267 research outputs found
The co-evolution of multiply-informed dispersal: information transfer across landscapes from neighbors and immigrants
Dispersal plays a key role in natural systems by shaping spatial population and evolutionary dynamics. Dispersal has been largely treated as a population process with little attention to individual decisions and the influence of information use on the fitness benefits of dispersal despite clear empirical evidence that dispersal behavior varies among individuals. While information on local density is common, more controversial is the notion that indirect information use can easily evolve. We used an individual-based model to ask under what conditions indirect information use in dispersal will evolve. We modeled indirect information provided by immigrant arrival into a population which should be linked to overall metapopulation density. We also modeled direct information use of density which directly impacts fitness. We show that immigrant-dependent dispersal evolves and does so even when density dependent information is available. Use of two sources of information also provides benefits at the metapopulation level by reducing extinction risk and prolonging the persistence of populations. Our results suggest that use of indirect information in dispersal can evolve under conservative conditions and thus could be widespread
Cooperative social clusters are not destroyed by dispersal in a ciliate
<p>Abstract</p> <p>Background</p> <p>The evolution of social cooperation is favored by aggregative behavior to facilitate stable social structure and proximity among kin. High dispersal rates reduce group stability and kin cohesion, so it is generally assumed that there is a fundamental trade-off between cooperation and dispersal. However, empirical tests of this relationship are rare. We tested this assumption experimentally using ten genetically isolated strains of a ciliate, <it>Tetrahymena thermophila</it>.</p> <p>Results</p> <p>The propensity for social aggregation was greater in strains with reduced cell quality and lower growth performance. While we found a trade-off between costly aggregation and local dispersal in phenotypic analyses, aggregative strains showed a dispersal polymorphism by producing either highly sedentary or long-distance dispersive cells, in contrast to less aggregative strains whose cells were monomorphic local dispersers.</p> <p>Conclusion</p> <p>High dispersal among aggregative strains may not destroy group stability in <it>T. thermophila </it>because the dispersal polymorphism allows social strains to more readily escape kin groups than less aggregative strains, yet still benefit from stable group membership among sedentary morphs. Such dispersal polymorphisms should be common in other social organisms, serving to alter the nature of the negative impact of dispersal on social evolution.</p
Evolution of dispersal and life history strategies – Tetrahymena ciliates
Background: Considerable attention has focused on how selection on dispersal and other core life-history strategies (reproductive effort, survival ability, colonization capacity) may lead to so-called dispersal syndromes. Studies on genetic variation in these syndromes within species could importantly increase our understanding of their evolution, by revealing whether traits co-vary across genetic lineages in the manner predicted by theoretical models, and by stimulating further hypotheses for experimental testing. Yet such studies remain scarce. Here we studied the ciliated protist Tetrahymena thermophila, a particularly interesting organism due to cells being able to transform into morphs differing dramatically in swim-speed. We investigated dispersal, morphological responses, reproductive performance, and survival in ten different clonal strains. Then, we examined whether life history traits co-varied in the manner classically predicted for ruderal species, examined the investment of different strains into short- and putative long-distance dispersal, while considering also the likely impact of semi-sociality (cell aggregation, secretion of 'growth factors') on dispersal strategies.
Results: Very significant among-strain differences were found with regard to dispersal rate, morphological commitment and plasticity, and almost all core life-history traits (e. g. survival, growth performance and strategy), with most of these traits being significantly intercorrelated. Some strains showed high short- distance dispersal rates, high colonization capacity, bigger cell size, elevated growth performance, and good survival abilities. These well performing strains, however, produced fewer fast-swimming dispersal morphs when subjected to environmental degradation than did philopatric strains performing poorly under normal conditions.
Conclusion: Strong evidence was found for a genetic covariation between dispersal strategies and core life history traits in T. thermophila, with a fair fit of observed trait associations with classic colonizer models. However, the well performing strains with high colonization success and short- distance dispersal likely suffered under a long-distance dispersal disadvantage, due to producing fewer fast-swimming dispersal morphs than did philopatric strains. The smaller cell size at carrying capacity of the latter strains and their poor capacity to colonize as individual cells suggest that they may be adapted to greater levels of dependency on clone-mates (stronger sociality). In summary, differential exposure to selection on competitive and cooperative abilities, in conjunction with selective factors targeting specifically dispersal distance, likely contributed importantly to shaping T. thermophila dispersal and life history evolution
Shift in behaviour related to pregnancy in Lacerta vivipara
Dans la littérature, la réduction d'activité pendant la gestation des femelles de reptiles vivipares est la plupart du temps interprétée comme un comportement d'évitement des prédateurs. Nous avons compare le comportement
journalier de Lacerta vivipara gestantes et post-parturientes et la réaction de ces deux types de femelles face a un stimulus simulant un prédateur. L'activité de thermorégulation n'est pas de même type, en fonction de la température, chez les femelles gestantes et post-parturientes. Aucune
différence n'est mise en évidence pour les deux types de femelles quant à la réaction a un stimulus menaçant. Bien que seulement indicatifs, ces résultats sont difficilement explicables si on envisage seulement l'hypothèse d'un comportement anti-prédateur; ils pourraient être en partie
induits par les besoins physiologiques du développement embryonnair
Parity-specific differences in spatial genetics and dispersal in the common lizard
Dispersal is a key demographic parameter that plays an important role in determining spatial population dynamic and genetic structure. Linking differences in dispersal patterns to key life-history traits is often confounded by inconsistent environmental pressures experienced by different populations. To explore the link between dispersal and life history, we focus on a site where oviparous and viviparous lineages of the common lizard (Zootoca vivipara) are found adjacent to each other. We take advantage of this shared environment to investigate parity-specific dispersal patterns using high resolution, individual-level spatial genetic autocorrelation and population genomic approaches (11,726 SNPs; 293 oviparous and 310 viviparous individuals). We found isolation-by-distance patterns to be present in both the oviparous and viviparous populations. Density was 2.5 times higher in the viviparous population than the oviparous one, though heterozygosity and genetic diversity measures were similar in the two populations. We found marked differences in the extent of genetic neighbourhoods between the lineages, with the viviparous population showing both dispersal (σ) and spatial genetic autocorrelation (Moran’s I) at two-fold greater geographic distances than the oviparous population. We found clear evidence of male-biased dispersal from genetic estimates in the viviparous population. In the oviparous population, evidence of male-biased dispersal is weak or absent. These differences are likely to be closely linked to specific requirements of the alternative reproductive strategies and may be the demographic consequences of mother-offspring interactions. Fine-scale geographic and individual-level measures are key to understanding parity mode differences at microevolutionary scales and to better identifying their ecological and evolutionary impacts
Habitat fragmentation and its lasting impact on Earth’s ecosystems
We conducted an analysis of global forest cover to reveal that 70% of remaining forest is within 1 km of the forest’s edge, subject to the degrading effects of fragmentation. A synthesis of fragmentation experiments spanning multiple biomes and scales, five continents, and 35 years demonstrates that habitat fragmentation reduces biodiversity by 13 to 75% and impairs key ecosystem functions by decreasing biomass and altering nutrient cycles. Effects are greatest in the smallest and most isolated fragments, and they magnify with the passage of time. These findings indicate an urgent need for conservation and restoration measures to improve landscape connectivity, which will reduce extinction rates and help maintain ecosystem services
Kin-dependent dispersal influences relatedness and genetic structuring in a lek system
Kin selection and dispersal play a critical role in the evolution of cooperative breeding systems. Limited dispersal increases relatedness in spatially structured populations (population viscosity), with the result that neighbours tend to be genealogical relatives. Yet the increase in neighbours’ fitness-related performance through altruistic interaction may also result in habitat saturation and thus exacerbate local competition between kin. Our goal was to detect the footprint of kin selection and competition by examining the spatial structure of relatedness and by comparing non-effective and effective dispersal in a population of a lekking bird, Tetrao urogallus. For this purpose, we analysed capture–recapture and genetic data collected over a 6-year period on a spatially structured population of T. urogallus in France. Our findings revealed a strong spatial structure of relatedness in males. They also indicated that the population viscosity could allow male cooperation through two non-exclusive mechanisms. First, at their first lek attendance, males aggregate in a lek composed of relatives. Second, the distance corresponding to non-effective dispersal dramatically outweighed effective dispersal distance, which suggests that dispersers incur high post-settlement costs. These two mechanisms result in strong population genetic structuring in males. In females, our findings revealed a lower level of spatial structure of relatedness and genetic structure in respect to males. Additionally, non-effective dispersal and effective dispersal distances in females were highly similar, which suggests limited post- settlement costs. These results indicate that kin-dependent dispersal decisions and costs have a genetic footprint in wild populations and are factors that may be involved in the evolution of cooperative courtship
- …