14,716 research outputs found
Knowledge and technology transfer from universities to industries: A case study approach from the built environment field
Enabling kowledge societies and knowledge based economies is a key policy in the UK. KTP (Knowledge Transfer Partnership) scheme initiated by the Technology Strategy Board is a pathway for collaboration and partnerships between Higher Education institutions and companies to transfer innovative knowledge based solutions from universities to businesses in order to equip them with the leading edge knowledge and technology infrastructure for sustainable long term competitive advantages in both national and international market.
The paper explains a KTP project between the University of Salford and John McCall Architects (JMA) in Liverpool in the UK that aimed to identify, map and re-engineer JMA’s strategic and operational change processes through Lean thinking and the implementation of Building Information Modelling (BIM), which is a foundational tool for implementing an efficient process and invariably leads to lean-orientated, team based approach to design and construction by enabling the intelligent interrogation of designs; provide a quicker and cheaper design production; better co-ordination of documentation; more effective change control; less repetition of processes; a better quality constructed product; and improved communication both for JMA and across the supply chain whereas it provided opportunity to increase business relevance of knowledge based research and teaching for the Higher Education.
Case Study approach is employed in the paper and the KTP project is assessed for i) how it helped in improving JMA’s knowledge and technology capacity in conducting their practice, and, ii) how it helped the university in improving its knowledge based research and teaching
BOUDREAU, Claude et Michel GAUMOND, Le Québec sous l’oeil de l’arpenteur-géomètre. Depuis Champlain (Québec, Les Publications du Québec, 2007), 140 p.
Training Big Random Forests with Little Resources
Without access to large compute clusters, building random forests on large
datasets is still a challenging problem. This is, in particular, the case if
fully-grown trees are desired. We propose a simple yet effective framework that
allows to efficiently construct ensembles of huge trees for hundreds of
millions or even billions of training instances using a cheap desktop computer
with commodity hardware. The basic idea is to consider a multi-level
construction scheme, which builds top trees for small random subsets of the
available data and which subsequently distributes all training instances to the
top trees' leaves for further processing. While being conceptually simple, the
overall efficiency crucially depends on the particular implementation of the
different phases. The practical merits of our approach are demonstrated using
dense datasets with hundreds of millions of training instances.Comment: 9 pages, 9 Figure
Technology adoption in the BIM implementation for lean architectural practice
Justification for Research: the construction companies are facing barriers and challenges in BIM adoption as there is no clear guidance or best practice studies from which they can learn and build up their capacity for BIM use in order to increase productivity, efficiency, quality, and to attain competitive advantages in the global market and to achieve the targets in environmental sustainability.
Purpose: this paper aims to explain a comprehensive and systemic evaluation and assessment of the relevant BIM technologies as part of the BIM adoption and implementation to demonstrate how efficiency gains have been achieved towards a lean architectural practice.
Design/Methodology/Approach: The research is undertaken through a KTP (Knowledge transfer Partnership) project between the University of Salford and the John McCall Architects based in Liverpool, which is an SME (Small Medium Enterprise). The overall aim of KTP is to develop Lean Design Practice through the BIM adoption and implementation. The overall BIM implementation approach uses a socio-technical view in which it does not only consider the implementation of technology but also considers the socio-cultural environment that provides the context for its implementation. The technology adoption methodology within the BIM implementation approach is the action research oriented qualitative and quantitative research for discovery, comparison, and experimentation as the KTP project with JMA provides an environment for “learning by doing”
Findings: research has proved that BIM technology adoption should be undertaken with a bottom-up approach rather than top-down approach for successful change management and dealing with the resistance to change. As a result of the BIM technology adoption, efficiency gains are achieved through the piloting projects and the design process is improved through the elimination of wastes and value generation.
Originality/Value: successful BIM adoption needs an implementation strategy. However, at operational level, it is imperative that professional guidelines are required as part of the implementation strategy. This paper introduces a systematic approach for BIM technology adoption based on a case study implementation and it demonstrates a guideline at operational level for other SME companies of architectural practices
The key performance indicators of the BIM implementation process
Contemporarily some firms in the construction industry are attempting to adopt a BIM method of working. Each of these attempts reflects a varying BIM adoption philosophy and inevitably different BIM technologies, implementation strategies and roadmaps. On the other hand, all these attempts are often motivated to attain competitive advantages for product delivery in the market place. The question of what the best method of adopting BIM has not been answered yet. That is to say, it is required to identify a standard method that will benchmark the different BIM adoption cases by comparing the efficiency gains in these cases: a standard benchmarking method can help the stakeholders to decide on the most appropriate strategies for themselves.
This paper explains the live experience of BIM adoption in a KTP (Knowledge Transfer Partnership) project, undertaken between the University of Salford and John McCall Architects practicing in the housing and regeneration fields, with a particular focus on a set of KPIs that have been developed and tested through the action research strategy in the project. Weighting of these KPI’s has been developed from an architectural business perspectiv
BIM adoption and implementation for architectural practices
Severe issues about data acquisition and management arise during the design creation and development due to complexity, uncertainty and ambiguity. BIM (Building Information Modelling) is a tool for a team based lean design approach towards improved architectural practice across the supply chain. However, moving from a CAD (Computer Aided Design) approach to BIM (Building Information Modelling) represents a fundamental change for individual disciplines and the construction industry as a whole. Although BIM has been implemented by large practices, it is not widely used by SMEs (Small and Medium Sized Enterprises).
Purpose: This paper aims to present a systematic approach for BIM implementation for Architectural SMEs at the organizational level
Design/Methodology/Approach: The research is undertaken through a KTP (Knowledge transfer Partnership) project between the University of Salford and John McCall Architects (JMA) a SME based in Liverpool. The overall aim of the KTP is to develop lean design practice through BIM adoption. The BIM implementation approach uses a socio-technical view which does not only consider the implementation of technology but also considers the socio-cultural environment that provides the context for its implementation. The action research oriented qualitative and quantitative research is used for discovery, comparison, and experimentation as it provides �learning by doing�.
Findings: The strategic approach to BIM adoption incorporated people, process and technology equally and led to capacity building through the improvements in process, technological infrastructure and upskilling of JMA staff to attain efficiency gains and competitive advantages.
Originality/Value: This paper introduces a systematic approach for BIM adoption based on the action research philosophy and demonstrates a roadmap for BIM adoption at the operational level for SME companie
Suprathermal electrons at Saturn's bow shock
The leading explanation for the origin of galactic cosmic rays is particle
acceleration at the shocks surrounding young supernova remnants (SNRs),
although crucial aspects of the acceleration process are unclear. The similar
collisionless plasma shocks frequently encountered by spacecraft in the solar
wind are generally far weaker (lower Mach number) than these SNR shocks.
However, the Cassini spacecraft has shown that the shock standing in the solar
wind sunward of Saturn (Saturn's bow shock) can occasionally reach this
high-Mach number astrophysical regime. In this regime Cassini has provided the
first in situ evidence for electron acceleration under quasi-parallel upstream
magnetic conditions. Here we present the full picture of suprathermal electrons
at Saturn's bow shock revealed by Cassini. The downstream thermal electron
distribution is resolved in all data taken by the low-energy electron detector
(CAPS-ELS, <28 keV) during shock crossings, but the higher energy channels were
at (or close to) background. The high-energy electron detector (MIMI-LEMMS, >18
keV) measured a suprathermal electron signature at 31 of 508 crossings, where
typically only the lowest energy channels (<100 keV) were above background. We
show that these results are consistent with theory in which the "injection" of
thermal electrons into an acceleration process involves interaction with
whistler waves at the shock front, and becomes possible for all upstream
magnetic field orientations at high Mach numbers like those of the strong
shocks around young SNRs. A future dedicated study will analyze the rare
crossings with evidence for relativistic electrons (up to ~1 MeV).Comment: 22 pages, 5 figures. Accepted for publication in Ap
- …
