ECHO-G control run. As was seen in the correlation fields, the

model clearly exhibits much less coherence in the decadal time range than the observations.

Note that the low-pass filtered observations also show a relationship between positive PDSI

and cool Atlantic Ocean SSTs. Like the tropical Pacific correlations, this is much weaker in

the model (Figure 3.3).
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Figure 3.4: (top) Wavelet coherence of ASW box average PDSI from the NADA with Niño3
box average SSTs over the common period 1857–1989 C.E. (lower panels) Coherence of ASW
average soil moisture and Niño3 SSTs for three random 133-year subsets of the control run.
The arrows show the phasing direction, the colored contours show the magnitude of the
coherence, and the black outline shows significance at the 95% level. Shaded regions are
outside the significance windows. Note the higher coherence in the decadal range for the
observed/proxy data in the top panel.

3.4 Dynamical Diagnostics

Not surprisingly, given the climatology of the ASW, negative December–February

average (DJF) precipitation anomalies are the dominant cause of the annual soil moisture

signal during ASW droughts. Figure 3.5 shows maps of the DJF precipitation anomalies

during each of the five highest-ranking droughts in the forced and control simulations, as

well as composites over all of these droughts. The spatial features are consistent within each

of the droughts and between the forced and control simulations, with a positive precipitation

anomaly in the Northwest (for all but the 784–804 drought in the control simulation) while

the ASW is anomalously dry. This structure is reminiscent of a La Niña winter moisture

anomaly resulting from a northward shift of the storm track (e.g. Sarachick & Cane, 2010).
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Figure 3.5: Average DJF precipitation anomalies (mm/day) for the five highest-ranking
droughts. Time-weighted composite averages for the forced and control simulations are also
shown. Blue indicates above average precipitation and red below average precipitation. The
square box is the ASW region.

Figure 3.6 shows the forced and control TPGR index with the five highest-ranking

drought periods identified in the corresponding ASW index highlighted in red. Considering

the evidence for synchronous phasing between La Niña states and negative ASW soil moisture

periods on both interannual and decadal timescales (in observations) one might expect the

drought periods to be coincident with the largest positive excursions in the TPGR index

(the most La Niña-like states). This is not the case, however, and the state of the tropical

Pacific does not appear to have a consistent and strong control over simulated low-frequency

drought periods in the ASW (only the late 13th- and 20th-century forced droughts and the

late 6th-century control drought correspond to persistent La Niña states). Low-frequency

ENSO variability is, therefore, not the only mechanism driving persistent moisture anomalies

in the ASW in the ECHO-G model.
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Figure 3.6: TPGR (◦C) for the forced and control runs. The five highest-ranking drought
periods as determined from the ASW soil moisture index and either the drought identification
metric or MH06 definitions are highlighted in red or gray shading, respectively.

Analysis of both the PDO and the AMO suggests that these oscillations also exert

a similarly weak influence on modeled ASW hydroclimate (both were analyzed as in Figure

3.6). Furthermore, there is very little consistency outside of the ASW region in the seasonal

and annual mean model fields of temperature and evaporation during drought periods. By

contrast, the winter half-year average [November–April (NDJFMA)] SLP field shows a high

pressure anomaly over the North Pacific during nearly all of the megadroughts (Figure 3.7).

This is consistent with a northward shift of the storm track. For the forced simulation, the

hemispherically symmetric SLP anomaly in the composite is reminiscent of La Niña, but the

individual droughts tend not to exhibit characteristic ENSO-driven SLP symmetry. In the

control run, the composite and individual drought patterns are even less characteristic of

ENSO variability, suggesting that stochastic NH atmospheric variability can drive persistent

ASW drought in the model. The Arctic Oscillation (AO), defined as the leading mode of

the monthly mean wintertime SLP following Thompson & Wallace (1998), is more tightly

coupled to both the forced and control soil moisture indices than the ENSO, PDO, or AMO

(not shown), nevertheless the correlation is still weak (correlation coefficients of -0.21 and

-0.14 for the forced and control runs, respectively). It is therefore likely that the stochastic

variability associated with the simulated decadal-length droughts in the ASW is the result

of numerous atmospheric modes that are not readily described using a single atmospheric
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index. Given the very consistent spatial structure of the precipitation anomalies and the

above characterization of SLP anomalies, our collective analysis suggests that stochastic at-

mospheric variability can produce persistent northward shifts of the storm track in ECHO-G,

similar to those seen during La Niña events, and thus drive megadrought occurrences in the

model.

Figure 3.7: Winter (November–April) SLP anomalies (mb) for each of five highest-ranking
droughts using the drought identification metric and the composites over all the drought
years for the forced and control runs.

3.5 Conclusions

Megadroughts in the ASW, in forced and control simulations using the ECHO-G

CGCM, are similar in duration and magnitude to those seen in the paleoclimate record.

The droughts in the forced simulation are not, however, temporally synchronous with those

in the proxy record or the forcing timeseries, nor are there significant differences between

the drought features simulated in the forced and the control runs. This indicates that

51



model-simulated megadroughts can result from internal variability of the modeled climate

system, rather than as a response to changes in exogenous forcings. The frequency and

persistence of megadroughts in the model and NADA suggests that mechanisms beyond

first-order autoregressive variability are producing these drought features. Although the

ECHO-G CGCM is capable of simulating megadroughts through a persistent anomalous

SST forcing in the tropical Pacific (e.g., the late 6th-century drought in the control run and

the late 13th-century drought in the forced run), other mechanisms can produce similarly ex-

treme moisture anomalies in the ASW in the model. In particular, the lack of low-frequency

coherence between ASW soil moisture and other modeled fields and the PDO, AMO, and

AO indices during identified drought periods suggests that stochastic atmospheric variabil-

ity can contribute significantly to the occurrence of simulated megadroughts in the ASW.

These results, while limited to a single model, demonstrate the importance of analyzing both

forced and control simulations in concert with the paleoclimate record. Stochastic variability

has been shown to drive drought in models on interannual-to-decadal timescales, particu-

larly in weakly teleconnected regions by Hunt (2011). In this instance, it seems plausible

that stochastic atmospheric variability in the ECHO-G model can produce storm track shifts

(and associated hydroclimatic changes like ASW drought) that are uninterrupted by tropical

Pacific influence because of the weak, or potentially non-stationary, NASW-ENSO telecon-

nection on multidecadal timescales.

In the observational record, persistent droughts in the ASW have all been tied to cool

SSTs in the tropical Pacific Ocean (e.g. Seager et al., 2005b; Herweijer et al., 2006), but it

is not known if this relation holds for the entire last millennium. Consequently, these model

results have two implications depending on whether the modeled hydroclimate variability is

a reasonable representation of the actual climate system: 1) if the model is accurately simu-

lating real-world variability, then stochastic atmospheric variability and ENSO both appear

capable of producing persistent droughts in the ASW or 2), if the model is misrepresenting

the actual variability, then this feature is a likely component of CGCMs that will influence fu-
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ture projections of hydroclimate, an inaccuracy that must be addressed when assessing model

projections. One possible explanation for point two is that a weak teleconnection between

the ASW and the tropical Pacific Ocean in the model allows atmospheric variability to drive

droughts, whereas the tighter link to the Pacific in nature ensures that megadroughts are

more strongly forced by tropical Pacific SST anomalies. Additionally, there is observational

evidence that warm tropical Atlantic SSTs can create a tendency toward dry conditions in

the ASW (Seager et al., 2008b; Kushnir et al., 2010; Nigam et al., 2011) and this has been

appealed to as a cause of MCA megadroughts (Feng et al., 2008; Oglesby et al., 2012). The

connection of the ASW drought index in the model to the Atlantic is weaker than observed

and this too could allow atmospheric variability to exert a stronger relative influence on

ASW hydroclimate.

Longer records of proxy-estimated tropical Pacific SST (e.g. Emile-Geay et al., 2013,

and Chapter 7) are necessary to assess the state of ENSO during megadroughts and to

determine how coherent ASW drought and ENSO variability may have been prior to the

observational record. In the meantime, additional analyses of CGCM simulations will iden-

tify what produces model-simulated megadroughts and help evaluate model treatment of

regional low-frequency hydroclimate variability. In particular, multiple CMIP5/PMIP3 LM,

control and historical simulations will be employed in Chapter 4 to analyze the strength

and stationarity of the tropical Pacific teleconnection to the ASW in state-of-the-art models.

This will provide a point of comparison to the teleconnection characteristics in the ECHO-G

model, which we have suggested are important to the simulation of megadroughts. Like-

wise, a multi-model intercomparison employing the CMIP5/PMIP3 CGCMs is completed

in Chapter 5 to determine if stochastic atmospheric variability similarly influences ASW

megadrought occurrences in the most recent generation of CGCMs.
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Chapter 4

Teleconnection Stationarity

4.1 Motivation and Questions

The tropical Pacific Ocean impacts regional hydroclimate variability in the extratropics

by means of wave propagation from areas of persistent precipitation and divergence anomalies

that are in turn forced by SST variations (e.g. Sarachick & Cane, 2010). The preferred cir-

culation responses to tropical Pacific SST forcing are called atmospheric teleconnections and

depend on a Rossby wave response (see Trenberth et al., 1998, for a review) and subsequent

interaction between the mean flow anomaly and transient eddies (Hoerling & Ting, 1994;

Seager et al., 2003, 2010; Harnik et al., 2010). A quintessential feature of the ENSO telecon-

nection is the Pacific jet stream shift over the western coast of NA, which a wealth of research

has implicated as an important forcing of hydroclimate variability in the ASW. Critically,

it was the character of this teleconnection that was invoked to explain the megadrought

dynamics in the ECHO-G model. It is thus necessary to better understand the range of

simulated teleconnection behavior. Toward such ends, the CMIP5/PMIP3 archive provides

a state-of-the-art ensemble of model simulations for evaluating and testing teleconnections

over multiple timescales.

The basis of our understanding of atmospheric teleconnections, between ENSO and
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NA or otherwise, is derived from the temporally limited observational record and associated

reanalysis products (Trenberth et al., 1998). Even within the short observational record,

there is evidence that teleconnection patterns can vary considerably in space and time (e.g.

Hu & Feng, 2001; Rajagopalan et al., 2000; Cole & Cook, 1998; Gershunov & Barnett,

1998). A full characterization of teleconnection patterns and their stationarity on decadal-

to-centennial timescales, however, is not possible using only reanalysis and observational data

because of their limited temporal extent. These limitations necessitate the use of alternative

approaches to further characterize and understand teleconnection stationarity. Herein, we

analyze three ensembles of CCGMs from the CMIP5/PMIP3 archive and compare them to

the NCEP-NCAR reanalysis project 1 (Kalnay et al., 1996) to assess the stationarity of the

modeled ENSO-NA teleconnection.

4.2 20th-Century Teleconnection Variability

The analyzed model fields are surface temperature and 200 mb geopotential height. The

latter was chosen over precipitation because it comprises a more spatially and temporally

homogeneous representation of the NA teleconnection, and because it is the ultimate driver

of the precipitation variability. For both fields, the climatology (calculated over the full sim-

ulations and the full length of the reanalysis) has been removed and the December–February

(DJF) anomalies averaged. Winter averages were chosen because winter is the dominant

period of precipitation forcing by ENSO in the ASW (Trenberth et al., 1998).

The teleconnection is defined by the grid point correlation between the DJF average

200 mb geopotential height fields and the DJF average Niño3.4 SST index. The resulting

correlation field indicates both the teleconnection strength and its spatial features. As an

estimate of the observed teleconnection pattern, the correlation field was calculated for two

periods in the NCEP-NCAR reanalysis: 1949–2005 C.E. (the overlapping period with the

historical runs) and 1979–2005 C.E. (the overlapping period with the AMIP runs). To assess
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the modeled teleconnection over NA, the centered pattern correlation statistic (hereinafter

CPCS — following Santer et al., 1995) was calculated between these reanalysis teleconnection

patterns and the teleconnection patterns from the models over the NA region (160◦W–50◦W,

70◦N–20◦N). The CPCS is equivalent to a Pearson’s product-moment linear correlation be-

tween spatial values (Santer et al., 1995).

Figure 4.1: Teleconnection stationarity, as measured by the CPCS over NA, using telecon-
nection patterns estimated from the NCEP-NCAR reanalysis (see Figure 4.2) and the AMIP
simulations. The first panel on the left is the CPCS value for each AMIP simulation. The
second panel from the left plots the CPCS range for all 32 AMIP simulations. The third
panel is the CPCS range for the 1979–2005 C.E. period in the 16 coupled historical runs.
The last panel on the right is the CPCS range for the reanalysis bootstrap experiment. Box
plots represent the 25th and 75th percentiles of the data with the median as the central line
and the whiskers showing the full data range excluding outliers; outliers are marked with a
cross. The number of ensemble members from each AMIP model are the inset values.

Figure 4.1 characterizes the teleconnection variability across the collection of AMIP

models and within the individual model ensembles. For each AMIP ensemble member, a

teleconnection pattern was calculated and compared to the 27-year period from the reanal-

ysis using the CPCS. Because each simulation is forced with the same observed SSTs, the

range in CPCS within each AMIP model ensemble represents an estimate of the impact of
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internal atmospheric variability on the circulation over NA. The calculated range was sub-

sequently compared to the CPCS range from the same period in the historical runs, which

have coupled SSTs, and thus different SST variability and patterns. When all of the AMIP

simulations are considered (32 in total), the CPCS range (excluding outliers) is about 0.35

(Figure 4.1). This is less than half the range over the same period (1979–2005 C.E.) in

the coupled historical runs with dynamically evolving SSTs (Figure 4.1). Atmospheric noise

(or internal atmospheric variability), therefore, cannot be considered the dominant driver of

differences between modeled teleconnections over NA in the collection of model simulations,

and the relative differences in the range of the CPCS statistic are interpreted as arising from

the SST-induced variations on the teleconnection over NA in the coupled simulations.

To evaluate the temporal stationarity of the observed teleconnection in the reanalysis

data over a 27-year window, a bootstrap resampling of CPCS values in continuous 27-year

segments was computed over the 56-year reanalysis record. The range in CPCS for 1000

of these resampled segments against the 1979–2005 C.E. reanalysis target is also plotted in

Figure 4.1. The narrow range indicates that the character of the reanalysis teleconnection in

the 27-year overlapping period between the AMIP and historical simulations well represents

the full 56-year period of the reanalysis.

4.3 Multidecadal Teleconnection Variability

To investigate the nature of teleconnection stationarity, the control and LM runs were

divided into 56-year segments to match the length of the NCEP-NCAR reanalysis record,

generating a time-slice ensemble of 17 members for each LM run and eight members for each

control run. For each segment, the correlation between the Niño3.4 index and the 200 mb

geopotential height field was calculated and compared to the 56-year (1949–2005 C.E.) pat-

tern from the reanalysis, again using the CPCS. The range in the CPCS is thus interpreted

as a measure of the temporal stationarity of the teleconnection within a given model.
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Figure 4.2: Teleconnection stationarity, as measured by the CPCS over NA, using telecon-
nection patterns estimated from the NCEP-NCAR reanalysis and nonoverlapping 56-year
segments from the 500-year control (solid boxes) and 1000-year forced LM runs (dashed
boxes). Box plots indicate the 75th and 25th percentile of the CPCS statistic across the
segments in the respective coupled model runs with the median as the central line and the
whiskers showing the full data range excluding outliers. The right four panels are the tele-
connection pattern over 160◦W–50◦W, 70◦N–20◦N for the (first panel) reanalysis, (second
and fourth panels) the most and least realistic segments, respectively, and the (third panel)
model ensemble average. The colorbar range is -1 (blue) to +1 (red). LM ranges have been
included as per their availability in the PMIP3 archive. Only models with 500-year control
simulations were included, as a consequence, the GISS-E2-R and F-Goals models only have
a LM simulation.

The range of CPCS for the 16 control and seven LM runs is shown in Figure 4.2 and

indicates a wide range in the teleconnection character within and between models. The mod-

els that have a stationary teleconnection (small range in CPCS values) in the control runs

possess a similarly stationary teleconnection in the corresponding LM runs (e.g., CCSM).

The converse is also true (e.g., MIROC and MPI). Transient forcing characteristics therefore

do not appear to significantly impact the simulated teleconnection stationarity.

There is considerable spread in the CPCS range between models. For instance, CCSM

simulates a stationary teleconnection that is consistently comparable to the reanalysis data.
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CanESM is likewise stationary but less consistent with the reanalysis pattern, while the

teleconnection simulated by the CSIRO model is neither stationary nor consistent with the

reanalysis pattern. These observations are not explained by model resolution: while the

CCSM model has the highest resolution of the simulations (0.9◦ by 1.3◦), CanESM is rela-

tively low resolution (2.8◦ by 2.8◦) and CSIRO is in between (1.9◦ by 1.9◦). We therefore

investigate below the potential dynamical links between variability in tropical Pacific SSTs

and changing teleconnection characteristics over NA.

4.4 Dynamical Influences on Temporal Teleconnection

Variability

What might cause the teleconnection over NA to be nonstationary? The dynamics of

teleconnection variability within the models are not fully explored herein, but our analysis

suggests that a significant role is played by both the strength and spatial features of the SST

anomalies in the tropical Pacific Ocean.

We use the Center of Heat Index (CHI — Giese & Ray, 2011) as a measure of the

strength and location of SST anomalies in the tropical Pacific. The CHI statistic is analogous

to the first moment of the SST anomaly field and provides both an amplitude and mean

longitude for each ENSO event. Panels A and B of Figure 4.3 plot average CHI amplitudes

for each 56-year segment from the 16 control runs against the CPCS over NA during the

same segment to assess the impact of the magnitude of ENSO events on the teleconnection.

Segments with larger El Niño and La Niña events have higher values of the CPCS, although

the connection is weak. The same analysis was completed for CHI longitude and a weak

relationship between eastward CHI longitude and high values of CPCS over NA was found.
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Figure 4.3: Average CHI amplitude for (A) La Niñas and (B) El Niños in each 56-year
segment plotted against the CPCS for that segment in the model control runs. The circle
radius is proportional to the number of ENSO events in each segment. (C) The variance
of the Niño3.4 index for the full control and LM simulations against the range in CPCS
for that model simulation. (D) The range in the CPCS of the first EOF of tropical Pacific
SSTs for the time-slice ensemble against the teleconnection CPCS range. (E) The CPCS of
the first EOF of tropical Pacific SSTs from the top eight segments of each control run (see
Section 4.4 for ranking criteria) with that from the NCEP-NCAR reanalysis plotted against
the CPCS of the NA teleconnection for that segment. The lines on each panel are the linear
regression lines calculated using ordinary least squares.
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Panel C of Figure 4.3 investigates the impact of a model’s tropical Pacific SST vari-

ability on teleconnection stationarity by plotting the average variance of the Niño3.4 index

for each time-slice ensemble against the range in the CPCS. There is a significant positive

relationship between the ENSO amplitude and teleconnection stationarity, suggesting that

large tropical Pacific SST variability allows the associated teleconnection to emerge above

noise from secondary patterns of variability.

To determine the impact of the stationarity of the modeled ENSO spatial patterns on

teleconnection stationarity, we compute the first empirical orthogonal function (EOF) of the

DJF tropical Pacific SST anomaly (defined as 120◦E–60◦W, 30◦N–30◦S) for each segment of

the control and LM simulations and compare them, using the CPCS statistic, to the same

field from the reanalysis. This EOF was determined to be representative of ENSO by a

strong correlation (average Pearson’s correlation coefficient of 0.96 for all control and LM

segments) between its principal component time series and the Niño3.4 index. In Panel D

of Figure 4.3, the range in the CPCS between the model and reanalysis EOFs is compared

to teleconnection stationarity to determine if models with large multidecadal variability in

the spatial expression of ENSO have nonstationary teleconnections. There is a weak posi-

tive relationship, indicating that temporal changes in the spatial character of ENSO exert a

limited control on the stationarity of the NA teleconnection.

To further characterize the spatial nature of modeled ENSO, the first EOF of the

DJF tropical Pacific SST anomaly was calculated for each control run using a 56-year sliding

window (incremented by 1 year, thus including overlap) and compared, using the CPCS

statistic, to the same field from the reanalysis. The top eight segments for each simulation,

as determined by the largest variance explained by the first mode of tropical ocean variabil-

ity, were subsequently chosen for analysis. This method of segment identification was done

in order to maximize the ENSO-forced extratropical atmospheric signal, using the rationale

that segments with a dominant first mode of tropical Pacific Ocean variability will contain

less “noise” from secondary patterns in the tropical Pacific Ocean. Additionally, there is a
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0.86 correlation between the variance of the Niño3.4 index and the percent variance explained

by the first EOF across all models, thus the identified segments will also have the largest

ENSO amplitude. The results are plotted in Panel E of Figure 4.3 and indicate that the

modeled and observed teleconnection will compare well when both strong ENSO variability

exists and when the model’s ENSO spatial features match those of the reanalysis.

The statistical significance of the relationships in Figure 4.3 is investigated using Pear-

son’s correlation coefficients. Despite our use of this metric for a quantitative description of

the variable associations, there is no reason to assume that the functional form is linear or

that the relationship can be fully captured given the small sample size. While there is clearly

a relationship between temporal and spatial changes in ENSO and the NA teleconnection,

the correlations are weak (R2 values of 0.07, 0.06, 0.34, 0.10, and 0.40 for Panels A through

E of Figure 3.3). This is not surprising given other sources of atmosphere-ocean variability.

Nevertheless, the correlation in Panel E of Figure 3.3, our best attempt to isolate the signal

of the ENSO spatial pattern and amplitude, indicates a moderate and statistically significant

relationship (R2 of 0.40).

4.5 Conclusions

The similarity of the ENSO-NA teleconnection between coupled model simulations

and the observational record over the historical interval is an often used metric of model

fidelity in reproducing coupled ocean-atmosphere dynamics (e.g. Joseph & Nigam, 2006;

Smith & Chandler, 2010; Polade et al., 2013). We nevertheless have shown that many

models exhibit considerable variability in their teleconnection strength and character during

different 56-year windows of continuous simulations. These results suggest that analyses of

teleconnection fidelity should be limited to atmosphere-only simulations forced with observed

SSTs (e.g. Langenbrunner & Neelin, 2013). Furthermore, considerable variability in modeled

ENSO on multidecadal timescales has been reported in the literature (e.g. Wittenberg, 2009;
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Karnauskas et al., 2012; Ogata et al., 2013). If such modeled behavior is dynamically realis-

tic and drives changes in the atmospheric teleconnections, the 56-year reanalysis period may

not be sufficient for adequately representing the character of the teleconnection over long

timescales. In particular, the impact of nonstationary teleconnections on regional precipi-

tation variability must be better understood, particularly given the range of reconstruction

(e.g. MacDonald & Case, 2005; D’Arrigo et al., 2005) and forecasting efforts (see Barnston

et al., 2010, for a review of seasonal forecasting efforts) that rely on the stationarity of the

observed teleconnection.

Our conclusions also have important implications for efforts to explain the hydrocli-

mate history of the ASW and its links to tropical Pacific climate variations. The analyses

in Chapter 3, for instance, suggest that the multidecadal character of ENSO teleconnections

can explain the megadrought dynamics in the ECHO-G model. While this is only a sin-

gle model, if true, the range of multidecadal teleconnection characteristics outlined herein

suggest that the CMIP5/PMIP3 models may exhibit a range of megadrought dynamics —

principally the modes of atmsophere-ocean variability that underly these features. An anal-

ysis of these models and their megadrought dynamics follows in Chapter 5. If teleconnection

nonstationarity is a feature of the actual climate system it would undermine reconstruction

efforts that make use of teleconnection patterns or regularization that trains on the instru-

mental interval, including our own climate analogous framework completed in Chapter 7.

In particular, this would have consequences for the hypothesis, based on observed telecon-

nection patterns, that past megadroughts imply a La Niña-like state of the tropical Pacific

Ocean.
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Chapter 5

CMIP5/PMIP3 Megadroughts

5.1 Motivation and Questions

Some paleoclimate reconstructions and analyses (Cobb et al., 2003; Herweijer et al., 2007;

Mann et al., 2009) and modeling evidence (Graham et al., 2007; Seager et al., 2008a; Feng

et al., 2008; Oglesby et al., 2012) suggest that observed megadroughts, and more generally

past persistent hydroclimate change, were driven by SST boundary conditions in the tropical

Pacific and Atlantic Oceans. Nevertheless, in Chapter 3 millennium-length simulations from

the ECHO-G model were used to demonstrate that simulated persistent drought in the ASW

can be driven by internal variability of the atmosphere alone, thus occurring independently

of the exogenous forcing or SST boundary conditions. If such atmosphere-only processes

play an important role in generating multidecadal droughts, it potentially would indicate

a limited predictability of the onset, persistence and termination of these features, because

prediction and projection efforts are largely dependent on slowly changing SSTs and changes

in trace gas concentrations, respectively.

Here we use millennium-length simulations from CMIP5/PMIP3, and paleoclimate

estimates from the NADA to investigate megadrought dynamics. Two principal questions

will be addressed: 1) Does the large collection of CGCMs simulate persistent multidecadal
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droughts similar to those in the paleoclimate record? 2) Are these events driven by varia-

tions in exogenous forcing conditions and/or oceanic boundary conditions (for instance, the

ENSO-ASW teleconnection — Schubert et al., 2004a,b; Seager et al., 2005a, 2008a; Herwei-

jer et al., 2006)? Answers to these questions are critical for improving our understanding of

megadrought dynamics and in determining whether CGCMs are capable of providing robust

estimates for the range of future hydroclimate states in the ASW and, hence, realistic pro-

jections of regional hydroclimate change and variability on decadal-to-centennial timescales.

5.2 Modeled and Proxy-Reconstructed Megadrought

Dynamics

5.2.1 Model-Paleo Multidecadal Drought Comparisons

The timeseries of PDSI averaged over the ASW box for the CGCM simulations and the

NADA are shown in Figure 5.1, along with the timing and duration of the five highest-

ranking droughts (as ranked by the drought identification metric). There are droughts in

the model simulations that are characteristic of the severity and persistence seen in the proxy

estimates (Figure 5.2). In particular, every model but MIROC simulates at least five 15-year

droughts with a cumulative drought severity value between -10 and -17. This is consistent

with the NADA, which has eight 15-year droughts, though with a slightly larger cumulative

drought severity of -18. Furthermore, all models except MPI simulate at least one 20-year

drought, as in the NADA. This suggests that models, in general, are able to simulate persis-

tent drought and that these droughts have similar severity, albeit slightly reduced, relative

to the megadroughts in the proxy record.
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Figure 5.1: Proxy-reconstructed and simulated PDSI for the period 850–2005 C.E. averaged
over the ASW region. Annual anomalies (black lines) are shown, along with smoothed
versions using a 20-year low-pass filter (blue lines). The red highlighted periods in the annual
timeseries are the five highest-ranking droughts, as determined by the drought identification
metric.
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Figure 5.2: (left) The number of 10-, 15-, and 20-year droughts and (right) the average
cumulative drought severity for droughts of each length for the full forced simulations, as
compared to drought length and severity observed in the NADA reconstruction.

The ability of models to simulate a realistic frequency of persistent drought occur-

rence is perhaps surprising for three reasons: 1) the CMIP5 models, including those analyzed

herein, have been shown to exhibit less hydroclimate persistence than the observed or paleo-

climate record (Ault et al., 2013, 2014); 2) the models analyzed herein do not have dynamical

vegetation, which has been shown to impact simulated climate variability (e.g. Sun & Wang,

2014); and 3) the individual soil and land surface components within the model ensemble

span a range of complexity, which will impact the ability of models to simulate realistic

low-frequency variability in terrestrial water storage. None of these issues appears to greatly

impact the ability of models to simulate persistent drought that is characteristic of the pa-

leoclimate reconstruction. The apparent impact of point three, however, may be partially

mitigated by the use of PDSI, an offline soil moisture estimate, as the analyzed hydroclimate

metric.

Although the models are capable of simulating megadroughts in the ASW, these fea-

tures are not coincident in time across model simulations, despite the fact that the models

were run with similar forcing series (see Schmidt et al., 2011, and Figure 5.3, which lists

the forcings employed in each simulation). Furthermore, there are no statistically significant

interannual correlations between any of the ASW hydroclimate timeseries and weak correla-
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tions for 10-year low-pass filtered timeseries (separated using a 10-point Butterworth filter).

Nevertheless, the CMIP5 models have different climate sensitivities and, in particular, dif-

ferent parameterizations of land surface and aerosol processes that may drive compensating

feedbacks and mask the model response to external forcing. With this caveat, the results

presented above suggest that simulated megadroughts, and more generally hydroclimate in

the ASW, are predominantly driven by internal variability of the modeled atmosphere-ocean

system. A comparison between the number of 10-, 15-, and 20-year drought features in

500-year control simulations and the range in these values for sliding 500-year segments in

the forced simulations, however, indicates that exogenous forcing may impact simulated hy-

droclimate variability in the ASW in different ways for different models (Figure 5.4).

! Orbital( GHG( Volcanic( Solar(
BCC! PMIP3!table! Joos!table1! GRA2! VSK4!+!WLS6!back!

CCSM! Internally!
calculated!

Joos!table1! GRA2! VSK4!

GISS! Internal!
calculated!

Joos!table1! CEA3! VSK4!+!WLS6!back!

IPSL! Internal!
calculated!

Joos!table1! GRA2! VSK4!+!WLS6!back!

MPI! PMIP3!table! Joos!table1! GRA2! VSK4!!+!WLS6!back!

MIROC! PMIP3!table! Joos!table1;!CO2!
is!model!
precdicted!

CEA3! DB5!+!WLS6!back!
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D2311,!doi:10.1029/2008JD010239!(2008).!
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5Delaygue,!G!and!E.!Bard,!(2009),!Solar!forcing!based!on!BeX10!in!Antarctica!ice!over!
the!past!millennium!and!beyond,!EGU!2009!General!Assembly,!#EGU2009X6943.!
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Figure 5.3: Forcing series used to run the last millennium simulations (from
pmip3.lsce.ipsl.fr).
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Figure 5.4: The numbers of 10-, 15-, and 20-year droughts (black asterisks) for a 500-year
control simulation are plotted with the range in the number of 10-, 15-, and 20-year droughts
(whiskers are full range; box plot shows median, 25th, and 75th percentile) for a sliding 500-
year window of the full 1156-year period in the forced simulation.

In particular, the MIROC and MPI control simulations have more persistent droughts than

the corresponding forced simulations. This was also found for the ECHO-G model in Chapter

3 and suggests that the forcing in some models may act to interrupt persistent hydroclimate

features via, for instance, volcanic driven changes to circulation and precipitation. Never-

theless, the analyzed models are split between showing greater or fewer numbers of 10-, 15-,

and 20-year droughts in the forced versus the control simulations (BCC tends to have more

persistent droughts in the forced simulation, while the range overlaps for CCSM, GISS, and

MPI). Furthermore, 10 of the 18 possible combinations of model and drought length yield

control values that fall within the range estimated from the forced simulations. There is thus

no compelling evidence in the analyzed collection of models for an important and consistent
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role played by exogenous forcing in driving simulated hydroclimate variability on decadal

and longer timescales. To simplify dynamical interpretations, the diagnosis of megadrought

dynamical causes will thus be completed using the 500-year control simulations from each

of these models (all analyses hereafter, unless noted, are with these control simulations).

5.2.2 Diagnosis of Megadrought Dynamical Causes

Figure 5.5: Time-weighted composite averages of winter (NDJFMA) precipitation anomalies
(mm/day) during the five highest-ranking droughts using the drought identification metric.
The full domain is 20◦–60◦N, 150◦–60◦W. The straight black lines and the western coastline
mark the ASW region.

While the ASW average PDSI indicates that models are capable of simulating megadroughts,

the inherent persistence and multiple inputs to PDSI justify the need to determine if changes

to precipitation or the surface energy balance, and in what season, are driving these features.

An analysis of the surface energy balance and precipitation fields during megadroughts in

the winter and summer seasons indicates that megadroughts are consistently associated with

anomalously high winter precipitation over the Northwest and low winter precipitation over
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the ASW in all of the simulations (Figure 5.5). This spatial pattern is reminiscent of the

precipitation anomaly during La Niña winter and spring (e.g. Seager et al., 2014a, their Fig-

ure 1), but the analyses in Chapter 3 suggest that atmospheric-only dynamics can produce

this feature.

To assess how these models generate megadroughts, Figure 5.6 investigates the asso-

ciation of model megadroughts with various climate modes. If the magnitude of the circle

in Panel A of Figure 5.6 is at the 100% drying level, then 100% of the megadrought years

are coincident in time with index values of a given dynamic mode that are typically asso-

ciated with dry conditions in the ASW (based on the references listed in Figure 2.5). The

values for each individual megadrought are also plotted in Panel B of Figure 5.6. To test

the statistical significance of these associations, we use a bootstrapping method (Schreiber

& Schmitz, 2000) to produce 5000 surrogate indices that exactly preserve the distribution of

each dynamic-mode index while largely preserving the spectral characteristics (Section 2.7).

The magnitude of the artificial indices was recorded for each megadrought year identified in

the ASW PDSI timeseries. Significance at the 95% level is achieved if the drying or wetting

mode of the true dynamic-mode index is coincident with megadrought years at a percentage

greater than 95% of the artificial indices; this assessment is performed for each individual

megadrought (to produce the range in the 95% significance levels in Panel B of Figure 5.6)

and for all five megadroughts together (Panel A of Figure 5.6). Additionally, only significant

model-index combinations that follow contemporary understanding of drought dynamics are

analyzed (e.g., statistically significant association between megadroughts and the wetting

state of a mode are not considered in detail).
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Figure 5.6: (A) The percent occurrence of the wetting and drying mode of each dynamical
index during the five highest ranking droughts or megadroughts, considered together, with
the filled circles being those index-drought combinations that are significant at the 95% level
(using the significance test outlined in Section 2.7). (B) As in (A), but for each of the
individual megadroughts (marked by a cross — five in total). The shaded regions in (B) are
the range in 95% significance level for the individual megadroughts. In both (A) and (B), for
index-drought combinations at 100% drying, every year of the individual megadrought [in
(B)] or the five identified megadroughts [in (A)] would have a modal index value (e.g., the
TPGR index for ENSO) associated with dry conditions in the ASW (vice versa for wetting).
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Seven model-index combinations satisfied the defined significance requirements: CCSM

and IPSL with ENSO; IPSL, MIROC, and MPI with the AMO; and BCC and MIROC with

the PDO. These results suggest that multiple dynamical mechanisms can drive megadroughts

in the majority of the models. For instance, even in models that have a preferred dynami-

cal driver of megadroughts in Panel A of Figure 5.6, there can be individual megadroughts

that are associated with the wetting phase of that dynamical mode (e.g., two of the MPI

megadroughts and the AMO in Panel B of Figure 5.6). Furthermore, there is little agreement

between models on which atmosphere-ocean dynamics are the dominant driver of these fea-

tures and, in fact, megadroughts driven by internal atmospheric variability cannot be fully

discounted for those models that do not exhibit a significant connection to any traditional

mode of ocean variability thought to influence hydroclimate conditions over the ASW region

(e.g., GISS).

The ability of multiple atmosphere-ocean modes and internal atmospheric variability

to drive simulated megadroughts is reaffirmed in Figure 5.7, which shows the composite ND-

JFMA average 200 mb geopotential height anomaly for the five highest-ranking droughts in

each simulation, with the cross-hatched regions showing agreement in sign with the compos-

ite anomaly for at least four of the five droughts. As was suggested in Figure 5.6, models vary

in their geopotential height fields during the simulated megadroughts, indicating that multi-

ple dynamical mechanisms can produce these features. The one relatively consistent feature

across the models is a high geopotential height anomaly in the north/central Pacific that

would be associated with dry, subsiding air and a northward shift of the storm track away

from the ASW. These features are reminiscent of the geopotential height field forced by a La

Niña-like state in the tropical Pacific (e.g., Chapter 3, Seager et al., 2014a). The model be-

havior is similar to what was found in the forced and control ECHO-G simulations analyzed

in Chapter 3, where stochastic atmospheric variability was found to drive persistent drought.
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Figure 5.7: Composite NDJFMA average 200 mb geopotential height anomaly for all years
identified as occurring during the five highest-ranking droughts in each control simulation.
Cross-hatching indicates that the sign of the geopotential height anomaly is in agreement
with the composite for at least four out of five identified droughts. The full domain is
20◦–70◦N, 180◦–90◦W. Note: the GISS simulation does not have geopotential height fields
available for the full control simulation and is not included in this figure.

5.2.3 Megadroughts in the CCSM Simulation

The tropical Pacific has been hypothesized to play a role in megadroughts (Meehl

& Hu, 2006; Cook et al., 2007; Herweijer et al., 2007; Seager et al., 2007, 2008a; Graham

et al., 2007; Oglesby et al., 2012) because it has been established as the dominant driver

of interannual hydroclimate variability in the ASW (Schubert et al., 2004a,b; Seager et al.,

2005a, 2008a; Herweijer et al., 2006) and this hypothesis was buoyed by some paleoclimate

evidence that the tropical Pacific was cold during the MCA (Cobb et al., 2003; Mann et al.,

2009). Despite this, only CCSM and IPSL exhibit a coherent state of the tropical Pacific

during the simulated megadroughts. While both models have a tropical Pacific-megadrought
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connection, CCSM is anomalous with respect to the control of the tropical Pacific on persis-

tent drought, with all five of the five highest-ranking droughts coincident with a persistent

La Niña-like state (and with 76% of megadrought years corresponding to a positive TPGR).

Next, we examine whether this tropical Pacific-megadrought connection in CCSM arises

from a shift in ENSO variability or the mean state, whether the changes in the tropical

Pacific are driven by exogenous forcing or internal variability, and why this tropical Pacific-

megadrought connection is particularly strong in CCSM.

Tropical Pacific Mean State or ENSO Variability?

The top and bottom panels of Figure 5.8 show histograms of the percentage of La

Niña years (defined as a half standard deviation of the Niño3.4 index below the mean) and

the Niño3.4 variance in 27-year windows (chosen to reflect the length of the longest drought

in the record). The 27-year window has been slid every five years through the full length

of the CCSM simulation to derive the distributions shown in Figure 5.8. The bins with

the 27-year window that corresponds to each of the five highest-ranking droughts in the

CCSM simulation are marked with red crosses. The locations of these markers within the

statistical distributions demonstrate that megadrought periods in the CCSM simulation are

not characterized by a large number of La Niña events or unusual ENSO variance and in-

stead have approximately average Niño3.4 statistics (mean, variability, and distribution).

In contrast, the megadrought periods are consistent with a shift toward a more La Niña-

like mean state (as indicated by the anomalously positive TPGR index values in Figure 5.6),

suggesting that this shift in the mean state is what drives megadroughts in the CCSM model.
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Figure 5.8: (top) Histogram of the fraction of La Niña years (defined as a half standard
deviation below the mean) in sliding 27-year segments of the CCSM control simulation.
(bottom) Histogram of the Niño3.4 variance in the same segments. The bins that correspond
to the values during the five highest-ranking CCSM drought periods are plotted with a red
cross (if two fall in the same bin, it is marked as such).

Forced or Internal Mean-State Changes?

To assess the dynamics that drive variability in the tropical Pacific in CCSM on

megadrought (between 10- and 20-year) timescales, the EOFs of the 20-year low-pass filtered

tropical Pacific (20◦S–20◦N, 100◦E–70◦W) SST field were computed. The principal compo-

nents (PCs) were then compared to the TPGR index to determine if a particular mode of

variability corresponds to low-frequency variations in the TPGR. The second EOF (Figure

5.9) and associated PC explains 90% of the variance in the TPGR on these timescales. As

noted in Karnauskas et al. (2012), this pattern is consistent with the internal Pacific cen-

tennial oscillation (PCO) mode of variability. It is thus the PCO that produces the tropical

Pacific mean-state changes in CCSM that are then driving megadroughts in the ASW.
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This suggests that predominantly internal variability of the tropical Pacific Ocean,

manifest as changes to the mean state, can drive megadroughts in CCSM. It is difficult,

however, to determine unequivocally that exogenous forcing does not impact mean-state

changes in the model, particularly given that forcing can project onto internal modes of

climate variability (Palmer, 1993). Nevertheless, a comparison of trends in the TPGR on

multidecadal timescales in the forced and control simulations indicate that the PCO-driven

mean-state changes in the control simulation are as large as any in the forced run (Figure

5.10; justification for the use of a 56-year window to calculate the trend is provided in the

following subsection).

Figure 5.9: (left) The pattern of the second EOF in the 20-year low-pass filtered 500-year
CCSM control simulation. (right) The PC (black) plotted with the 20-year low-pass filtered
TPGR (blue) from that simulation. The R2 between these timeseries is listed at top right
of the right panel.

Why the CCSM?

Why does CCSM have an extratropical hydroclimate response to mean-state changes

in the TPGR, and why do other models not exhibit similar behavior? First, CCSM, of all

the PMIP3 models, yields the largest trends in the TPGR on multidecadal timescales (up to

0.15◦C per decade for 56-year periods; Figure 5.10). The 56-year period was chosen to reflect

the length of the NCEP-NCAR reanalysis (Kalnay et al., 1996) and the time period used

to assess teleconnection stationarity in Chapter 4. For reference, a 0.15◦C per decade trend

in the TPGR is five times the magnitude of the TPGR trend between 1950 and 2005 C.E.

in the NCEP-NCAR reanalysis. This result suggests that CCSM will have the largest mul-
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tidecadal changes in the mean state of the tropical Pacific Ocean. To maintain consistency

with Karnauskas et al. (2012), the same analysis was also completed for 125-year trends in

the TPGR, and the same relative magnitude of TPGR trends between models was found.

Figure 5.10: Range of trends in the TPGR (◦C per decade) for 56-year sliding windows in
each forced (solid whiskers) and control (dashed whiskers) simulation. A La Niña-like trend
is positive.

In addition to the strong multidecadal variability in the TPGR, CCSM exhibits a

very realistic ASW-ENSO teleconnection pattern and strength that is stationary on mul-

tidecadal timescales. This is characterized in Chapter 4 and most explicitly in Figure 4.2.

Importantly, the consistent representation of the observed interannual connection between

NA and the tropical Pacific across the full CCSM simulations is not as robust in the other

CMIP5 models, which is to say that CCSM has the most stationary teleconnection between

NA and the tropical Pacific.
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Strong tropical Pacific control on ASW hydroclimate occurs over the instrumental

interval, but if the features of this teleconnection were to change through time, the tropical

Pacific likely would have varying degrees of control over hydroclimate in the ASW. The fact

that CCSM both faithfully represents the observed teleconnection and maintains the telecon-

nection features throughout the simulation is critical in this regard and allows changes in the

mean state of the tropical Pacific Ocean, which CCSM simulates with relatively large magni-

tude, to generate megadroughts. All of the other models exhibit weaker teleconnections that

are less realistic and also less stationary, and/or display weaker mean-state changes in the

tropical Pacific Ocean. Following the hypothesis in Chapter 3, such model behavior allows

stochastic atmospheric variability and non-ENSO oceanic modes of variability to produce

storm track shifts (and associated hydroclimatic changes like ASW drought) that are unin-

terrupted by the influence of the tropical Pacific Ocean.

Megadrought Dynamics in the Other Models and the CCSM Hypothesis

As in CCSM, megadroughts in the IPSL model are significantly connected to the

tropical Pacific at the 95% level. In this case, the significant relationships are between

megadroughts and the Niño3.4 and Niño4 indices, but importantly, these connections are

weaker than between megadroughts and the TPGR in CCSM (with 65% and 67% of megadrought

years corresponding to the drying mode of these indices, respectively; Figure 5.6). Interest-

ingly, IPSL also shows a significant connection between megadroughts and a negative or El

Niño-like state in the TPGR. This is indicative of what was suggested in Section 2.6, that

some ENSO indices do not adequately capture ENSO variability in some models.

The behavior of IPSL — which has a significant connection between megadroughts

and the tropical Pacific Ocean, but one that is weaker than in CCSM — and the other mod-

els that do not exhibit this connection can be better understood in the context of the CCSM

behavior outlined in the previous section. If models have a realistic and stationary telecon-

nection, with large multidecadal variability in the tropical Pacific Ocean, as in CCSM, then
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the simulated megadroughts should be driven consistently by the tropical Pacific boundary

conditions. The IPSL model does, in fact, exhibit a strong and stationary teleconnection

between NA and the tropical Pacific (Figure 4.2). Furthermore, it has moderate variabil-

ity in the tropical Pacific Ocean, exceeded only by MPI and CCSM. In the context of the

above-outlined hypothesis, if this variability were larger, the connection between the tropical

Pacific Ocean and megadroughts would be stronger, as in CCSM. Nevertheless, the IPSL

model has the most CCSM-like tropical Pacific variability and teleconnection behavior, and,

of the other five models analyzed herein, would be expected to have megadroughts that are

most strongly connected to the tropical Pacific boundary conditions.

The other models exhibit fewer of the characteristics hypothesized to be necessary

for simulating megadroughts that are consistently forced by the tropical Pacific boundary

conditions. The BCC and GISS models have a moderately realistic and stationary telecon-

nection but weak variability in the tropical Pacific on multidecadal timescales. The MPI

model has large variability in the tropical Pacific on multidecadal timescales but a highly

nonstationary teleconnection. The MIROC model has both weak variability in the tropical

Pacific and a highly nonstationary and likewise unrealistic teleconnection.

5.3 Conclusions

Models from the CMIP5/PMIP3 generation are capable of simulating megadroughts

in the ASW that are similar in duration and magnitude to those observed in the paleo-

climate record. The droughts are not, however, temporally synchronous with those in the

proxy record. Furthermore, there is very little overlap between the drought features in mod-

els, despite the use of similar forcing series to drive these simulations. This suggests that

model-simulated megadroughts can result from internal variability of the modeled climate

system, rather than as a response to changes in exogenous forcings, or that models exhibit

compensation between feedback mechanisms that masks a forced hydroclimate response.
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While stochastic atmospheric variability is able to drive persistent drought in CGCMs

(e.g. Chapter 3), it is not a robust feature. In particular, models with strong and station-

ary teleconnections (e.g., CCSM) and large multidecadal variability in the tropical Pacific,

simulate megadroughts driven by internal variability of the tropical Pacific mean state. A

dominant role for the tropical Pacific Ocean in driving megadroughts is consistent with a

prominent hypothesis for the origin of these features in the real world. Nevertheless, the

decadal to, at most, multidecadal character of the tropical Pacific mean state changes in

CCSM and the internal dynamics that produce this variability are not. Additionally, the

characteristics of the CCSM model are not necessarily realistic and in many ways CCSM is

an outlier when considering the full CMIP5 model ensemble. Characterizing CCSM within

the context of real-world megadrought dynamics will provide important information on the

predictability of regional extratropical hydroclimate on decadal-to-multidecadal timescales.

Such an effort will be presented in Chapter 7.
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Chapter 6

CMIP5/PMIP3 Spatial Features and

Megadrought Seasonality

6.1 Spatial Features

6.1.1 Motivation and Questions

Up to this point megadroughts in the models and paleoclimate record have been ana-

lyzed using a timeseries averaged over the ASW. There is evidence, however, that drought

conditions during past megadroughts extended beyond the ASW. During much of the MCA,

for instance, the Great Plains (GP) region of NA also experienced drought conditions (Cook

et al., 2010b). In fact, droughts during the MCA were often pancontinetal (Cook et al.,

2014b), with drought conditions simultaneously affecting the majority of the area repre-

sented by the present day United States. Pancontinetal droughts such as these have oc-

curred over the instrumental interval. In 2012, for instance, 62% of the contiguous United

States was classified as moderately or extremely dry. The potential socioeconomic impact

of a future megadrought occurrence (e.g. in the Introduction) would be amplified if such

features were pancontinental in character. This is because simultaneous drought impacts
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across regions with distinct water resource constraints (e.g., irrigation from rivers versus

groundwater), ecosystems (e.g., forests and grasslands), and crops would pose significant

management challenges. The 2012 drought provides a stark example of these impacts, as it

was the fourth most costly weather or climate event of the last 20 years (behind hurricanes

Ike, Katrina and Sandy — https://www.ncdc.noaa.gov/billions/events).

There are two fundamental reasons why a comprehensive characterization of pancon-

tinental droughts, and their causes, proves challenging. First, regional hydroclimate variabil-

ity is characterized by distinct atmosphere-ocean dynamics, for instance, SW hydroclimate

variability is controlled primarily by winter precipitation variability coupled to the tropical

Pacific Ocean (e.g. Herweijer et al., 2006; Seager et al., 2008a; Schubert et al., 2009), while

the GP has predominantly summer hydroclimate variability that is driven by the tropical

and subtropical Atlantic Ocean (e.g. Sutton & Hodson, 2005; Kushnir et al., 2010) in ad-

dition to the tropical Pacific Ocean (Seager et al., 2005b). Second, the relative rarity of

pancontinental drought and the short (150 year) observational record means that there are

few events by which to diagnose how relatively distinct regional hydroclimate dynamics can

combine to produce pancontinental drought. In this first section of Chapter 6 we therefore

use the same paleoclimate model-data comparison framework as in Chapter 5 to analyze

pancontinetal drought. We ask three fundamental questions: 1) Are models able to repro-

duce the statistics of pancontinental drought occurrence as represented by the NADA? 2)

Do the models have centennial-scale variability in the occurrence of pancontinental droughts

(e.g. the increase in these features during the MCA), and if so, is this driven by forced or

internal variability? and 3) What are the simulated atmosphere-ocean dynamics that drive

pancontinental droughts in the model simulations? It is important to note that while these

analyses are motivated by the pancontinental character of megadroughts, pancontinental

droughts as defined herein are single-year events. Megadroughts, by contrast, are likely to

have changing spatial expressions over the multiple years of their occurrence.

83



6.1.2 Defining Pancontinental Drought

Following Cook et al. (2014b), the regional boundaries used in this chapter are the

SW, 32◦–40◦N, 125◦–105◦W; the CP, 34◦–46◦N, 102◦–92◦W; the Northwest (NW), 42◦–50◦N,

125◦–110◦W; and the Southeast (SE), 30◦–39◦N, 92–75◦W. Similar to results shown for the

NADA in Cook et al. (2014b), the designated regions in the models do not have climate

variability that is completely independent. Nevertheless, correlation maps between the four

regionally-averaged time series and gridpoint PDSI indicate that the hydroclimate within

each region is homogenous and that variability between individual regions is largely inde-

pendent (not shown).

Again following Cook et al. (2014b), droughts are characterized to have occurred in

the regional-mean time series when PDSI falls to a value of -0.5 or lower in any individual

year. Pancontinental droughts are then defined as occurring when any three [SW, CP, and

SE (hereinafter SW+CP+SE); SW, CP, and NW (hereinafter SW+CP+NW); SW, NW, and

SE (hereinafter SW+ NW+SE); or CP, NW, and SE (hereinafter CP+NW+SE)] or all four

[SW, CP, NW, and SE (hereinafter SW+CP+NW+SE)] of the regional mean time series

simultaneously have PDSI values of -0.5 or lower in the same year. By this definition, the

four-region droughts will overlap with, and also be counted as, three-region droughts. For

some of the analyses noted in the results section the three- and four-region droughts were

treated as distinct events.

6.1.3 Are Megadroughts Pancontinental?

There is evidence that the MCA, the period with the greatest incidence of megadroughts,

was also characterized by relatively frequent pancontinental drought (Cook et al., 2014b).

Likewise, spatiotemporal analysis of MCA megadroughts suggests that they have a large

spatial extent (e.g. Herweijer et al., 2007). Nevertheless, to directly assess if megadroughts

are pancontinental, the percentage of megadrought years that also satisfy the pancontinental
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drought definition in Section 6.1.2 is compared to the percentage of all years that are pan-

continental in Figure 6.1. In the NADA, the five highest-ranking droughts are more likely

to be pancontinental than a normal year (37% versus 20% for all years). Additionally, these

values are 48% for the five highest-ranking droughts relative to 40% for all drought years over

the ASW (not shown). While this shift is modest, given the socioeconomic risk associated

with both megadroughts and pancontinental drought it is important to better understand

the origin of these features and their relationships. In models, the shift in the percentage

of pancontinetal drought years for the five highest-ranking droughts is most consistent with

the NADA in the GISS and MPI simulations (Figure 6.1). The other models, however, may

still be useful for understanding pancontinental drought and such analyses will determine

if CGCMs are capable of reproducing the statistics of past pancontinental drought occur-

rence as a consequence of the correct dynamical drivers, which is necessary to assess whether

state-of-the-art CGCMs can accurately constrain future drought risks.

Data$Set$ Probability$PC$Drought$
Megadrought$

Probability$PC$Drought$$
All$Years$

NADA$ 37%$ 20%$
BCC$ 28%$ 20%$
CCSM$ 32%$ 25%$
GISS$ 32%$ 15%$
IPSL$ 34%$ 22%$
MIROC$ 23%$ 18%$
MPI$ 37%$ 20%$

$
Figure 6.1: (left column) The percentage of years during the five highest-ranking droughts
that are also pancontinental using the definition in Section 6.1.2. (right column) The per-
centage of all years that are pancontinental, this does not include drought years that are a
part of the five highest-ranking droughts.

6.1.4 Pancontinental Drought Occurrence

Figure 6.2 shows the drought recurrence interval for the individual geographic regions

in both the forced and control simulations from the models (dark and light bars, respectively)
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and the NADA. Models, in general, are able to simulate the correct recurrence interval for

drought in each of the regions. The model ensemble, however, slightly overestimates the

occurrence of SW and NW drought, and underestimates the occurrence of drought in the

CP and SE. This model behavior may be suggestive of more realistic, and in some cases over-

active, ENSO variability and teleconnections (e.g., CCSM — Chapter 5) relative to other

modes of coupled atmosphere-ocean variability, because ENSO-driven hydroclimate variabil-

ity tends to load heavily on western NA and thus predominantly affects the SW and NW.

Figure 6.2: Drought recurrence intervals for each region. Reconstruction results are shown
in black. Model results are shown in color, where the lighter-shaded bars of the paired
colors represent the recurrence value for a control simulation from each model, while the
darker-shaded bars are from the associated forced simulation.

The model ensemble is also largely successful at simulating the pancontinental drought

recurrence intervals characterized by the NADA (again for both forced and control sim-

ulations; see Figure 6.3). Taken individually, however, the models appear split into two

categories, with CCSM, IPSL, and MPI slightly underestimating the recurrence interval of

pancontinental drought of all types and GISS and MIROC overestimating the recurrence
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interval of these droughts by a much larger margin (BCC has realistic recurrence intervals

for three of the five pancontinental drought types). Nevertheless, the spread of the model

ensemble encompasses the pancontinental drought recurrence interval of the NADA for each

drought type. Furthermore, each model is individually successful at capturing the relative

occurrence of the different types of pancontinental drought, for instance, the SW+CP+SE

combination being the most common and the SW+CP+NW+SE combination being the

least common.

Figure 6.3: Drought recurrence intervals for each type of pancontinental drought. Recon-
struction results are shown in black. Model results are shown in color, where the lighter-
shaded bars of the paired colors represent the recurrence value for a control simulation
from each model, while the darker-shaded bars are from the associated forced simulation.
To maintain consistency with Cook et al. (2014b), drought years were allowed to overlap
between the three- and four-region droughts.
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The recurrence intervals for the droughts in the individual regions and for panconti-

nental droughts are not consistently different for the forced and control simulations (Figures

6.2 and 6.3). This suggests that the simulated pancontinental drought dynamics are not

dependent on the exogenous forcing and, as such, provide confidence in the use of con-

trol simulations to assess simulated atmosphere-ocean variability and its connection to pan-

continental drought (Section 6.1.6). These findings are consistent with Chapters 3 and 5

that focused specifically on the dynamics of persistent droughts in the ASW.

Figure 6.4: In the top five rows, PDSI composites or averages over all pancontinental drought
years of each type are shown. (bottom) The range in CPCS for individual droughts with the
NADA composite pattern. Boxplot colors indicate the associated control model simulation
or reconstruction. Unlike in previous figures, drought years were not allowed to overlap
between the three- and four-region droughts.
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The composite PDSI patterns of each pancontinental drought type for the control

model simulations and reconstruction are plotted in Figure 6.4. The bottom panel of Figure

6.4 shows the CPCS calculated between the composite PDSI pattern from the NADA and

each individual pattern of that pancontinental drought type. The range in CPCS is thus a

measure of the consistency of individual drought patterns (small range being more consis-

tent), with the average magnitude of the CPCS values for each model being indicative of how

well the model composite matches the NADA composite. These values have been calculated

separately for the three- and four-region droughts (unlike in previous analyses). The com-

posite model patterns compare well with the NADA composite for all but the SW+NW+SE

droughts, which are the least common of the pancontinental drought types. The CPCS

range in the models and the NADA are likewise consistent for all but the SW+NW+SE

combination. Nevertheless, it is important to note that for all drought types there is a large

CPCS range in both the models and the NADA, indicating that individual pancontinental

droughts can have different spatial patterns. Pancontinental droughts driven by a consistent

dynamical driver might be expected to have a consistent pattern. If this is the case, the

large CPCS range may then suggest that multiple dynamical drivers are capable of pro-

ducing each type of pancontinental drought. Equally likely, however, is that pancontinental

droughts are influenced not just by SST variations but also by internal atmospheric vari-

ability that can create different spatial patterns, as was argued by Hoerling et al. (2014) for

the 2012 drought. A third possibility is that a large CPCS range would also be expected if

pancontinental droughts were driven by consistent dynamical drivers but with teleconnection

dynamics that are variable through time. The question of pancontinental drought dynamical

drivers will be addressed in Sections 6.1.6 and 6.1.7.

6.1.5 Centennial Variability in Pancontinental Drought

Perhaps the starkest characteristic of the NADA drought record is the centennial-

scale variability in the number of pancontinental droughts, punctuated by an increased rate
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of occurrence in the MCA relative to the LIA (Cook et al., 2014b). The relative timing of

hydroclimate change in the models — if such changes are present in the CMIP5 models —

and the NADA is of particular interest because exogenous forcing may, or may not, have

played a role in driving the MCA-to-LIA transition (e.g. Mann et al., 2009; Gonzalez-Rouco

et al., 2011; Goosse et al., 2012, and Chapter 5). If, in fact, radiative forcing produced this

transition, it would be relevant to our understanding of current and future radiatively forced

climate change. Because the models are driven with similar forcing series (see Schmidt et al.,

2011), a strong role for exogenous forcing in driving periods with increased pancontinental

drought frequency should lead to these periods being contemporaneous in time across the

model simulations. The role of radiative forcing in driving the variability of pancontinen-

tal drought frequency on centennial timescales can therefore be tested to potentially better

understand the origin of this variability in the NADA. It must be noted, however, that the

CMIP5 models have different climate sensitivities and, in particular, different parameteriza-

tions of land surface and aerosol processes that may drive compensating feedbacks and mask

the model response to external forcing (as was also noted in Chapter 5). If these differences

are large, they would impact our ability to test the role of forcing as posed above.
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Figure 6.5: Number of pancontinental drought years in each century relative to the mean
number of droughts per century between 1000 and 2000 C.E. To maintain consistency with
Cook et al. (2014b), drought years were allowed to overlap between the three- and four-region
drought categories. Bar color indicates the forced model simulation or reconstruction.
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The number of pancontinental droughts for each century relative to the mean number

of droughts per century between 1000 and 2000 C.E. is plotted for the forced model simu-

lations and the reconstruction in Figure 6.5. For the NADA, the percentage increase in the

number of pancontinental droughts, relative to mean conditions, during the twelfth century

averages to 60%, with a maximum increase of 75% for the SW+CP+NW drought type and

a minimum of 40% for the SW+NW+SE type. This period of increased drought frequency

does not appear to be captured by the models, nor do the individual models agree on the

timing of hydroclimate change, suggesting that these changes are not tied in any coherent

way to the exogenous forcing. A possible exception is the CCSM model, which exhibits in-

creased aridity during the eleventh and twelfth centuries (particularly manifest in the number

of SW+CP+SE drought occurrences, although the number of droughts in both centuries is

within the range from the CCSM control simulation); changes that are contemporaneous

with those in the NADA. The models do, however, appear to simulate a large range in the

number of pancontinental droughts. To test if this range is of the magnitude observed in the

NADA, the number of each pancontinental drought type was calculated for a sliding 100-year

window across the forced model simulations and NADA record and the range is plotted in

Figure 6.6. Each model is individually capable of simulating centennial-scale variability in

the frequency of pancontinental drought occurrence that is characteristic of the NADA. The

fact that models simulate large differences in the number of pancontinental drought features

for different 100-year periods, and that these changes are not tied in any coherent way to

the exogenous forcing, is suggestive of a large amount of internal variability on centennial

timescales. This model behavior is consistent with Chapters 3 and 5 that focused on the

dynamics of persistent drought in the ASW. Additionally, if the model dynamics are in fact

representative of the real atmosphere-ocean system, then this result indicates that the ob-

served preponderance of pancontinental droughts during the MCA could have arisen from

internal variability, as opposed to changes in radiative forcing.
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Figure 6.6: Ranges in the number of drought years for each pancontinental drought type.
This was calculated for a sliding 100-year window across the model record or reconstruction.
Boxplot colors indicate the associated forced model simulation or reconstruction.

6.1.6 Observed Pancontinetal Drought Dynamics

Figure 6.7 analyzes the associations between pancontinental droughts and the dynam-

ical drivers using the overlapping period between the observed dynamics (the SST observa-

tions begins in 1854 C.E.) and the reconstruction (1854–2005 C.E. — hereinafter observation-

to-reconstruction). The specific methodology, a full explanation of which follows, allows for

a robust statistical assessment of the possibility that it is a combination of dynamical modes

that produces pancontinental drought features. To do so, all pancontinental drought types

are treated as the same, and considered to be Bernoulli processes (with 1 for drought years

and 0 for non-drought years), with the drought frequency then defined as the number of

pancontinental drought occurrences over the number of analyzed years (152 years for the

observation-to-reconstruction). Within a Bayesian framework, the posterior distribution of
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the drought frequency can be calculated for subsets of the data that have different phases

of the dynamic modes (e.g., a negative or La Niña-like state in the Niño3.4 index) or some

combination of phases of the dynamic modes (e.g., a negative Niño3.4 index, positive AMO,

and negative PDO). If, following Kam et al. (2014), we assume that the prior distribution

is a uniform beta distribution or uninformative, then the posterior distribution is easily de-

rived with the alpha and beta parameters being equal to the number of drought occurrences

plus one and the number of years minus the number of drought occurrences plus one, re-

spectively. The observation-to-reconstruction posterior distributions in the right-hand panel

of Figure 6.7 indicate that the frequency of pan-continental drought occurrence is greatest

when there are simultaneously negative Niño3.4 and PDO indices and a positive AMO index

(with pancontinental drought occurring nearly 40% of the time when these conditions are

met). Interestingly, for the observation-to-reconstruction record the individual impacts of

the three modes of variability on the frequency of pancontinental drought are roughly equal.

Figure 6.7: (left) The observed DJF Niño3.4, DJF PDO, and JJA AMO indices for the period
1854–2005 C.E. are plotted as solid black lines. For the PDO and AMO, the filled regions
(red for positive, blue for negative) are the smoothed time series using a 10-year LOWESS
spline, while for the Niño3.4 index the filled regions are the unfiltered interannual data. The
timing of each pancontinental drought occurrence is indicated with a gray bar (all five types
of pancontinental drought are considered together). (right) The posterior distribution of the
frequency of pancontinental drought occurrence (all types considered together) for the full
data (black) and for the subset of data with a positive AMO (red), negative PDO (blue),
or negative Niño3.4 (green) index and years with combinations of two or all three of these
conditions. The distributions for combinations of two conditions are dashed using the two
respective colors while the distribution for the all three conditions is plotted in purple.
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6.1.7 Simulated Dynamical Characterisitics

The roughly equal impact of the ENSO, PDO and AMO on the frequency of pan-

continental drought occurrence over the instrumental interval (Figure 6.7) suggests a need

to better understand the simulated characteristics of these modes before assessing pancon-

tinental drought dynamical drivers within the models. An assessment of the multidecadal

character and stationarity of the ENSO teleconnection was completed in Chapter 4; in this

section similar assessments will be completed but for all three modes together.

Figure 6.8 shows the teleconnection patterns calculated as the correlation between the

Niño3.4, PDO, and AMO indices and PDSI over NA. These patterns have been calculated

for both the NADA and an observed PDSI dataset (Dai et al., 2004) during the overlapping

period with the observed SST dataset (1854–2005 C.E. and 1950–2005 C.E., respectively),

and for a sliding 152-year window (the length of the observation-to-reconstruction overlap)

across the full control model simulations. The model pattern in Figure 6.8 plots the 152-

year period in which the simulated teleconnection pattern best represents the observation-

to-reconstruction pattern, as determined by the maximum CPCS between the two fields.

The CPCS is a quantitative measure of the similarity of the simulated and observation-to-

reconstruction teleconnection patterns, with the range in the CPCS for all of the 152-year

periods in the models being a measure of the stationarity of that simulated teleconnection

(Figure 6.8, middle). Additionally, the bottom panel of Figure 6.8 shows the strength of the

ENSO, PDO, and AMO teleconnections. To do so, the sum of the squared teleconnection

correlation coefficients was calculated for each of the model segments and the range in these

values was then plotted as a boxplot. For comparison, the sum of the squared teleconnec-

tion correlation coefficients was also calculated for the full observation-to-reconstruction and

observational records. This analysis was limited to the grid points common to each dataset

over the plotted NA domain in the top panels of Figure 6.8.
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Figure 6.8: Correlations between gridpoint PDSI from the NADA or models and the (top)
DJF Niño3.4 index, (middle) DJF PDO index, and (bottom) JJA AMO index. For the PDO
and AMO, correlations are based on filtered [(10-year locally weighted scatterplot smooth-
ing (LOWESS)] PDSI and climate indices. The observation-to-reconstruction correlations
(RECON) are from the overlapping period (1854–2005 C.E.) between the NADA and the
observed SST dataset (Smith & Reynolds, 2003) and the observed correlations (OBS) are
from the 1950–2005 C.E. period in an observed PDSI dataset (Dai et al., 2004) and the
same SST dataset. For the models, the teleconnection pattern was calculated for a sliding
152-year window (the length of the observed record). The plotted pattern is the 152-year
segment with the teleconnection pattern that best matches the observation-to-reconstruction
pattern as determined by the CPCS between the two fields. The upper boxplot shows the
range in CPCS between the model pattern for each 152-year segment and the observation-
to-reconstruction pattern. The bottom box plot shows the range in the sum of squared
correlation coefficients over NA for the model segments with the value from the observations
and observation-to-reconstruction record plotted as dashed gray and black lines, respectively.

The observation-to-reconstruction ENSO and AMO dynamics are largely characteris-

tic of those in the observed PDSI dataset with CPCS values between the patterns of 0.75 and

0.50 and of nearly equal strengths. The PDO teleconnection, however, is significantly weaker

in the reconstruction, despite having a similar spatial pattern (CPCS of 0.52). While this

may suggest a deficiency in the reconstruction, it is more likely indicative of an inconsistent

impact of the PDO over the much longer reconstructed record (152 versus 56 years for the
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observed PDSI). In fact, while the ENSO behavior appears to be consistent throughout the

instrumental interval in the left hand panel of Figure 6.8, the variability in the early part of

the PDO and AMO records is subdued.

The models are able to simulate 152-year periods that have a realistic ENSO telecon-

nection pattern to NA (with the exception of BCC); however the strength of this teleconnec-

tion varies greatly, with CCSM having far too strong of a teleconnection and BCC and GISS

having an ENSO teleconnection that is too weak. The stationarity of this teleconnection,

likewise, varies significantly between the models; the CCSM ENSO teleconnection (as seen

in Chapters 4 and 5), for instance, is highly stationary while the ENSO teleconnections in

BCC and MIROC are highly nonstationary. The AMO and PDO teleconnections in the

models are much less realistic, with none of the models simulating a 152-year period with a

CPCS value over 0.6 and the teleconnection strength being weaker than the observations for

each model and both modes. These teleconnections are also nonstationary, with the largest

CPCS range occurring in MIROC for the PDO and BCC for the AMO, but with a CPCS

range of at least 0.4 for all of the models.

Figure 6.9 shows the range in the CPCS between simulated spatial patterns calculated

for a sliding 152-year window (length of the observed SST dataset) across the full control

model simulations and the observed spatial patterns. As suggested by the teleconnections,

models are generally successful at simulating a reasonable ENSO spatial pattern (with the

highest pattern correlation values of the three modes). Interestingly, the simulated PDO and

AMO behavior is largely consistent between the models with a highly nonstationary, but at

times realistic, PDO pattern (every model simulates a PDO pattern CPCS of at least 0.6),

and a more stationary, but generally unrealistic, AMO pattern (Figure 6.9). In both cases,

however, the PDO and AMO patterns in the models are less characteristic of the observed

patterns than for ENSO.
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Figure 6.9: (top) The range in the CPCS between the simulated ENSO, PDO, and AMO
spatial patterns calculated for a sliding 152-year window (length of the observed SST dataset)
across the full model simulations and the observed spatial patterns. (bottom) The observed
target patterns. The plotted domain is longitudinally global beginning at 0◦ and spans the
latitudes 30◦S–80◦N. The boxes over which the CPCS values were calculated for each region
are designated by the black dashed lines.

In aggregate, the models exhibit different teleconnections between the oceanic bound-

ary conditions and NA, with no individual model matching the observed atmosphere-ocean

dynamics particularly well. Together, this suggests that models are not likely to agree on

the modes of atmosphere-ocean variability that are associated with pancontinental drought.

This was also true of megadroughts in Chapter 5, and these additional dynamical charac-

terizations may help explain the range in model behavior. Additionally, the models have a

stronger and more realistic ENSO and associated teleconnections, as compared to the PDO

and AMO and are therefore expected to be more successful at simulating the pancontinen-

tal drought dynamics associated with this mode of variability. Nevertheless, the simulated

dynamical relationships are largely nonstationary, and the observed dynamics have been

inferred from the short 152-year instrumental interval. The observed dynamics, thus, may

97



themselves be time variable or inadequately characterized (particularly given the large per-

sistence and consequently the small number of degrees of freedom for the PDO and AMO).

It is therefore difficult to attribute differences between the models and observations as solely

associated with the model characteristics, as opposed to some combination of model misrep-

resentations and poorly characterized observational teleconnections due to undersampling of

low-frequency modes and nonstationarity.

6.1.8 Simulated Pancontinetal Drought Dynamics

Figure 6.10 shows the posterior distributions for frequency of pancontinental drought

occurrence over the full 500 years of the control simulations. The models tend to overesti-

mate the impact of ENSO on pancontinental drought occurrence (with the main exception

being BCC — Figure 6.10 versus 6.7). This result is likely indicative of the more realistic,

and in some cases overactive, ENSO variability and teleconnections (e.g., CCSM — Sections

2.6.2 and 6.1.7) relative to other modes of coupled atmosphere-ocean variability. The model

split between slightly underestimating the recurrence interval of pancontinental drought of

all types (CCSM, IPSL, and MPI) and moderately overestimating the recurrence interval

of these droughts (BCC, GISS, and MIROC) in Figure 6.3 can potentially be explained by

this result. CCSM, IPSL, and MPI all greatly overestimate the impact of ENSO on the fre-

quency of pancontinental drought occurrence and, as a consequence, produce more of these

features than is realistic. In CCSM this behavior appears to result from ENSO variability

that is too strong (Figures 2.6 and 2.9), while in IPSL and MPI the ENSO variability is

more realistic (though slightly too strong — Figure 2.9) but the hydroclimate response to

ENSO is too homogenous over the NA continent (Figure 6.8). BCC, despite underestimat-

ing the impact of ENSO on pancontinental drought occurrence, is able to largely reproduce

the impact of the AMO, while slightly overestimating the PDO impact, and has a pos-

terior distribution of ocean-forced pancontinental drought occurrence (Figure 6.10) that is

similar to the observation-to-reconstruction (Figure 6.7). The same is true of GISS, which
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exhibits the most realistic impact (as compared to the observations) of the three modes of

atmosphere-ocean variability (and the oceanic boundary conditions in general) on pancon-

tinental drought occurrence (although it slightly underestimates the AMO impact relative

to the PDO). The fact that GISS, and to a lesser degree BCC, underestimate the overall

occurrence of pancontinental drought (e.g., Figure 6.3), therefore, appears to be related to

the frequency with which the simulated ocean produces a simultaneously positive AMO,

negative PDO, and negative ENSO. MIROC also underestimates the frequency of panconti-

nental drought occurrence, and while it simulates a reasonable impact of a negative Niño3.4

index on the frequency of pancontinental drought occurrence, the PDO and AMO impacts

are too weak (Figure 6.10).

Figure 6.10: Posterior distributions for each model of the frequency of pancontinental drought
occurrence (all types considered together) for the full data (black) and for the subset of data
with a positive AMO (red), negative PDO (blue), or negative Niño3.4 (green) index and years
with combinations of two or all three of these conditions. The distributions for combinations
of two conditions are dashed using the two respective colors while the distribution for the
combination of all three conditions is plotted in purple.
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It must be noted that because of the short length of the instrumental record, which

limits our knowledge of real-world pancontinental drought dynamics, it is difficult to make

conclusions about the veracity of the simulated dynamics. Nevertheless, attempting to un-

derstand the simulated pancontinental drought dynamics within the context of the char-

acteristic model behavior outlined in Section 6.1.7 may help determine if models will be

able to properly constrain the risk of future drought over NA. In particular, the patterns

of behavior of CCSM and BCC are an interesting juxtaposition of pancontinental drought

dynamics. CCSM greatly overestimates the impact of ENSO on pancontinental drought oc-

currence (Figure 6.10), while BCC underestimates (Figure 6.10). This behavior can perhaps

be understood in terms of the model dynamics outlined in Section 6.1.7. While BCC has a

somewhat realistic ENSO spatial pattern (Figure 6.9), and variability that is moderate (but

too regular, e.g., the large negative lag-1 autocorrelation value; see Figure 2.6), the ENSO

teleconnection to NA is the least realistic, weakest, and most nonstationary of the models

analyzed herein (Figure 6.8). By contrast, the PDO and AMO teleconnections are more

realistic, stronger (Figure 6.8), and consequently more strongly connected to pancontinen-

tal drought (Figure 6.10). CCSM, on the other hand, has a very realistic and stationary

ENSO teleconnection (Figure 6.8 and Chapters 4 and 5), along with ENSO variability and

spatial patterns that are too strong (Figures 2.6 and 2.9). As a consequence pancontinental

drought is consistently connected to the tropical Pacific Ocean. The same characteristics

were used to explain the association between megadroughts and ENSO in CCSM (Chapter 5).

6.1.9 Conclusions

Simulated ENSO, PDO, and AMO dynamics, and their teleconnections to NA, differ

between models and in their comparisons to observations. As a consequence, and similar

to earlier findings for megadroughts (Chapter 5), models do not agree on the modes of

atmosphere-ocean variability that are associated with pancontinental drought. The mod-

els do, however, simulate pancontinental droughts with the frequency and spatial patterns
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exhibited by the NADA. Additionally, the models display centennial-scale variability in the

occurrence of pancontinental drought that is similar to the magnitude observed in the NADA.

These changes do not appear to be tied to the exogenous forcing, suggesting that simulated

internal hydroclimate variability on these timescales is large in magnitude.

These results have implications for our understanding of megadroughts. Firstly, the

preponderance of pancontinental drought during the megadroughts in the NADA (Section

6.1.3) and the observed dynamics of pancontinental drought (Section 6.1.6) suggest a role

for multiple modes of atmosphere-ocean variability in driving past megadroughts. In par-

ticular, the percentage of megadrought years that are pancontinental is 37% as compared

to 20% for all other years between 850–2005 C.E. (Figure 6.1). Figure 6.7 suggests that

the percentage of years that have pancontinental drought increases from approximately 20%

to nearly 40% when there are simultaneously negative states of the ENSO and PDO and a

positive state of the AMO. While the close association of these values provides no proof of

causation, it appears possible that the increase in the frequency of pancontinetal drought

occurrence during megadroughts is a consequence of these features being driven by a com-

bination of the three modal states. Importantly, this interpretation is consistent with other

paleoclimate and modeling studies that suggest that the MCA, the period with the greatest

incidence of megadroughts, was characterized by a negative PDO (e.g. MacDonald & Case,

2005) and ENSO (e.g. Mann et al., 2009) and a positive AMO (e.g. Feng et al., 2008), with

the combined atmosphere-ocean state argued for by Seager et al. (2007).

The behavior of the models is also interesting. In CCSM, for instance, megadroughts

are consistently driven by the tropical Pacific boundary conditions (Chapter 5). This ap-

pears to result from the strong and stationary teleconnection between the tropical Pacific

and NA and the large variability in the tropical Pacific Ocean (likely too large — Section

2.6.2) in CCSM. These characteristics also appear to impact the simulation of pancontinental

drought, with CCSM greatly exaggerating the impact of the tropical Pacific Ocean on the

frequency of pancontinental drought occurrence (Section 6.1.8). Given the interpretation
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of the NADA, the observations given above and the model characterizations in Figure 6.10

(specifically the impact of a negative ENSO state), we would expect megadroughts in CCSM

to be pancontinental approximately 45% of the time (because they are consistently driven

by the tropical Pacific Ocean). Nevertheless, the actual value is 33% relative to 25% for all

years between 850–2005 C.E. (Figure 6.1). This may indicate that other atmosphere-ocean

dynamics are also at play during megadroughts in CCSM. There is, for instance, a weak but

insignificant tendency towards negative AMO during megadroughts in the model (Chapter

5), which would decrease the frequency of pan-continental drought occurrence.

6.2 Seasonality

6.2.1 Motivation and Questions

In Chapters 3 and 5 megadroughts in CGCMs were shown to consistently result from

anomalously low winter precipitation. The NADA does not provide information on the sea-

sonality of precipitation signals, nevertheless research has demonstrated that reconstructed

PDSI in the ASW predominantly reflects winter moisture conditions (St. George et al.,

2010). This suggests that similar to the models, megadroughts identified in the NADA re-

sult from anomalously low winter precipitation. Nevertheless, some areas of the ASW have

a dual-season precipitation signal: winter precipitation occurs within transient midlatitude

eddies, while summer precipitation is controlled by the NAM. The NAM provides critical

moisture relief during winter drought years. Consequently, if megadroughts are characterized

by precipitation deficits occurring in both the winter and summer seasons, i.e. dual-season

drought, this would further impact an already vulnerable region. The phasing of winter and

summer precipitation variability in the ASW, and the specific role played by the NAM in

that phasing, is therefore important to understand and characterize.

The instrumental interval is marked by a relatively high occurrence of out-of-phase

winter-to-summer precipitation anomalies in the ASW (e.g. Griffin et al., 2013), and there

102



is dendroclimatic evidence that anti-phasing of precipitation extremes may be a consistent

feature of the last millennium (Stahle et al., 2009). Out-of-phase winter-to-summer precipita-

tion would suggest a limited risk of dual-season drought on interannual and longer timescales.

Nevertheless, a recent reconstruction of NAM variability using tree-ring records of latewood

width has established that the latter half of the 20th century exhibits potentially anomalous

NAM behavior with regard to the prevalence of out-of-phase seasonal precipitation anoma-

lies (Griffin et al., 2013). The 20th century, therefore, may not be a characteristic period for

defining the NAM precipitation climatology, its relationship to the winter climate regime, and

the potential connections to the coupled atmosphere-ocean system. Our investigation herein

builds off the analyses of Griffin et al. (2013) using coupled model simulations to further as-

sess assumptions about the stationarity of seasonal precipitation phasing relationships in the

ASW. We use independent tree-ring based reconstructions of NAM and winter precipitation

variability (Griffin et al., 2013) in the NAM2 region (113.25◦W—107.75◦W, 30◦N—35.25◦N

— Gochis et al., 2009) for the period 1539–2008 C.E. as the basis for comparisons to the

NAM dynamics in CMIP5/PMIP3 simulations. Four fundamental questions are addressed.

1) Are the teleconnections between the reconstruction and the tropical Pacific Ocean over

the instrumental interval consistent with the lack of systematic in- or out-of-phase seasonal

precipitation (Section 6.2.2)? 2) Is there a seasonal precipitation phasing relationship, of

either sign, in the models over the whole record or for shorter periods (e.g. the period with

predominantly out-of-phase seasonal precipitation anomalies in the latter part of the instru-

mental record — Section 6.2.4, Part 1)? 3) Are the model dynamics in agreement with the

reconstruction and observations, and are these consistent with the simulated seasonal pre-

cipitation phasing relationships (Section 6.2.4, Parts 2 and 3)? And 4) Do models produce

periods with predominantly in-phase winter-to-summer precipitation anomalies that lead to

dual-season drought on interannual or longer timescales (Section 6.2.5)? The answers to

these questions will clarify our understanding of seasonal precipitation phasing in the ASW

and the seasonality of megadroughts, while potentially elucidating the dynamics responsible
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for the real-world and simulated phasing behavior.

6.2.2 Reconstruction Dynamics and Phasing

Griffin et al. (2013) note that the number of years with in- and out-of-phase seasonal

precipitation anomalies are approximately equal over the length of their reconstruction and,

on that basis, they declare that there is no systematic seasonal precipitation phasing re-

lationship in the NAM2 region. The reconstructed SPI record, however, is punctuated by

shorter periods when out-of-phase events congregate (most notably in the mid-to-late 20th

century), as well as periods with predominantly in-phase seasonal precipitation anomalies

(the beginning of the 20th century). In both cases these are significant against the null

hypothesis that the phasing could occur randomly (not shown), which suggests that there

are atmosphere-ocean dynamical associations underlying the most in- and out-of-phase pe-

riods in the reconstruction. There are a number of dynamics that have been implicated

as having the potential to drive seasonal precipitation phasing, specifically the out-of-phase

winter-to-summer precipitation anomalies in latter part of the instrumental interval. These

include: 1) opposite-sign winter and summer teleconnections tied to same-sign winter and

summer SST anomalies (e.g. Castro et al., 2001); 2) a winter-to-summer shift in tropical

Pacific SSTs and a same-sign winter and summer teleconnection (e.g. Seager et al., 2009);

and 3) land-surface feedbacks, for instance Notaro & Zarrin (2011) demonstrate that deep

Rocky Mountain snowpack tends to hinder the poleward advance of the summer monsoon,

and associated rainfall, into the ASW (for the relationship between antecedent winter mois-

ture on the summer monsoon see also Gutzler, 2000; Higgins & Shi, 2000; Zhu et al., 2005).

To determine which, if any, of these dynamics are consistent with the SPI reconstructions

of Griffin et al. (2013), the relationship between the tropical Pacific Ocean and hydrocli-

mate over the NAM2 region will be analyzed using an instrumental SST dataset and the

overlapping period in the SPI reconstructions (1856–2005 C.E. — as in the previous section

hereinafter this will be referred to as observation-to-reconstruction). We do not make an
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explicit attempt to analyze land-surface feedbacks (point 3), but it is worth noting that

these processes are expected to be present in the observational and reconstructed data and

are not separable from the observation-to-reconstruction teleconnection dynamics analyzed

herein. Additionally, we do not analyze potential drivers of seasonal precipitation phasing

that receive less attention in the literature, for instance forcing from tropical or extratropical

Atlantic SSTs (e.g. Kushnir et al., 2010).

Figure 6.11: Winter and summer SST anomalies for the Niño3.4 region are plotted for
the 1856–2005 C.E. period in the observed SST dataset (Kaplan et al., 1998). Years that
correspond to in-phase wet precipitation are plotted in blue, in-phase dry precipitation are
plotted in red and out-of-phase precipitation are plotted in black.

There is evidence that an evolution from El Niño to La Niña-like conditions going

from winter to summer is possible (e.g. in 1998; see also Seager et al., 2009) but that tropical

Pacific SST anomalies can also persist from winter to summer (e.g. Rasmusson & Carpenter,

1982). The seasonal evolution of tropical Pacific SST anomalies, along with the winter and

summer teleconnections, will determine the impact of the tropical Pacific Ocean on seasonal

precipitation phasing. Figure 6.11 plots the winter versus following summer tropical Pacific

SST anomalies and indicates the seasonal precipitation phasing relationship in that year by

the color of the marker. There is a slight positive relationship between winter and summer

tropical Pacific SST anomalies, indicating a tendency for same-sign SST anomalies to persist

from winter to summer. Nevertheless, this relationship is weak, with a squared Pearson’s
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correlation coefficient (R2) of 0.13 when all values are considered. Additionally, the largely

random scattering of in and out-of-phase years in the four quadrants of Figure 6.11 suggest

a generally weak control of tropical Pacific SSTs on seasonal precipitation phasing. This is

consistent with the lack of a systematic seasonal precipitation phasing relationship in the

reconstruction (Griffin et al., 2013).

To explain the origin of the above demonstrated weak associations, Figure 6.12 char-

acterizes the winter and summer teleconnections between SPI in the NAM2 region and the

winter (DJF) and summer (JJA) SST fields for the 56 years (1950–2005 C.E.) that are com-

mon to the observed SST dataset (Kaplan et al., 1998), the reconstruction, and the period

of good coverage over the NAM2 region in an observed precipitation dataset from the GPCC

(GPCC — Becker et al., 2013, herinafter observed). The observation-to-reconstruction and

observed teleconnections are in good agreement throughout the tropical and extratropical

Pacific, with the exception of an area of positive correlation off the coast of western NA in

summer that is only present in the observations. Importantly, in both cases the telecon-

nection patterns are of opposite-sign in winter and summer and of similar magnitude. The

teleconnection dynamics, however, are complicated by the fact that the strength and char-

acter of the observation-to-reconstruction summer teleconnection varies over the full period

of overlap between the reconstruction and SST dataset (1856–2005 C.E — Figure 6.13).

Figure 6.12: Maps of Pearson’s correlation coefficients calculated between winter (DJF) or
summer (JJA) SPI and SSTs. All results are shown for 1950-2005 C.E., the overlapping
period of the reconstruction, the observed SST dataset (Kaplan et al., 1998) and the period
of good coverage over the NAM2 region for the observed precipitation dataset (GPCC —
Becker et al., 2013). The plotted domain is 180◦W–180◦E by 40◦S–90◦N.
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Collectively, the seasonal evolution of tropical Pacific SSTs and the average tele-

connections suggest a preference for out-of-phase seasonal precipitation (same-sign SST

anomalies and opposite-sign teleconnections). Nevertheless, the summer teleconnection is

potentially non-stationary (Figure 6.13) and the tropical Pacific Ocean exhibits only a weak

tendency for same sign SST anomalies to persist from winter to summer (Figure 6.11).

Together this makes a systematic out-of-phase seasonal precipitation relationship unlikely,

which is consistent with the roughly equal probability of reconstructed seasonal precipitation

anomalies being in- or out-of-phase in any given year (Griffin et al., 2013). Nevertheless, any

nonstationarity of the summer teleconnection has the potential to produce shorter periods

where the seasonal precipitation phasing relationship is more or less out-of-phase (e.g. more

out-of-phase when the summer teleconnection to the tropical Pacific is particularly strong

and negative as in the < 5% composite in Figure 6.13).

Figure 6.13: Mean Composite (left column) contains the average maps of Pearson’s correla-
tion coefficients calculated between winter (DJF) or summer (JJA) reconstructed SPI and
observed SSTs (Kaplan et al., 1998) for random 30-year periods between 1856–2005 C.E.
The > 95% Composite and < 5% Composite columns contain the 30-year segments with
the greater than 95th percentile or less than 5th percentile of average correlation coefficients
over the Niño3.4 region (170◦W–120◦W, 5◦S–5◦N). The plotted domain is 180◦W–180◦E by
40◦S–90◦N.

6.2.3 Do Models Have a NAM?

Before analyzing simulated seasonal precipitation phasing and the dynamics thereof,

it is necessary to determine that the PMIP3 models simulate a NAM. To do so, the simu-

lated precipitation climatologies and standard deviations over the NAM2 region are plotted
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in Figure 6.14. Only the CCSM, MIROC, and MPI models simulate a realistic May–June

climatological dry period followed by a substantial monsoon onset. The MPI and CCSM

models have a particularly robust July–September precipitation peak with monsoon retreat

by October. MIROC has a summer precipitation peak but the September maximum and wet

October are not realistic. In contrast, BCC, IPSL, and GISS all lack any summer precipita-

tion maximum. All of the model standard deviations are inflated relative to the observations.

Figure 6.14: (top) The average monthly precipitation in the NAM2 region for the full sim-
ulations and observational data from the GPCC (1901–2010 C.E. — Becker et al., 2013).
Bottom panel is the interannual standard deviation of monthly precipitation for all of the
models and the observations.

For the purposes of analyzing winter-to-summer precipitation phasing relationships,

only the CCSM and MPI simulations will be retained. While the MIROC model appears to

have a NAM, the precipitation climatology is not as realistic as the CCSM and MPI mod-

els and the LM simulation has the aforementioned significant drift (Chapter 2 — Sueyoshi

et al., 2013). CCSM and MPI are also the same models (of the LM simulation subset of

CMIP5/PMIP3) that were determined to have a sufficiently realistic NAM for the projec-

tions of ASW monsoon rainfall in Cook & Seager (2013). Moreover, Langford et al. (2014)
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provide a detailed analysis of the NAM dynamics in all of the CMIP5 models, and find a

positive relationship between model resolution and the realism of NAM dynamics; CCSM

and MPI are the two highest resolution simulations of the last millennium.

6.2.4 Seasonal Precipitation Phasing and the Model Dynamics

Here we analyze the seasonal precipitation phasing in the models (Part 1) and assess

the consistency of this phasing with regard to the potential atmosphere-ocean dynamical

influences on seasonal precipitation phasing outlined in Section 6.2.2 and the model specific

dynamical characteristics (Parts 2 and 3). The limited model output prevents a full analysis

of the presence of land-surface feedbacks (point 3 in Section 6.2.2), however, the potential bi-

ases in simulated snow physics (e.g. Foster et al., 1996), coarse model resolution preventing a

realistic simulation of orographic features, and the non-dynamic land-surface and vegetation

models in CCSM and MPI make a realistic role for simulated land-surface feedbacks unlikely.

Part 1: Seasonal Precipitation Phasing

Figure 6.15 presents scatter plots of winter and summer simulated SPI (1539–2005

C.E.) as a characterization of the winter-to-summer precipitation phasing relationships (Panel

A). These indicate that similar to the reconstruction (Griffin et al., 2013) there is no system-

atic seasonal precipitation phasing relationship between winter and summer in the CCSM

and MPI simulations (56% and 54% of years are in-phase, respectively).

Despite the fact that the models do not exhibit a systematic seasonal precipitation

phasing relationship, the high occurrence of out-of-phase seasonal precipitation anomalies

in the latter part of the instrumental record suggests that shorter periods may exhibit pre-

dominantly in- or out-of-phase seasonal precipitation anomalies. To evaluate this possibility

in the models, the number of out-of-phase years was calculated for a sliding 30-year window

in each dataset and plotted in Panel B of Figure 6.15 (following Griffin et al., 2013, here-

inafter the count value). In contrast to both the instrumental data and the reconstruction,
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the models do not simulate periods with seasonal precipitation anomalies that are predomi-

nantly out-of-phase. This is indicated by the fact that the number of out-of-phase years over

the 30-year windows in Panel B of Figure 6.15 rarely, and never by a large margin, exceeds

fifteen — the threshold that indicates a neutral relationship between winter and summer

precipitation anomalies. The models do, however, have multiple periods with predominantly

in-phase winter and summer SPI anomalies (e.g. the 30-year period beginning in 1690 in

CCSM and 1680 in MPI).
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Figure 6.15: Scatter plots of simulated SPI for the winter (October to April) and summer
(June to August) seasons over the period 1539–2005 C.E. (Panel A), with the fraction of
values in each quadrant listed in each quadrant box. (Panel B) 30-year running count
of opposing-sign winter and summer SPI anomalies. The dashed line is the threshold that
indicates a neutral relationship between winter and summer precipitation anomalies. (Panels
C and D) Same plots for control runs from these models.
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To test the significance of the in-phase periods in the models against the null-hypothesis

that this phasing can occur randomly, a 50,000-year autocorrelation- and distribution-preserving

surrogate timeseries was created for both the winter and summer SPI from each dataset. The

number of years with out-of-phase anomalies for each 30-year period in the surrogate time-

series was counted and the upper and lower 99th percentile of these values were chosen as the

significance threshold. These bounds were 21 and 9 in each model, indicating out-of-phase

significance against the null hypothesis for 30-year count values above 21 and in-phase sig-

nificance for 30-year count values below 9. Multiple count values fall below the lower bound

of the significance threshold, indicating that there are in-phase periods in both model simu-

lations that would not be expected to occur by chance alone. Because these in-phase periods

cannot be explained by random chance, there may instead be atmosphere-ocean dynamical

associations in the models that underlie their origin.

Part 2: Simulated Seasonal ENSO Evolution

The impact of the tropical Pacific Ocean on seasonal precipitation phasing will de-

pend on whether same-sign SST anomalies persist from winter to summer (e.g. Rasmusson

& Carpenter, 1982, an evolution from El Niño to La Niña-like conditions going from winter

to summer is also possible, for instance, in 1998). To assess the probability of same-sign SST

anomalies occurring in winter and summer, Figure 6.16 shows a centered 30-year running

count (with 30-years chosen to match the assessment of seasonal precipitation phasing in

Griffin et al., 2013, and above) of same-sign winter-to-summer SST anomalies in the Niño3.4

region (170◦W–120◦W, 5◦S–5◦N). If the values in Figure 6.16 are at fifteen (the dashed line),

the probability of SST anomalies persisting and changing sign between winter and summer

are equal (greater than fifteen indicates a preference for SST anomalies to persist between

winter and summer). The CCSM model exhibits a weak preference for the persistence of

tropical Pacific SST anomalies from winter to summer (count values just above fifteen —

Figure 6.16). In contrast, the MPI model has consistently high count values (Figure 6.16),
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suggesting that the persistence of same-sign tropical Pacific SST anomalies from winter-to-

summer will occur more frequently relative to CCSM or the observations (the average count

for the observations is approximately 19 — see also Figure 6.11). The discrepancy between

the two models is potentially related to their representation of ENSO. The CCSM model,

for instance, has a stronger and more regular ENSO (Chapters 2, 4, 5 and Section 6.1), al-

though both models, and these specific simulations, have well-validated and realistic ENSO

(Chapters 2 and 4 and Section 6.1). In summary, both models exhibit tropical Pacific SST

anomalies that tend to persist from winter to summer, although this behavior is stronger in

MPI relative to both CCSM and the observations.

Figure 6.16: The time history of the winter-to-summer SST anomalies in the Niño3.4 region
(170◦W–120◦W, 5◦S–5◦N). The black line represents a centered 30-year running count of
same-sign winter and summer SPI anomalies. The dashed line is the threshold that indicates
a neutral relationship between winter and summer SST anomalies.

Part 3: Simulated Teleconnections

While the winter teleconnection between the ASW and tropical Pacific for these mod-

els is characterized in Chapters 4 and 5 and Section 6.1.7, herein we additionally compare the

winter teleconnection to that of summer specifically for the NAM2 subset of the full ASW. In

both models, the winter teleconnection to the NAM2 region is positive and characteristic of
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the observed teleconnection in sign, magnitude and spatial features (Figure 6.17). The MPI

model exhibits a moderately negative summer teleconnection between NAM2 SPI and the

tropical Pacific that is again largely characteristic of the observation-to-reconstruction and

observed summer teleconnections (Figure 6.17 versus 6.11). In contrast to the observation-

to-reconstruction and MPI dynamics, the CCSM model exhibits a weakly positive summer

teleconnection (Figure 6.17). This is of the same sign as the winter teleconnection in the

CCSM model, which exhibits winter precipitation variability that is tightly coupled to the

tropical Pacific on both interannual and longer timescales (Chapters 4 and 5 and Section

6.1.7).

Figure 6.17: The same as Figure 6.12 but over the full length of the CCSM and MPI
simulations. The plotted domain is 180◦W–180◦E by 40◦S–90◦N.

Figure 6.18 assesses the simulated teleconnection stationarity, defined as in Chapter

4, but again for both the winter and summer seasons. The analysis indicates that while the

CCSM winter teleconnection is highly stationary (Chapter 4), the summer teleconnection is

not. Neither the winter nor summer teleconnections are stationary through time in MPI,

and more generally ASW hydroclimate is less tightly coupled to the tropical Pacific in MPI

relative to the CCSM model (Chapter 5).
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Figure 6.18: Winter (DJF) and summer (JJA) teleconnection stationarity defined as in
Chapter 4. Box plots indicate the 75th and 25th percentile of the CPCS statistic across the
segments in the respective coupled model runs with the median as the bolded line and the
whiskers showing the full data excluding outliers.

Part 4: Dynamical Conclusions

We now summarize the dynamics for each model and how they relate to the lack

of a systematic seasonal precipitation phasing relationship, while in the next paragraph we

reconcile these dynamics with the shorter periods of significantly in-phase seasonal precip-

itation anomalies (Part 1). CCSM exhibits positive winter and summer teleconnections.

These teleconnection characteristics suggest that in-phase seasonal precipitation anomalies

are more likely to occur. The weak average magnitude and nonstationarity of the summer

teleconnection in CCSM (Part 3), as well as the weak tendency for tropical Pacific SSTs to

persist from winter to summer (Part 2), however, make seasonal precipitation phasing that is

systematically in-phase unlikely. In MPI, the opposite-sign winter and summer teleconnec-

tions suggest that out-of-phase seasonal precipitation anomalies should occur with a higher

probability. Such phasing is made less likely, however, due to the highly non-stationary

teleconnections in MPI (Part 3), and generally weaker control of the tropical Pacific on NA

hydroclimate in the model (Chapters 4 and 5 and Section 6.1.7).
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The presence of shorter periods that are significantly in-phase in the MPI simulation

(Part 1) is surprising given the winter and summer teleconnection characteristics outlined

in Parts 2 and 3 of this section. The MPI model, nevertheless, has a high degree of non-

stationarity in its dynamical relationships. The periods of predominantly in-phase seasonal

precipitation anomalies may be indicative of the importance of this nonstationarity, with the

tropical Pacific influence on the ASW either weakening enough to allow other atmosphere-

ocean dynamics to dominate the precipitation phasing relationship (e.g. tropical or extra-

tropical Atlantic SSTs), or changing such that the tropical Pacific actually makes in-phase

seasonal precipitation anomalies more likely than out-of-phase. Analysis of the 5% of 30-

year periods with the most in-phase seasonal precipitation suggests a robust weakening of

the summer teleconnection, consistent with this interpretation (not shown). The periods

of significantly in-phase seasonal precipitation in the CCSM model are consistent with the

teleconnection and ENSO behavior outlined in Parts 2 and 3 of this section. Nevertheless,

this phasing relationship might be expected to be stronger given a more stationary summer

teleconnection or a greater frequency of same-sign tropical Pacific SST anomalies persisting

from winter-to-summer simulated within CCSM. It is additionally worth noting that the

model behavior outlined in this section does not appear to be dependent on the forcing —

control simulations from the same models reproduce approximately the same phasing char-

acteristics (Panels C and D of Figure 6.15).

6.2.5 Dual-Season Droughts and Megadroughts

The periods with a significant number of in-phase winter-to-summer precipitation

anomalies in the models and reconstruction (Part 1 of Section 6.2.4 and Section 6.2.2, respec-

tively) are suggestive of a potential for more frequent in-phase dry or dual-season drought

years (defined as having winter and summer precipitation below the mean). This is only

weakly true of the data analyzed herein, with in-phase dry years, or dual-season drought,

occurring 28, 30 and 27 percent of the time (in CCSM, MPI and the reconstruction, respec-
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tively) in the 30-year periods that fall above the 95th percentile for number of years with

in-phase seasonal precipitation anomalies. These values are 25, 25 and 22 percent when all

30-year periods are considered.

Figure 6.19: Fraction of the ten highest-ranking winter and summer droughts that are con-
temporaneous in time for the full reconstruction and for a sliding 467-year (length of recon-
struction) window across the full 1156-year model record. The gray shaded region is the 99%
confidence interval for these values as determined by an autocorrelation- and distribution-
preserving bootstrapping method. Box plots indicate the 75th and 25th percentile of the
fraction of overlapping winter and summer droughts across the segments in the model runs
with the median as the bold line and the whiskers showing the full data excluding outliers.

A distinction can be made between these interannual dual-season droughts and the

persistent droughts or megadroughts in Chapters 3 and 5. Given the multidecadal vari-

ability in the phasing of precipitation it is unclear if the models or the reconstruction will

exhibit dual-season megadroughts in the NAM2 region. To test this, the drought identifi-

cation metric was applied to the model and reconstructed SPI timeseries. Figure 6.19 plots

the percentage of times that the ten highest-ranking winter and summer droughts overlap

in time (defined by any number of overlapping drought years); results are shown for the full

reconstruction and for a sliding 467-year (length of reconstruction) window across the full

1156-year model record (this produces a range in the temporal coincidence of the ten highest-

ranking winter and summer droughts for each model, which are represented as boxplots in
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Figure 6.19). To test the significance of these associations, 5000 pairs of independent sur-

rogate timeseries with the same distribution and autocorrelation structure as the respective

winter or summer SPI were produced for each dataset (using methods in outlined Chapter

2). For the reconstruction, the temporal coincidence between the ten highest-ranking winter

and summer droughts for each surrogate pair was calculated, with the 99% level of these

values being considered significant. For the CCSM and MPI models, 5000 pairs of surrogate

timeseries were produced for each 467-year window. For each of these windows, temporal

coincidence between the ten highest-ranking summer droughts and the ten highest-ranking

winter droughts for each surrogate pair was again calculated, and the 99% level was recorded

to produce a significance range (the grey shaded regions in Figure 6.19).

For the reconstruction, 80% percent of the ten highest-ranking winter and summer

droughts are coincident in time, a value that is equal to the 99% level of the surrogate

indices. This is a remarkable result and suggests that over the last five hundred years persis-

tent drought in the NAM2 region has consistently been dual-season in character. It must be

noted, however, that while the reconstruction methodology separates the winter and sum-

mer signals on interannual timescales (Griffin et al., 2013, e.g.), the low-frequency winter

and summer signals are more challenging to parse given the short instrumental record. It is

thus difficult to determine unequivocally that persistent dual-season drought does not result

from low-frequency memory within the proxy itself (Bunde et al., 2013, e.g.). Nevertheless

it is worth hypothesizing how persistent dual season drought occurs given the dynamics

outlined in Section 6.2.2. Dual-season drought will require reduced precipitation in both

winter and summer. This will involve less precipitation delivery from the winter Pacific

storm track along with a weaker or less northward extended NAM — a combination that

the average observation-to-reconstruction teleconnection characteristics suggests is relatively

unlikely. Nonstationarity in the teleconnection dynamics is a potential source of this dis-

crepancy and along these lines, persistent dual-season drought may occur in periods when

the teleconnection or tropical Pacific variability changes such that in-phase precipitation
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anomalies are more likely to occur. A second possibility is that winter drying is driven by a

persistently cold tropical Pacific Ocean while summer drying is dominated by a persistently

warm tropical Atlantic Ocean — as suggested in Figure 6.12 (see also Kushnir et al., 2010).

The negative correlation in summer between the reconstruction and the tropical Atlantic

Ocean, however, appears weaker than the summer connection to the tropical Pacific Ocean

(Figure 6.12), although some nonstationarity of this relationship is suggested in Figure 6.13.

Additionally, there may be land-surface or other feedbacks that become important during

severe events or on long timescales. One potential example is the vegetation or dust aerosol

feedback, both of which have been shown to be important in determining the spatial scale

and magnitude of drought in the GP region (e.g. Cook et al., 2013).

For the models, only the CCSM simulation has 467-year periods with a significant

association between the 10 highest-ranking winter and summer droughts, although the ma-

jority of the 467-year periods fall well below the significance range (97% of the periods are

not individually significant at the 99% level). This indicates that the models, for the most

part, do not simulate the persistent dual-season drought exhibited by the reconstruction

(Bunde et al., 2013, note a similar discrepancy between paeloclimate reconstructions and

model simulations). Nevertheless, the greater frequency (relative to MPI) of persistent dual-

season drought in the CCSM model is a likely function of the model’s specific dynamical

characteristics. While both the MPI and CCSM models have been shown to exhibit large

magnitude mean-state changes in the tropical Pacific, the CCSM model more consistently re-

lates these changes to winter hydroclimate in the ASW (Chapter 5). Furthermore, the weak

but positive summer teleconnection in the CCSM model, as compared to the moderately

negative summer teleconnection in MPI, increases the likelihood that winter and summer

SPI anomalies will be of the same sign. It is difficult to assess this model behavior in the

context of the shorter reconstruction interval, which may be anomalous in its connection

between persistent winter and summer drought (e.g similar to a significant period in the

CCSM model). The MPI model, however, appears to underestimate the risk of persistent
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dual-season drought, a characteristic that may or may not be shared by the CCSM model

(Figure 6.19).

6.2.6 Conclusions

Multidecadal variability in the phasing of winter-to-summer precipitation anomalies

in the ASW is a robust characteristic of models and a tree-ring based reconstruction of NAM

variability (Griffin et al., 2013). While the latter part of the instrumental interval is marked

by relatively frequent out-of-phase winter-to-summer precipitation anomalies, models do not

reproduce periods with winter-to-summer precipitation anomalies that are predominantly

out of phase, and the reconstruction indicates that such behavior is anomalous over a 500-

year interval. While it is possible that this results from biases inherent to the models or the

reconstruction methodology, it is likely necessary to expand the paradigm through which

we view seasonal precipitation phasing in the ASW. One potential dynamical explanation

for the simulated seasonal precipitation phasing behavior is nonstationarity of the ENSO

teleconnection as demonstrated in Chapter 4 and Part 3 of Section 6.2.4. In the MPI

model, for instance, there is no systematic seasonal precipitation phasing relationship, despite

ENSO dynamics and an average teleconnection to the tropical Pacific Ocean that should

produce out-of-phase seasonal precipitation anomalies. The highly nonstationary ENSO

teleconnection to NA in both the winter and summer seasons (Part 3 of Section 6.2.4) may

be the source of this discrepancy.

With regard to the seasonality of megadroughts, the reconstruction, CCSM and MPI

models all exhibit multiple periods of predominantly in-phase winter-to-summer precipitation

anomalies. Periods with an in-phase seasonal precipitation relationship create the possibility

that dual-season drought will occur with a high probability. While this is true of interannual

dual-season drought in both the models and the reconstruction, only the reconstruction and

CCSM model (inconsistently) exhibit significant periods of persistent dual-season drought.

While this result is derived from a short reconstruction and for a subset of the full ASW
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region, it may clarify our understanding of the five highest-ranking droughts in the the NADA

analyzed in Chapters 3 and 5 (all of which fall during the MCA and by consequence before the

coverage of the Griffin et al., 2013, reconstruction). Principally, if the dual-season character

of persistent drought over the NAM2 region for the period 1539–2005 C.E. can be used to

infer the seasonality of MCA megadroughts, then during these features parts of the ASW

with a dual-season precipitation signal had precipitation reductions in both seasons. This

is surprising given the observed opposite-signed winter and summer teleconnections to the

tropical Pacific for the NAM2 region (Section 6.2.2) and the hypothesized La Niña-like state

during the MCA. Nevertheless, teleconnection nonstationarity and associated changes to the

seasonal precipitation phasing relationship, like that described above for the MPI model,

may explain this behavior. Another possibility is that MCA megadroughts are driven by

multiple modes of atmosphere-ocean variability. This has been suggested elsewhere (e.g.

Feng et al., 2008; Oglesby et al., 2012, indicate an important role for the Atlantic) and could

explain both the dual-season and pancontinental (Section 6.1) character of megadroughts.
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Chapter 7

Megadroughts in the Real World

7.1 Motivation and Questions

In Chapters 3 and 5 multiple modes of predominantly internal atmosphere-ocean variabil-

ity were demonstrated to drive simulated megadroughts. The megadrought dynamics specific

to each model were found to be a function of the decadal-to-multidecadal timescale dynami-

cal characteristics of that model, with the strength and stationarity of teleconnections shown

to play a particularly important role. Without better knowledge of the atmosphere-ocean

state during past megadroughts, however, it is difficult to determine if any of these simulated

megadrought dynamics are a reasonable representation of the real world. Toward such ends,

Chapter 6 analyzes the seasonality of precipitation over the ASW and pancontinental drought

over NA. Both the dual-season and pancontinental character of past persistent drought is

suggestive of a role for multiple atmosphere-ocean dynamics in driving megadroughts and

potentially of real-world teleconnection nonstationarity. One compelling possibility is that

simultaneously warm conditions in the Atlantic and cool conditions in the Pacific underlie

past megadroughts, particularly those during the MCA. Such an atmosphere-ocean state has

been suggested previously for the MCA by Seager et al. (2007). Nevertheless, the specific

characteristics of the MCA, principally the length of this atmosphere-ocean state (e.g., the
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MCA-length tropical Pacific cold state of Mann et al., 2009) and whether it arose from an

ocean dynamical response to increased forcing (e.g. Crowley, 2000) remains to be determined.

In this Chapter we use a newly available collection of tree-ring based hydroclimate

reconstructions across the NH extratropics to answer two fundamental questions: 1) What

is the most likely state of the dominant modes of NH atmosphere-ocean variability during

megadroughts in the ASW? and 2) What is the likelihood that the MCA, the period with the

greatest incidence of these features, was persistently La Niña-like? Specifically, we employ

the NADA, MADA and the new OWDA, which in aggregate provide annual estimates of

hydroclimate variability for an unprecedented 58% of NH land grid points back to 1250 C.E

and 22% of NH land grid points back to 1000 C.E. with at least 2.5◦ resolution. Importantly,

this work is the first to leverage this unprecedented collection of hydroclimate reconstruc-

tions in an aggregate analysis

7.2 Methods

The collective set of drought atlases (NADA, MADA and OWDA — hereinafter the

NH tree-ring record) are used to reproduce the positive or negative state of the four dom-

inant modes of atmosphere-ocean variability that impact hydroclimate in the ASW: the

ENSO (Niño3.4 index), AMO, PDO and North Atlantic Oscillation (NAO). Targeting sim-

ply the positive or negative state of these modes of variability differs from paleoclimate

reconstructions, which seek to provide more detailed information about past states of the

atmosphere-ocean system. We employ a climate analogues framework in which the instru-

mental interval (1870-2005 C.E. — training interval) is used to define the spatial patterns

of NH hydroclimate associated with the targeted modes of variability (hereinafter impact

maps). These impact maps are then compared to the pattern of hydroclimate across the

collection of drought atlases to determine the most likely atmosphere-ocean state for each

year of the pre-instrumental period. This analysis, however, was limited to the period after
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1000 C.E. for which the NADA and OWDA provide coverage over a large percentage of their

spatial domains. The full details of the method are outlined in the Section 7.2.2 and it is

also validated using pseudoproxy experiments (e.g. Smerdon, 2012) in Section 7.2.3.

7.2.1 Modes of Variability

The ENSO (Niño3.4 index), PDO and AMO indices were calculated as outlined in Chap-

ter 2 and specifically Section 2.6.1. The NAO was calculated from the 20th century reanalysis

(Compo et al., 2011) as the sea-level pressure difference between the Subtropical (Azores)

High (37.82◦N, 25.75◦W) and the Subpolar Low (65.08◦N, 22.73◦W) for the November–

March (NDJFM) period. All composites based on the climate indices are calculated using

the JJA grid point PDSI and either the preceding DJF average ENSO or PDO indices, the

preceding NDJFM average NAO index, or the contemporaneous JJA average AMO index.

7.2.2 Climate Analogues Framework

The climate analogues framework consists of four steps:

1: Sorting the Dynamics

For each of the four modes of variability the instrumental record (1870–2005 C.E.) is

segmented into years that are in the top (positive), middle (neutral) and bottom (negative)

third of the full distribution of values.

2: Defining Impact Maps

Hydroclimate composites are produced from the collection of drought atlases where

each grid point is assigned 1 for wet and 0 for dry. These composites are estimates of the

impact of positive, negative and neutral states of the modes of variability on the tendency
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towards wetting or drying (hereinafter impact maps). The composites are first calculated

for all years that fall in the positive, neutral or negative state of each mode (12 in total —

3 for each of the 4 modes of variability). The positive ENSO impact map, for instance, is a

composite of the NH tree-ring record over all years in the instrumental record with a positive

ENSO state (top third). The impact maps are also calculated for all combinations of two-to-

four modes. For instance, impact maps will be calculated for all years with a positive ENSO

state and each of the 9 states of the other three modes (e.g. positive ENSO and positive

AMO; two-mode combinations), as well as all combinations of three- and four-modes using

the same logic. Only impact maps with at least four events over the training interval are

employed, the motivation for which is provided in the following section, giving a total of 154

impact maps (of 255 possible). The impact maps corresponding to the positive and negative

state of each mode in isolation are plotted in Figure 7.1.

Figure 7.1: Impact maps corresponding to the positive and negative state (one mode com-
binations) of each mode of variability. Tendency is defined as the percentage of years in the
composite that were wet or dry at each grid point. As an example, a tendency of 90% dry
for positive ENSO would indicate that 90% of years in the top third of ENSO values were
dry at that grid point.
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3: Dynamical Timeseries

For each year back to 1000 C.E. the pattern of hydroclimate is compared to each of

the 154 impact maps using a CPCS. The CPCS, however, is not a good measure of pattern

similarity when the input patterns lack spatial heterogeneity. This is problematic because

impact maps defined over few events have little spatial heterogeneity. This issue is circum-

vented by requiring that the impact maps have at least four events over the training interval

(previous section), with impact maps corresponding to fewer than four events not included in

the climate analogues framework. For the period after 1250 C.E., the impact map that best

matches the spatial pattern of reconstructed hydroclimate across all three drought atlases

in a given year (highest CPCS) defines the atmosphere-ocean state for that year. For 1000

C.E.-1249 C.E., however, the spatial pattern of reconstructed hydroclimate is compared to

the impact maps over just the NADA and OWDA regions (as the MADA begins in 1250

C.E.).

Not all of the 154 impact maps provide a value for the state of all four modes. The

impact map that corresponds to just a positive ENSO state, for instance, doesn’t provide

a value for the state of the PDO, AMO and NAO. By consequence, for years in which the

chosen impact map (highest CPCS) corresponds to a one, two or three-mode combination,

secondary impact maps also need to be chosen. These secondary impact maps provide val-

ues for the modes that were not a part of the original (highest CPCS) combination, while

remaining dynamically consistent with that combination. Specifically, in each year where

a one, two or three mode combination is chosen, the impact map with the next highest

CPCS and a value for at least one of the missing modes is chosen as the secondary impact

map. This process continues until a value for all four modes is determined in a given year.

In each case the secondary impact maps have to be dynamically consistent with the first

impact map, and each other (for instance if the primary impact map were for a positive

ENSO state the secondary impact maps cannot have a neutral or negative ENSO state). For

the climate analogues framework completed herein the 5th, 50th and 95th percentile of the
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highest CPCS (corresponding to the impact map that defines the atmosphere-ocean state in

each year) are 0.20, 0.30 and 0.49, respectively.

4: Timeseries Filtering

The dynamical timeseries are ten-year low pass-filtered using a ten-point Butterworth

filter to elucidate the decadal-to-multidecadal variability of the four modes of variability.

7.2.3 Methodological Validations

Pseudoproxy Experiments

Four 500-year control simulations are used in a pseudoproxy context to test the cli-

mate analogues framework (CCSM, GISS, IPSL and MPI). The use of multiple models is

important given research that suggests skill in pseudoproxy experiments is model dependent

(e.g. Smerdon et al., 2015a) and the four models were chosen to sample a range in the char-

acteristics of decadal-to-multidecadal atmosphere-ocean dynamics (Chapters 5 and 6).

The climate analogues framework is computed using the same grid points as the

NADA, MADA and OWDA but with noise added to the PDSI fields from each model to

produce a signal-to-noise ratio of 0.5, which approximates the level of noise within the NADA

(Cook et al., 2004). To best mimic the characteristics of the actual climate analogues frame-

work, the impact maps are calculated eight times, each corresponding to a different 135-year

(length of the instrumental interval) training interval.

Pseudoproxy Timeseries

Figures 7.2 and 7.3 provide a visual representation of the dynamical timeseries pro-

duced by the climate analogues framework within the pseudoproxy experiments. In both

figures the model ground truth is plotted for comparison. Skill is measured herein as the

fraction of years outside of the training interval in which the dynamical timeseries from the
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climate analogues framework is the correct sign relative to the model ground truth. Using

this metric for each model and mode, Figure 7.2 plots the dynamical timeseries correspond-

ing to the best (highest skill) and worst instrumental-length (135-year) training interval.

For comparison, Figure 7.3 plots the dynamical timeseries corresponding to impact maps

calculated over the full temporal extent of the model simulations.
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Figure 7.2: Example dynamical timeseries for each model and mode. The actual time history
of the mode is plotted (black) with the time history corresponding to the training interval
that produced the worst (blue) and best (red) dynamical timeseries.
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Figure 7.3: Example dynamical timeseries for each model and mode. The actual time history
of the mode is plotted (black) with the dynamical timeseries corresponding to the impact
maps calculated over the full temporal extent of the model simulations plotted (orange).
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The visual representations in Figure 7.2 indicate that for all models and modes the

best timeseries (red lines in Figure 7.2) reproduce much of the time history of the model

ground truth. Even for the worst ENSO and NAO timeseries (blue lines in Figure 7.2), the

dominant features of the time history of the ground truth is still reproduced. This provides

confidence that the climate analogues framework will provide useful information for defining

the state of the ENSO and NAO during megadroughts. The worst timeseries of the PDO

and AMO, however, struggle to reproduce the time history of these modes, but this result

is somewhat model and period dependent.

The dynamical timeseries associated with impact maps calculated over the full tem-

poral extent of the model simulations are nearly perfect representations of the model ground

truth (Figure 7.3). Therefore, any inability to reproduce these modes of variability appears

to be related to the short 135-year training intervals providing too few degrees of freedom

to properly constrain their impact on hydroclimate over the NH. This is particularly true of

the PDO and AMO because of the longer timescales of variability inherent to these modes.

Importantly, this will be a fundamental limitation of any method that calibrates on the

instrumental interval, including any indirect (i.e. not based on local proxies that directly

sample the variable of interest, in this case SSTs) reconstructions of these modes and partic-

ularly those using land-based proxies. Nevertheless, model representation of the PDO and

AMO, and their hydroclimate impacts, is poor (Chapters 2 and Section 6.1). In particular,

the teleconnections between these modes and NH land areas appear weaker than those ob-

served over the instrumental interval. This presents a serious caveat for the pseudoproxy

experiments performed herein and given this, the pseudoproxy-derived skill for these modes

may be a pessimistic (or potentially conservative) representation of potential real-world skill.

Skill Scores

To explicitly define the skill of the climate analogues framework, Figure 7.4 plots

the fraction of years during the non-training interval in which the dynamical timeseries is
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the correct sign relative to the real ENSO, PDO, AMO and NAO from the model output.

The boxplots demonstrate the range in skill for the eight instrumental-length training in-

tervals and the asterisks indicate the skill value if the impact maps are calculated over the

full temporal extent of the model simulations. We calculate a significant skill threshold by

randomly generating the positive, negative or neutral state of each mode in each year 1,000

times and assessing the 95th percentile of skill for these randomly generated timeseries (skill

below the threshold are plotted as the grey shaded regions in Figure 7.4). Additionally, to

test the benefit provided by using the collection of drought atlases, the pseudoproxy skill is

calculated for a climate analogues framework using just the individual regions covered by

the NADA, MADA and OWDA (and combinations — boxplot colors in Figure 7.4).
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Figure 7.4: Skill calculated as the percentage of years in which the dynamical timeseries
calculated using the climate analogues framework is the correct sign relative to the model
ground truth. The asterisk is the skill when using the full temporal extent of the model
simulation to compute the impact maps. The boxplots are the range in skill for impact
maps calculated using 135-year (length of the instrumental interval) training intervals. Each
color corresponds to a climate analogues framework computed using a subset of the full NH
spatial range. Skill below the 95th percentile for randomly generated dynamical timeseries
is denoted by the gray shaded region. All pseudoproxies have been calculated using a 0.5
signal-to-noise ratio.
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As was suggested by the visual representations in Figure 7.2 and 7.3, given enough de-

grees of freedom, the climate analogues framework will be highly skillful (asterisks in Figure

7.4). For instrumental length training intervals, however, the climate analogues framework

is only significantly skillful for the ENSO and NAO and this behavior is not highly model

dependent. Finally, using the NADA, MADA and OWDA regions together provides addi-

tional skill relative to a climate analogues framework calculated using only individual regions.

7.3 Results

The right hand panels of Figure 7.5 plot five published ENSO reconstructions, which

are not fully independent but are calculated using different reconstruction methods and

proxy networks. These provide a point of comparison to our own analyses and a survey

of whether currently available ENSO reconstructions support the hypothesis that La Niña-

like states underlie megadroughts (e.g. Herweijer et al., 2007). As might be expected given

the research outlined in Chapter 1, there is only weak agreement between the overall time

history of the five reconstructions and large differences in the magnitudes and variability

structures (only three of the ten possible correlations between reconstructions are signifi-

cant at the 99% level). To focus specifically on the dynamics underlying megadroughts,

the left hand panel of Figure 7.5 indicates the percentage of megadrought years that have

positive or negative values in each of the ENSO reconstructions. To maintain consistency

with Chapters 3 and 5, focus is limited to the five highest-ranking droughts over the ASW

in the NADA using the drought identification metric. In aggregate, the reconstructions sug-

gest that ENSO tends to be negative during megadroughts. Nevertheless, of the 16 times

that the five highest-ranking droughts overlap with the timing of the ENSO reconstructions

only five are individually significant at the 95% level using a distribution and autocorrela-

tion preserving bootstrapping significance test (Chapters 2 and 5). Given the heterogeneity

in these reconstructions and the general ambiguity of the suggested relationships between
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reconstructed ENSO and megadroughts, additional research is clearly needed to constrain

megadrought dynamics. Along these lines, we use the new set of drought atlases to determine

the dynamics that underlie megadroughts, allowing for the possibility that multiple modes

of atmosphere-ocean variability are needed to produce these features.
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Figure 7.5: (right) Reconstructions of ENSO using different methods and proxy networks
(Emile-Geay et al., 2013; Mann et al., 2009; Li et al., 2013; Tierney et al., 2015; Cook
et al., 2009). In each case the data has been ten-year low-pass filtered. For Emile-Geay
et al. (2013), Li et al. (2013), and Cook et al. (2009) the reconstructed index is for the
Niño3.4 region, while for Mann et al. (2009) it is the Niño3 region and for Tierney et al.
(2015) it is the eastern Pacific (10◦N–10◦S, 175◦E–85◦W). The timing of the five highest-
ranking droughts is denoted by the colored regions. (left) Associations between the identified
megadroughts and ENSO for the period 1000-2005 C.E. using linearly detrended timeseries
as some reconstructions are standardized against a warm instrumental interval (e.g. Mann
et al., 2009, and by consequence are always anomalously negative outside of that interval).
For associations at 100% “Positive”, every year of the identified drought has a reconsrtucted
ENSO value that is positive (and vice-versa for 100% “Negative”).The colored squares are
for the five individual highest-ranking droughts (less than five of these features, however,
overlap with the reconstructed record in Emile-Geay et al., 2013; Tierney et al., 2015; Cook
et al., 2009). The shaded regions are the range in 95% significance level for the five identified
droughts using a distribution and autocorellation preserving bootstrapping method to test
statistical significance (Chapters 2 and 5).

Figure 7.6 shows the output of the climate analogues framework outlined in Section

7.2.2 and validated in Section 7.2.3. For each of the five highest-ranking droughts over the

ASW (bottom panel of Figure 7.6), we assess the underlying dynamics by calculating the
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percentage of drought years that have implied positive or negative values in each of the

ENSO, PDO, AMO and NAO indices (Panel A of Figure 7.7). Megadroughts over the ASW

are consistently and significantly tied to an implied negative (or cold) ENSO state, with

97% of megadrought years having negative ENSO values. The association between ENSO

and megadroughts is found to be present regardless of the underlying regions employed in

the climate analogues framework (with the exception of just the OWDA — Panel B of Fig-

ure 7.7), providing confidence that the association is robust and not solely dependent on

the NADA, in which the megadroughts were identified. Instead, a hemispheric hydroclimate

pattern is present during megadroughts that is characteristic of a negative ENSO state. This

pattern involves a north (wet)-south (dry) dipole of hydroclimate over western NA with an

opposite signed north-south dipole over Asia and dry conditions over the Iberian peninsula

and central Europe. Importantly, we hypothesize that such a pattern is unlikely to have

resulted from stochastic internal atmospheric variability, which tends to have more regional,

as opposed to hemispheric, impacts.
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Figure 7.6: Timeseries of ENSO, PDO, AMO and NAO states with the five highest-ranking
droughts denoted by the colored regions. The timeseries show the 10-year low-pass filtered
(with a ten-point Butterworth filter) the results from the climate analogues framework. If the
timeseries is at “positive” on the vertical axis then all of the individual years contributing to
the 10-year low pass filtered value would be positive. The MCA (1000–1300 C.E.) is marked
at the top of the figure. The bottom panel shows the ASW PDSI timeseries.
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Figure 7.7: Panel A shows the association between the five highest-ranking droughts and
the atmosphere-ocean dynamics. For associations at 100% “Positive”, every year of the
identified drought has a dynamical timeseries value that is positive (and vice-versa for 100%
“Negative”). The colored squares are the results for the five individual highest-ranking
droughts. The shaded regions in Panel A are the range in 95% significance level for these five
highest-ranking droughts using a distribution and autocorellation preserving bootstrapping
method to test statistical significance (Chapters 2 and 5). The circles show values for all
five identified droughts considered collectively, with the filled circles being those associations
that are significant at the 95% level. Panel B shows the same values but calculated using
subsets of the full NH dendroclimatic reconstructions.

The three highest-ranking droughts in the ASW over the last millennium occurred

during the MCA (bottom panel of Figure 7.6), defined herein as 1000-1300 C.E. While the

limitations of the NH tree-ring record constrain our analyses to the period after 1000 C.E.,

all five of the highest-ranking droughts would fall within the more traditional MCA defini-

tion of 850-1300 C.E. (e.g. Chapter 5). MCA megadrought severity and clustering, along

with strong coupling of ASW hydroclimate to tropical Pacific SSTs and a hypothesized La

Niña-like response of the tropical Pacific to positive external forcing, has led to specula-

tion that the tropical Pacific was persistently La Niña-like over the extent of the MCA.

The ENSO timeseries in Figure 7.6, however, does not appear to be persistently La Niña-
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like during any MCA-length (300-year) period. The NH tree-ring record, therefore, does

not support the hypothesis that the MCA was La Niña-like throughout, nor does it suggest

that a forced response in the tropical Pacific is dominant on centennial and longer timescales.

1000 1200 1400 1600 1800 2000

0.3

0.5

0.7

0.9

Years

Fr
ac

tio
n

0.55 0.6 0.65

50

100

150

N
um

be
r

300−year Fraction

50 yr
100 yr
200 yr
300 yr

A

M
C

A Value

B
MCA

Figure 7.8: Panel A is the fraction of years with a negative ENSO value for sliding windows of
50, 100, 200 and 300-years length. The horizontal axis shows the first year of each window.
Panel B is a histogram of the fraction of years in each 300-year segment (length of the
MCA) with a negative ENSO value. The value corresponding to the MCA (1000-1300 C.E.)
is plotted as the vertical line.

Shorter ten-to-thirty year cold states in the tropical Pacific, however, are a relatively

consistent feature of the last millennium of ENSO variability (Figure 7.6). It is these fea-

tures that predominantly underlie megadroughts (Panel A of Figure 7.7). While the MCA

has a high incidence of ten-to-thirty year cold states in the tropical Pacific, the temporal

clustering is not singular when compared to other 300-year periods. The 300-year period

beginning in the late 16th century, for instance, also has a high incidence of ten-to-thirty

year cold states in the tropical Pacific (Figure 7.6 and Panel A of Figure 7.8). Likewise, the

percentage of negative ENSO years during the MCA is not singular when compared to other

300-year periods (95th percentile in fraction of negative ENSO years — Panel B of Figure

7.8). Finally, the three tropical Pacific cold states that underlie the MCA megadroughts are

not the most exceptional of the last millennium when ranked by the number of consecutive

negative ENSO years (they are the 4th, 5th and 14th ranked — not shown). Because tropical

Pacific cold states during the MCA are neither more prevalent nor exceptional in character,
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it may be necessary to invoke other atmosphere-ocean dynamics to explain the severity and

clustering of megadroughts during the MCA.

While there are no significant connections between the other three modes of atmosphere-

ocean variability and the five-highest ranking droughts in the ASW (when considered to-

gether — Panel A of Figure 7.7), these may have played a secondary role in determining

the severity and clustering of megadroughts during the MCA. Forcing from warm tropical

North Atlantic SSTs, for instance, is an atmosphere-ocean state that produces drying over

the ASW (e.g. Feng et al., 2008; Oglesby et al., 2012; Schubert et al., 2009; Kushnir et al.,

2010; McCabe et al., 2004). The timeseries in Figure 7.6 suggests that there were warm

conditions in the Atlantic during the MCA, as the AMO is persistently positive in Figure

7.6 from approximately 1100-1300 C.E. The shift to a positive AMO is coincident with a

period of protracted drying in the CP region of NA (e.g. Cook et al., 2010b, 2013), where

hydroclimate variability is reasonably tightly coupled to Atlantic SSTs (e.g. Kushnir et al.,

2010; McCabe et al., 2004). Importantly, the MCA is the highest-ranked 300-year period

when ranked by fraction of years with both a negative ENSO state and positive state of

the AMO (not shown). A potential mechanism would involve tropical North Atlantic SSTs

driving background drying during the MCA upon which ten-to-thirty year cold states in

the tropical Pacific produced particularly severe megadroughts. Nevertheless, the AMO was

not positive during the early part of the MCA (Figure 7.6) and pseudoproxy experiments

(Section 7.2.3) provide less confidence in the ability of the climate analogues framework to

reproduce the state of the AMO because of poor sampling of such low-frequency modes over

the 135-year training interval.

Figure 7.6 additionally suggests that the PDO was positive during much of the MCA.

A positive PDO does not produce drying over the ASW (e.g. McCabe et al., 2004). It is

worth noting, however, that a positive PDO during the MCA is inconsistent with the results

of MacDonald & Case (2005), in which western NA tree-ring chronologies were used to recon-

struct a negative PDO for the first half of the last millennium. The full NH tree-ring record
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used herein, therefore, contradicts the MCA PDO signal within the western NA tree-ring

chronologies employed by MacDonald & Case (2005). While the pseudoproxy experiments

used for methodological validation provide less confidence in this result (Section 7.2.3), a

recent reconstruction of bi-hemispheric interdecadal Pacific variability also suggests that the

PDO was positive during the MCA (Vance et al., 2015). With regard to MCA megadroughts,

these might have been even more severe if not for the the implied positive conditions in the

PDO during this period.

7.3.1 Conclusions

The new hemispheric record of hydroclimate variability provided by the NADA,

MADA and OWDA has been used herein to provide a best estimate of the state of the

four dominant modes of NH atmosphere-ocean variability during megadroughts. Over the

last millennium, megadroughts are consistently and significantly associated with decadal-

to-multidecadal cold states in the tropical Pacific. Nevertheless, a prominent hypothesis

that the MCA, the period with the greatest incidence of these features, was persistently La

Niña-like is incongruous with the results of our analysis. Instead, warm conditions in the

Atlantic may have played a necessary role in driving drying during the MCA. Importantly,

these dynamics are in accordance with both the dual-season character of persistent drought

and the increase in the frequency of pancontinental drought during the MCA (and specifi-

cally during MCA megadroughts — Chapter 6). To produce dual-season megadroughts with

this atmosphere-ocean state would involve a cold tropical Pacific driving winter drying while

warm Atlantic conditions produce summer drying. Cold tropical Pacific and warm Atlantic

conditions are also associated with an increase in the frequency of pancontinental drought

occurrence during the instrumental interval (Figure 6.7 of Chapter 6).

With regard to the forced versus internal origins of tropical Pacific cold states, the

MCA was not La Niña-like over its full extent, nor were the individual cold states more per-

sistent during this period, which is inconsistent with a strong thermostat response (Clement
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et al., 1996) to increased forcing (e.g. Crowley, 2000) and potentially suggestive of an impor-

tant role for internal variability. Such a scenario in the tropical Pacific is consistent with that

of CCSM in Chapter 5, which exhibits similar ten-to-thirty year cold states in the tropical

Pacific that result from internal variability.
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Chapter 8

Conclusions

8.1 Summary, Discussions and Future Work

Both ECHO-G and an ensemble of models from the CMIP5/PMIP3 are capable of sim-

ulating megadroughts in the ASW that are similar in duration and magnitude to those ob-

served in the paleoclimate record. The droughts are not, however, temporally synchronous

with those in the proxy record. Furthermore, there is very little overlap between drought fea-

tures in the PMIP3 runs, despite the use of similar forcing series to drive these simulations.

Similarly, in the ECHO-G model, megadroughts do not appear to have a preferred forcing

state. Together this suggests that model-simulated megadroughts can result from internal

variability of the modeled climate system, rather than as a response to changes in exogenous

forcings, or from compensating feedback mechanisms that mask a forced hydroclimate re-

sponse. In support of the former possibility, the statistics of persistent drought in unforced

control runs are largely consistent with those in the corresponding forced simulations.

While stochastic atmospheric variability is able to drive persistent drought in CGCMs

(e.g., ECHO-G — Chapter 3), it is not a robust feature. In particular, models with strong

and stationary teleconnections (e.g., CCSM — Chapters 4 and 5), and large multi-decadal

variability in the tropical Pacific (Chapters 2, 5 and 6), simulate megadroughts driven by
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internal variability of the tropical Pacific mean state. Analysis of the NH tree-ring record

over the last millennium suggests that models like CCSM are perhaps best representing real-

world megadrought dynamics. Principally, real-world megadroughts are consistently driven

by ten-to-thirty year cold states in the tropical Pacific Ocean (Chapter 7). It is important to

note, however, that CCSM may be getting the right answer — megadroughts driven by the

tropical Pacific boundary conditions — for the wrong reasons. Along these lines, the analyses

in Chapter 7 suggest a necessary role for Atlantic SSTs in driving megadroughts, particularly

the clustering and severity of these features during the MCA. Further evidence for a relation-

ship between Atlantic SSTs and megadroughts is provided by both the dual-season character

of persistent drought and the increase in the frequency of pancontinental drought during the

MCA (and specifically during MCA megadroughts — Chapter 6). CCSM, however, does not

exhibit a relationship between the AMO or equatorial Atlantic and megadroughts (Figure

5.6 of Chapter 5) and more generally the characteristics of non-ENSO modes of atmosphere-

ocean variability are much less realistic in state-of-the-art CGCMs. In the case of CCSM, for

instance, the association between megadroughts and the tropical Pacific may not result from

the efficacy of the model’s dynamics but rather because ENSO unrealistically dominates

overall climate variability (e.g. the unrealistically large tropical Pacific variability in Figure

2.9).

With regard to future projections, this discussion speaks to the importance of ana-

lyzing specific models and ensemble behavior from a dynamical perspective. Specifically, the

work presented herein complements approaches that employ a statistical rescaling of model

output using information about real-world hydroclimate persistence from the observed and

paleoclimate record to assess the risk of future hydroclimate change (e.g. Ault et al., 2013,

2014). A model can both succeed and fail at reproducing observed persistence characteristics

for a variety of dynamical reasons; understanding what drives the simulated hydroclimate

dynamics on these timescales will help provide reliable information on the risk of future

drought in the ASW. Along these lines, whether or not it is dynamically realistic, low-
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frequency hydroclimate variability driven by the atmosphere and SST variability outside the

tropical Pacific Ocean are common model features. Given that these same models are used

to produce future projections, it is critical to better understand this model behavior in the

context of the actual climate system. A stark example would be the model response to a

greenhouse gas induced change to either the ENSO (e.g. Clement et al., 1996) or AMO (e.g.

Ting et al., 2009). If these responses are large in magnitude, the simulated hydroclimate

change over NA will be different for each model. In CCSM, for instance, a large forced re-

sponse in the tropical Pacific Ocean would be expected to drive large hydroclimate impacts

over NA, including pancontinental megadroughts. The same change in BCC, however, would

yield smaller impacts.

Despite the efforts herein, it is difficult to determine which of these model responses

is realistic, and by consequence, which model projection should be considered the most accu-

rate, because even in models that are successful at simulating the observed and paleoclimate

atmosphere-ocean dynamics, the dynamical relationships are often nonstationary and their

connections to radiative forcings are not well constrained. This issue is compounded by the

fact that the observed dynamics themselves have been inferred from a 152-year instrumental

interval that cannot provide a full assessment of the stationarity of real-world dynamics.

In lieu of a more complete understanding of past and future climate variability, it will be

important to consider projections of hydroclimate beyond a “one model, one vote” approach,

in which the CGCM ensemble average projection is taken as the best guess at the future

state of the climate system. Such an approach has statistical merit (Weigel et al., 2010),

particularly in situations, such as this, with incomplete information on the error and bias

structures of CGCMs (Knutti et al., 2010). Given the conclusions presented herein, however,

it is clear that ensemble averaging CGCM projections will mask differences in the model re-

sponse to increasing greenhouse gases that have important (even if unrealistic) dynamical

underpinnings.

The discussion of future hydroclimate projections up to this point has only invoked
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forced variability. Any CGCM projected response to increased greenhouse gas forcing (e.g.,

Chapter 1 and Cook et al., 2015) will nevertheless couple with multidecadal internal vari-

ability in the atmosphere and the oceanic boundary conditions to determine the actual

hydroclimate state in the near-term future. In Chapter 7 multidecadal hydroclimate vari-

ability and megadroughts appear to be lower-frequency analogs of the more familiar annual

events, both driven by the tropical Pacific Ocean. If indeed true, this characteristic might

provide some predictability based on long timescale characteristics of the state of the tropi-

cal Pacific Ocean, although operational prediction has yet to exceed the seasonal timescale

(e.g. Barnston et al., 2012; Zhu et al., 2012). Likewise, in Chapters 6 and 7 the AMO is

demonstrated to provide an important control on the character of multidecadal hydroclimate

variability, particularly its severity, seasonality and spatial features. The slowly varying na-

ture of this mode, and its connections to the wider atmosphere-ocean system, suggests that

it is a potential target for predictability on decadal and longer timescales (e.g. Smith et al.,

2012; McCarthy et al., 2015). Multidecadal projections that take into account the most

likely future trajectory of the ENSO and potentially of the AMO therefore appear possible

and stand as critical efforts for projecting the risk probabilities associated with drought over

the near-term future.

While this study presents a critical baseline by which to inform future research on the

climate of the C.E. and projections of hydroclimate over the ASW, more needs to be done to

improve our understanding of hydroclimate dynamics on these timescales. Of principle im-

portance will be understanding the origin of decadal variability in the tropical Pacific Ocean

and whether it is a low-frequency expression of the internally generated ENSO, results from

interplay of multiple modes of internal atmosphere-ocean variability or has a forced compo-

nent. Along these lines, that the MCA was not La Niña-like throughout, nor were the cold

states more persistent during this period, suggests a role for internal dynamics in generating

decadal variability in the tropical Pacific Ocean (Chapter 7). This is of societal importance

because it would indicate that megadroughts driven by the tropical Pacific boundary condi-
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tions can occur today, regardless of any anthropogenic greenhouse gas forcing. Importantly,

subsequent research on the origin of decadal variability in the tropical Pacific and other

facets of decadal-to-multidecadal hydroclimate dynamics will benefit from the techniques

developed in this dissertation. With the advent of further regional paleoclimate datasets

of hydroclimate variability (e.g., the new OWDA — Cook, in review), for instance, these

methods for characterizing past and simulated hydroclimate can be expanded to inform our

understanding of global drought risk. Additionally, high resolution reconstructions of cli-

mate variables from such diverse sources as speleothems, leaf waxes, and corals represent

another important source of information on low-frequency climate variability that can be

analyzed in a paleoclimate model-data comparison framework. An intriguing possibility

would be to combine this range of available proxy data to produce a comprehensive global

multi-model drought attribution study based on direct estimates of both past hydroclimate

and atmosophere-ocean states. This will further inform our understanding of the varying

mechanisms of drought generation in the CMIP5 models. To do this with certainty will

require, in particular, longer independent and direct (or in situ) records of proxy estimated

ocean conditions (e.g. Tierney et al., 2015) in addition to continued efforts to improve the

sampling, analysis and reconstruction methods of the paleoclimate record of the C.E. Com-

bining such paleoclimate products with continued model work promises to both improve

our understanding of past hydroclimate variability and the way in which we represent im-

portant climatic processes in climate models, the latter of which is essential for accurately

constraining projected hydroclimate risks in the 21st century.
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