10 research outputs found

    The prediction of Alzheimer’s disease through multi-trait genetic modeling

    Get PDF
    To better capture the polygenic architecture of Alzheimer’s disease (AD), we developed a joint genetic score, MetaGRS. We incorporated genetic variants for AD and 24 other traits from two independent cohorts, NACC (n = 3,174, training set) and UPitt (n = 2,053, validation set). One standard deviation increase in the MetaGRS is associated with about 57% increase in the AD risk [hazard ratio (HR) = 1.577, p = 7.17 E-56], showing little difference from the HR for AD GRS alone (HR = 1.579, p = 1.20E-56), suggesting similar utility of both models. We also conducted APOE-stratified analyses to assess the role of the e4 allele on risk prediction. Similar to that of the combined model, our stratified results did not show a considerable improvement of the MetaGRS. Our study showed that the prediction power of the MetaGRS significantly outperformed that of the reference model without any genetic information, but was effectively equivalent to the prediction power of the AD GRS

    Human Whole-Exome Genotype Data For alzheimer\u27s Disease

    Get PDF
    The heterogeneity of the whole-exome sequencing (WES) data generation methods present a challenge to a joint analysis. Here we present a bioinformatics strategy for joint-calling 20,504 WES samples collected across nine studies and sequenced using ten capture kits in fourteen sequencing centers in the Alzheimer\u27s Disease Sequencing Project. The joint-genotype called variant-called format (VCF) file contains only positions within the union of capture kits. The VCF was then processed specifically to account for the batch effects arising from the use of different capture kits from different studies. We identified 8.2 million autosomal variants. 96.82% of the variants are high-quality, and are located in 28,579 Ensembl transcripts. 41% of the variants are intronic and 1.8% of the variants are with CADD \u3e 30, indicating they are of high predicted pathogenicity. Here we show our new strategy can generate high-quality data from processing these diversely generated WES samples. The improved ability to combine data sequenced in different batches benefits the whole genomics research community

    Pathway networks generated from human disease phenome

    No full text
    Abstract Background Understanding the effect of human genetic variations on disease can provide insight into phenotype-genotype relationships, and has great potential for improving the effectiveness of personalized medicine. While some genetic markers linked to disease susceptibility have been identified, a large number are still unknown. In this paper, we propose a pathway-based approach to extend disease-variant associations and find new molecular connections between genetic mutations and diseases. Methods We used a compilation of over 80,000 human genetic variants with known disease associations from databases including the Online Mendelian Inheritance in Man (OMIM), Clinical Variance database (ClinVar), Universal Protein Resource (UniProt), and Human Gene Mutation Database (HGMD). Furthermore, we used the Unified Medical Language System (UMLS) to normalize variant phenotype terminologies, mapping 87% of unique genetic variants to phenotypic disorder concepts. Lastly, variants were grouped by UMLS Medical Subject Heading (MeSH) identifiers to determine pathway enrichment in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Results By linking KEGG pathways through underlying variant associations, we elucidated connections between the human genetic variant-based disease phenome and metabolic pathways, finding novel disease connections not otherwise detected through gene-level analysis. When looking at broader disease categories, our network analysis showed that large complex diseases, such as cancers, are highly linked by their common pathways. In addition, we found Cardiovascular Diseases and Skin and Connective Tissue Diseases to have the highest number of common pathways, among 35 significant main disease category (MeSH) pairings. Conclusions This study constitutes an important contribution to extending disease-variant connections and new molecular links between diseases. Novel disease connections were made by disease-pathway associations not otherwise detected through single-gene analysis. For instance, we found that mutations in different genes associated to Noonan Syndrome and Essential Hypertension share a common pathway. This analysis also provides the foundation to build novel disease-drug networks through their underlying common metabolic pathways, thus enabling new diagnostic and therapeutic interventions

    Lake or Estuary? Sedimentary and Benthic Foraminiferal Characterization of a Gulf of Mexico Coastal Dune Lake

    Get PDF
    Coastal dune lakes are shallow estuaries located within dune environments that share a permanent or intermittent connection with the sea. Because coastal dune lakes are found in few locations worldwide (e.g. Australia, New Zealand, Florida, etc.) they represent unique environments worthy of protection. However; there is a distinct lack of scientific data related to the function and ecology of coastal dune lakes, especially in the Gulf of Mexico. Therefore, the purpose of this study was to characterize the sedimentology and foraminifera of a representative coastal dune lake in Walton County, FL (i.e. Eastern Lake) and determine whether it shares geologic similarities with nearby estuaries. Ten Ekman sediment grab samples were collected along a transect spanning the length of Eastern Lake. The samples were processed to determine sedimentary properties and foraminiferal assemblages. Results from the sedimentary and foraminiferal analyses reveal 3 distinct depositional environments including: (1) a coarse grained, moderately well sorted, organic poor, sandy beach facies with both agglutinated and calcareous foraminifera, (2) a fine grained, very poorly sorted, organic rich central mud basin facies with mostly calcareous foraminifera, and (3) a coarse grained, poorly sorted, organic rich sandy marsh delta facies dominated by agglutinated foraminifera. These environments and foraminiferal patterns are also found in much larger nearby estuaries including Choctawhatchee Bay, Pensacola Bay, and Mobile Bay. Our results therefore suggest that coastal dune lakes may serve as down-scaled micro-estuaries and are functionally related to larger estuaries of the Gulf Coast despite their size

    Efficacy of laser interstitial thermal therapy (LITT) for newly diagnosed and recurrent IDH wild-type glioblastoma

    No full text
    BackgroundTreatment options for unresectable new and recurrent glioblastoma remain limited. Laser ablation has demonstrated safety as a surgical approach to treating primary brain tumors. The LAANTERN prospective multicenter registry (NCT02392078) data were analyzed to determine clinical outcomes for patients with new and recurrent IDH wild-type glioblastoma.MethodsDemographics, intraprocedural data, adverse events, KPS, health economics, and survival data were prospectively collected and then analyzed on IDH wild-type newly diagnosed and recurrent glioblastoma patients who were treated with laser ablation at 14 US centers between January 2016 and May 2019. Data were monitored for accuracy. Statistical analysis included individual variable summaries, multivariable differences in survival, and median survival numbers.ResultsA total of 29 new and 60 recurrent IDH wild-type WHO grade 4 glioblastoma patients were treated. Positive MGMT promoter methylation status was present in 5/29 of new and 23/60 of recurrent patients. Median physician-estimated extent of ablation was 91%-99%. Median overall survival (OS) was 9.73 months (95% confidence interval: 5.16, 15.91) for newly diagnosed patients and median post-procedure survival was 8.97 months (6.94, 12.36) for recurrent patients. Median OS for newly diagnosed patients receiving post-LITT chemo/radiation was 16.14 months (6.11, not reached). Factors associated with improved survival were MGMT promoter methylation, adjuvant chemotherapy within 12 weeks, and tumor volume <3 cc.ConclusionsLaser ablation is a viable option for patients with new and recurrent glioblastoma. Median OS for IDH wild-type newly diagnosed glioblastoma is comparable to outcomes observed in other tumor resection studies when those patients undergo radiation and chemotherapy following LITT

    Human whole-exome genotype data for Alzheimer's disease

    No full text
    The heterogeneity of the whole-exome sequencing (WES) data generation methods present a challenge to a joint analysis. Here we present a bioinformatics strategy for joint-calling 20,504 WES samples collected across nine studies and sequenced using ten capture kits in fourteen sequencing centers in the Alzheimer's Disease Sequencing Project. The joint-genotype called variant-called format (VCF) file contains only positions within the union of capture kits. The VCF was then processed specifically to account for the batch effects arising from the use of different capture kits from different studies. We identified 8.2 million autosomal variants. 96.82% of the variants are high-quality, and are located in 28,579 Ensembl transcripts. 41% of the variants are intronic and 1.8% of the variants are with CADD > 30, indicating they are of high predicted pathogenicity. Here we show our new strategy can generate high-quality data from processing these diversely generated WES samples. The improved ability to combine data sequenced in different batches benefits the whole genomics research community

    Human whole-exome genotype data for Alzheimer’s disease

    Get PDF
    The heterogeneity of the whole-exome sequencing (WES) data generation methods present a challenge to a joint analysis. Here we present a bioinformatics strategy for joint-calling 20,504 WES samples collected across nine studies and sequenced using ten capture kits in fourteen sequencing centers in the Alzheimer’s Disease Sequencing Project. The joint-genotype called variant-called format (VCF) file contains only positions within the union of capture kits. The VCF was then processed specifically to account for the batch effects arising from the use of different capture kits from different studies. We identified 8.2 million autosomal variants. 96.82% of the variants are high-quality, and are located in 28,579 Ensembl transcripts. 41% of the variants are intronic and 1.8% of the variants are with CADD &gt; 30, indicating they are of high predicted pathogenicity. Here we show our new strategy can generate high-quality data from processing these diversely generated WES samples. The improved ability to combine data sequenced in different batches benefits the whole genomics research community.</p

    The Library of Integrated Network-Based Cellular Signatures NIH Program: System-Level Cataloging of Human Cells Response to Perturbations

    No full text
    The Library of Integrated Network-Based Cellular Signatures (LINCS) is an NIH Common Fund program that catalogs how human cells globally respond to chemical, genetic, and disease perturbations. Resources generated by LINCS include experimental and computational methods, visualization tools, molecular and imaging data, and signatures. By assembling an integrated picture of the range of responses of human cells exposed to many perturbations, the LINCS program aims to better understand human disease and to advance the development of new therapies. Perturbations under study include drugs, genetic perturbations, tissue micro-environments, antibodies, and disease-causing mutations. Responses to perturbations are measured by transcript profiling, mass spectrometry, cell imaging, and biochemical methods, among other assays. The LINCS program focuses on cellular physiology shared among tissues and cell types relevant to an array of diseases, including cancer, heart disease, and neurodegenerative disorders. This Perspective describes LINCS technologies, datasets, tools, and approaches to data accessibility and reusability.The Library of Integrated Network-Based Cellular Signatures (LINCS) is an NIH Common Fund program that catalogs how human cells globally respond to chemical, genetic, and disease perturbations. Resources generated by LINCS include experimental and computational methods, visualization tools, molecular and imaging data, and signatures. By assembling an integrated picture of the range of responses of human cells exposed to many perturbations, the LINCS program aims to better understand human disease and to advance the development of new therapies. Perturbations under study include drugs, genetic perturbations, tissue micro-environments, antibodies, and disease-causing mutations. Responses to perturbations are measured by transcript profiling, mass spectrometry, cell imaging, and biochemical methods, among other assays. The LINCS program focuses on cellular physiology shared among tissues and cell types relevant to an array of diseases, including cancer, heart disease, and neurodegenerative disorders. This Perspective describes LINCS technologies, datasets, tools, and approaches to data accessibility and reusability
    corecore