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The heterogeneity of the whole-exome sequencing (WES) data generation
methods present a challenge to a joint analysis. Here we present a bioinfor-
matics strategy for joint-calling 20,504 WES samples collected across nine
studies and sequencedusing ten capture kits in fourteen sequencing centers in
the Alzheimer’s Disease Sequencing Project. The joint-genotype called variant-
called format (VCF) file contains only positions within the union of capture
kits. The VCF was then processed specifically to account for the batch effects
arising from the use of different capture kits from different studies. We
identified 8.2 million autosomal variants. 96.82% of the variants are high-
quality, and are located in 28,579 Ensembl transcripts. 41% of the variants are
intronic and 1.8%of the variants arewithCADD> 30, indicating they are of high
predicted pathogenicity. Here we show our new strategy can generate high-
quality data from processing these diversely generated WES samples. The
improved ability to combine data sequenced in different batches benefits the
whole genomics research community.

The Alzheimer’s Disease Sequencing Project (ADSP) was established in
2012 as a key initiative to meet the goals of the National Alzheimer’s
ProjectAct (NAPA): to prevent and effectively treat Alzheimer’s disease
(AD) by 2025. Developed jointly by the National Institute on Aging
(NIA) and theNationalHumanGenomeResearch Institute (NHGRI), the
aims of the ADSP are to (1) identify protective genomic variants in
older adults at risk for AD; (2) identify new risk variants among AD
cases; and (3) examine these factors in multi-ethnic populations to
identify therapeutic targets for disease prevention.

The ADSP completed and published the analyses results of the
whole-exome sequencing (WES) of 10,836 cases and controls pre-
viously released in 20181. The data were generated by three NHGRI-

funded Sequencing Centers (Broad Institute, the Baylor College of
Medicine’s Human Genome Sequencing Center, and Washington Uni-
versity’s McDonnell Genome Institute) using Illumina technology and
underwent quality control (QC) by the ADSP. The study performed
rare variant and gene-based analysis and identified three novel genes
(IGHG3, STAG3, and ZNF655) that were associated with AD1. These
results remained significant after multiple test corrections and were
confirmed/strengthened by replication of four independent datasets.
However, the discovery of novel rare variants for AD is still limited by
the available sample size.

ADSP has sought to leverage other WES datasets (most of which
were generated concurrently with the ADSP’s data set in the
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collaborative network) to increase the power to detect AD-related rare
variants, expanding beyond datasets limited to participants of Eur-
opean (Non-Hispanic White (NHW)) ancestry to include samples from
African American (AFA) and CaribbeanHispanic (CHI) ancestry groups
(ancestral categorization is discussed further). This collaboration will
lead to the generation of the largest yet ADWES data set sharable with
the public community. Combining datasets generated in projects that
are originally designed for studying AD or other related dementias
(ADRD) from different labs across different times (2010-2021) poses
new challenges, as each WES data set was generated and processed
using different protocols, potentially introducing biases into the
combined data set2–4. As sequencing cost decreases and technology
advances, more sequence data will be available shortly (both whole-
genome sequencing [WGS] and WES) and will be generated using dif-
ferent protocols. Due to the desire for joint and meta-analysis, there is
a need to process data generated by different platforms efficiently and
in a consistent manner.

To ensure all sequence data are processed following best prac-
tices with consistency and efficiency, the Genome Center for Alzhei-
mer’s Disease (GCAD) in collaboration with the ADSP developed the
genomic variant calling pipeline and data management tool for ADSP,
VCPA5. This is functionally equivalent to the CCDG and TOPMed
pipelines6 and is used for processing WGS data. VCPA has currently
been adopted as the official pipeline for processing all ADSP sequence
data, as well as data received from the collaborative network, a group
of principal investigators (PIs) who have obtained either NIH funding
or funding from private foundations involved in sequencing small
numbers of AD samples.

Compared to WGS data, WES data focuses on exons, which make
up ~1% of the entire genome. The critical challenge unique toWES data
harmonization is using different capture kits to sequence samples. The
capture kits containing probes that were designed using different
reference genomes and versions of gene annotations were made by
different vendors over the years.

In this work, we describe the largest publicly available WES data
for AD and how it was generated using a new bioinformatics strategy.
GCAD built a new computational framework on top of VCPA5 for
processing WES data (VCPA-WES, available at https://bitbucket.org/
NIAGADS/vcpa-pipeline/src/master/) by integrating information from
multiple capture kits (see Table 1 and Fig. 1 for details) while calling
variants at the individual level and joint genotyping across individuals.
Corresponding updated QC strategies were specifically developed for
this data. Finally, all the individual data and joint-called data were
shared with the community via https://dss.niagads.org/ in Feb-
ruary 2020.

Results
Population substructure analysis
The demographics of this dataset are summarized in Table 2. This
dataset contains participants clustering in three major ancestry
groups: 13,362 individuals of predominantly European (NHW)
ancestry; 4103 individuals of AFA; and 2195 participants of CHI
ancestry. Population substructure analysis results are presented in
Fig. 2 for a NHW, b African American, and c Caribbean Hispanic.
Although these data were generated and made publicly available
prior to the report on the treatment of race, ethnicity, and ancestry
from the National Academies of Science, Engineering, and Medicine
(NASEM)7, the ancestry classification approach applied here was
reviewed and updated to be consistent with the suggested criteria
guidelines set forth in the report.

Characteristics of capture kits
As summarized in Table 1, a total of ten capture kits were used for
sequencing 20,504 individuals. Since these files were in different
genome builds and file formats, GCAD first standardized them in the

same file format and normalized them to the same reference genome
build GRCh38. Table 3 contains additional key information about the
capture kit contents, including the original number of capture regions
per capture kits in the original genomebuild, the number of lifted-over
capture regions per captures (in GRCh38), size of targeted genomic
regions, the percentage of capture regions that arewithin Ensembl v94
exons8, and the percentage of the Ensembl v94 exons (with flanking
bps) that are captured by each of the kits.

There are fundamental differences in the capture designs. The
number of capture regions for “Roche_SeqCap_EZ_Ex-
ome_Probes_v3.0_Target_Enrichment_Probes” is 1.42-1.98 times higher
than the other capture kits. This is caused by the inclusion ofmiRNAor
lncRNA sequences beyond the coding region sequences to the cap-
tures by some vendors.

We observed a wide range of differences in terms of the bases
covered by each of these capture kits with respect to the human
reference genome (from 37 million to 69 million bps). An average of
91.76% of the capture regions per capture kit were annotated as
Ensembl exons. In addition, on average 95.22% of these exons were
captured by each capture kit.

Capture kit comparison
We next compared the target region designs among different capture
kits. First, the Jaccard similarity measure was calculated on all capture
regions at bp level across these kits. To do so, we first broke out all the
individual capture kit region files per bp, then we used “1” to denote a
bp thatwas coveredbya capture region and “0” vice versa. Tomeasure
the overlap or similarity between the data in every pair of capture kit,
Jaccard coefficient was calculated. It is defined as the number of bp
where both kits are equal to 1, called the ‘set intersection’, divided by
the number of bp where either of the two kits is equal to 1, called the
‘set union, displayed in formula: J A,Bð Þ= jA\Bj

jA∪Bj. The Jaccard coefficients
for each pair of kits were calculated and visualized in Fig. 3. A value of 1
indicates that the kits are very similar to each other, while a 0 indicates
the opposite.

The average of all pair-wise Jaccard similarity scores is 0.586
(SD: 0.038). The two most similar kits are “Illumina_Rapid_Capture_-
Exome_ICE_kit” and “Nimblegen_VCRome_sequencing_w-Custom_-
Spike-In_Baits” (Jaccard score = 0.83). Conversely, the two most
dissimilar kits are “IDT_xGen_Exome_Whole_Exome_Research_
Panel_v1.0_w-Custom_Spike-In_Baits” and “Roche_SeqCap_EZ_Ex-
ome_Probes_v3.0_Target_Enrichment_Probes” (Jaccard score = 0.39).

Data quality—WES compressed reference-oriented alignment
maps (CRAMs)
The VCPA-WES pipeline generated all CRAMs without using any cap-
ture kit information. Therefore, the differences observed in the CRAM
metrics are independent of the capture kits and are primarily due to
differences in the sequencing platforms used by the different
sequencing centers.

We investigated whether the processed CRAMs were affected by
sequencing centers (Fig. 4a) or platforms (Fig. 4b). We compared
multiple CRAM metrics generated by VCPA-WES, including (i) per-
centage of mapped reads; (ii) percentage of duplicated reads; (iii) and
percentage of paired reads. We also included the quality of reads
(based on a Q score of 30 [Q30]), which is sequencing methods/pro-
tocol dependent as a negative control. We compared each of these
metrics stratified by sequencing centers or platforms.

From Fig. 4a, we observed that (1) the average mapping rate is
99.6%; (2) 93.4% of samples have <20% duplicated reads; (3) 83.4% of
samples have >95% proper pairs; and (4) 97.2% of samples have >80%
of alignment with Q30.

We computed the decile values for each metric per sequencing
centers/platforms and compared every two distributions using
Wilcoxon signed-rank test (pair-wise tests). Most of the
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comparison results were not statistically significant (Bonferroni cor-
rected p <0.05).

• Stratified by sequencing centers (Fig. 4a), 11%, 3%, 8%, and 76%
per “percentage of mapped reads”, “percentage of duplicated
reads”, “percentage of paired reads” and “quality of reads (based

on a Q score of 30 [Q30])” respectively were statistically sig-
nificant (Bonferroni corrected p < 0.05) (Supplementary
Tables 1–4).

• Stratified by sequencing platforms (Fig. 4b), 33%, 0%, 0%, and
100% per “percentage of mapped reads”, “percentage of

Fig. 1 | Summary of the VCPA-WES pipeline. Components with “stars” are mod-
ified upon VCPA-WGS pipeline. VCPA-WES specific scripts included: CRAM metrics
generation (stage1/wes_depthOfCoverage.sh), gVCF metrics generation (stage2b/
wes_no_target_hc_full_bam.sh, stage2b/wes_variantEval.sh), VQSR model generation

(stage 3/VQSR_snp_WES.sh, stage 3/VQSR_indel_WES.sh, stage 3/ApplyRecali-
bration_GATK411_SNP_WES.sh,stage3/ApplyRecalibration_GATK411_indel_WES.sh).
All these can be found at https://bitbucket.org/NIAGADS/vcpa-pipeline/src/master/
VCPA/.

Table 2 | Summary of the demographics for each study

Studies Race/ethnicity Age Gender (% of
female)

# of APOE e4 alleles (%)

Cases Controls Cases Controls Cases Controls Cases Controls

0 1 2 0 1 2

ADSP discovery Non-Hispanic White 5596 4279 75.6 (8.7) 86.8 (3.7) 58 59 57 40 3 87 13 0

Hispanic 234 157 75.2 (7.3) 74.8 (8.4) 65 59 59 40 1 61 39 NA

Other/Unknown 3 3 76.3 (11.8) 86.3 (2.1) 67 0 67 33 NA 100 NA NA

ADGC AA Non-Hispanic White 1 0 58.0 (0) NA 0 NA NA 100 NA NA NA NA

Hispanic 2 6 81.0 (0) 74.0 (12.0) 100 100 50 50 NA 67 33 NA

Black or African American 1283 1634 74.5 (8.0) 72.9 (8.2) 70 74 30 49 15 62 35 3

Columbia WHICAP Non-Hispanic White 83 800 85.4 (5.1) 80.5 (6.6) 66 58 80 18 2 77 21 2

Hispanic 511 1257 84.0 (5.5) 80.6 (6.3) 75 70 69 29 2 79 20 1

Black or African American 218 939 84.0 (5.7) 80.1 (6.6) 76 69 61 33 5 67 31 2

Miami families Non-Hispanic White 86 18 74.2 (7.6) 76.6 (6.9) 66 39 44 53 2 78 22 NA

CBD Non-Hispanic White 335 0 63.5 (8.4) NA 45 NA NA NA NA NA NA NA

PSP Non-Hispanic White 550 0 69.2 (8.4) NA 45 NA NA NA NA NA NA NA

Knight ADRC Non-Hispanic White 224 338 68.3 (8.8) 71.3 (8.9) 42 59 48 42 9 67 29 3

Hispanic 0 3 NA 78.0 (19.1) NA 100 NA NA NA 100 NA NA

Black or African American 26 3 64.0 (9.2) 74.3 (5.5) 65 33 19 50 23 67 33 NA

Other/Unknown 3 2 76.0 (14.1) 76.0 (9.9) 100 0 33 NA 67 50 50 NA

FASe families Non-Hispanic White 731 274 78.5 (7.2) 78.8 (7.5) 63 57 25 57 18 52 44 4

Hispanic 7 2 79.4 (3.3) 75.0 (4.2) 71 50 71 14 14 50 50 NA

Other/Unknown 2 2 72.5 (3.5) 68.0 (4.2) 100 0 50 50 NA NA 100 NA

Brkanac families Non-Hispanic White 44 0 74.9 (7.6) NA 61 NA 30 39 25 NA NA NA

Hispanic 16 0 68.1 (11.9) NA 56 NA 63 31 6 NA NA NA

Total 9955 9717 75.8 (8.9) 81.5 (8.1) 60 64 47 38 6 77 22 1

Listed in this table are the total number of samples. Duplicate samples from the same subject for platform comparison are counted multiple times.
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duplicated reads”, “percentage of paired reads” and “quality of
reads (based on a Q score of 30 [Q30])” respectively were sta-
tistically significant (Bonferroni corrected p <0.05) (Supple-
mentary Tables 5–8).

Overall, sequencing centers/platforms have a bigger effect on
“Quality of reads, Q30”, as this metric reflects the quality of the reads
off the sequencers, which is directly dependent on the sequencing
methods/protocols. The drastic differences observed indicated that
there are indeed differences at the sequencingmethods level, yet after
processing all the data using the same bioinformatics approach we
proposed in this paper (VCPA-WES), the variabilities of data con-
tributed by sequencing centers and platforms have much been
reduced (as seen from the metrics at the mapping, duplicated or
paired reads level).

While there is some variability in thesemetrics, we do not observe
systematicbias as towhich sequencing center performedbest/worst in
all areas as compared to the others (Fig. 4a, b).

Next, we sought to compare the 20× coverage (i.e., percentage of
bps with 20 reads or more within the sample-specific capture regions)
across all samples (Fig. 5). 20× coverage was chosen as it was the
minimum coverage required to successfully genotype 95% of hetero-
zygous SNPs in an analyses4,9–13. For about 95% of the CRAMs, we
observed that >80% of reads were located within the capture region at
20× coverage. This metric does have sequencing center- or sequencer-
specific effects (Supplementary Tables 9–10). This is as expected as the
20× coverage was calculated on the capture regions per sample, of
which the differences are due to the selection of various sequencing
methods/protocols. On average, 20× coverage is lower for samples
sequenced using the Illumina 2000/2500 platform.

Since there is a high variability of capture kits, we also selected
100 samples based on different studies-sequencing_center-capture
combinations to calculate the 20× coverage values just in the coding
regions (exons) instead of everything in the capture kit. Results were
shown in a scatter plot (Supplementary Fig. 1). We observed that the
20× coverage at the capture regions (88.5 ± 7.8) is similar to that of the

Fig. 2 | Population substructure analysis results of our dataset. Plots from
principal components analysis showing principal component (PC) 1 vs. PC2, PC2 vs.
PC3, and PC1 vs. PC3 for sets of samples initially clustered on self-reported race/
ethnicity (samples shown in black dots) with respect to 1kG reference populations
(all other symbols).a Individual self-reporting as non-HispanicWhite and clustering
within 3 SD of EUR sample populations were assigned the ancestry label “Non-
Hispanic White” (NHW). This plot includes 32 individuals excluded as outliers.
b Individuals self-reporting as non-Hispanic Black and clusteringwithin 3 SDof EUR

andAFR sample populations or distributed between the populations were assigned
the ancestry label “African American” (AFA). This plot includes 29 individuals
excluded as outliers. c Individuals clustering within 3 SD of EUR and AFR sample
populations and Latin American sample populations groups in the 1000Genomes/
HumanGenomeDiversity Project collection and between those sample population
groupswere assigned the ancestry label “CaribbeanHispanic” (CHI),whichwas also
reflective of the geographic sampling of samples in the source datasets. No subjects
initially classified as CHI were excluded.
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coding regions (88.2 ± 2.5) across samples, yet the 20× coverage values
in the coding regions are more uniform across samples.

Data quality—variants
Next, we examined the variant-level data quality. GATK outputs VQSR
scores. Overall, 96.83% of the variants (>7.3 million SNVs and 0.61
million indels) were labeled PASS by the model.

Besides using the GATK VQSR indicator to specify the quality of a
variant, the ADSP/GCAD QC pipeline14 outputs a series of quality
metrics to determinewhether the variant iswithin capture regions, the
call rate, depth, and Ti/Tv ratio after QC. Figure 6 shows the Ti/Tv ratio
on the exonic variants (colored by study) before and after QC (Before
QC on the x axis, After QC on the y-axis). Before QC, the average Ti/Tv
ratio is 2.53. After QC, the Ti/Tv ratio on exonic regions in our studies is
around 3.03. This post-QC Ti/Tv ratio is similar to reports in previous
findings10.

The QC protocol enables us to look for variants found across
studies as well as those that are study-specific. On average, 97.26% of
variants have a GATK PASS across study-capture combinations. 91.45%
of variants within the designed capture kit per each study-capture
combination are labeled as good quality.

We then sought to compare the quality of variants pre- and post-
QC at different aspects. First, we compared the rates of synonymous
variants between cases and controls exome-wide first at the capture
level (Supplementary Table 11), then at the gene level (Supplementary
Fig. 2). We selected the QC subsets from studies of the biggest sample
size (ADSP_Discovery, ADGC_AA, and Columbia_WHICAP) for this
analysis. Overall, the average ALT allele frequencies across synon-
ymous variants are similar between cases and controls for each QC
subset. While most QC subsets had average ALT allele frequencies of
0.01–0.03, a higher frequency was observed in the ADGC African
American subset (ADGC_AA_Agilent_WES_v6_capture_region) of 0.046,
suggesting a higher frequency of polymorphic synonymous variants
among cases relative to controls in this subset.

We also compared the REF/REF, REF/ALT, and ALT/ALT genotype
counts summed across coding variants before and after QC for each
QC subset (Supplementary Table 12). Variants thatweremonomorphic
or off-capture were excluded from both pre- and post-QC counts. We
have also shown in (Supplementary Fig. 3) the “Ratio of Post-QC to Pre-
QC Genotype Counts” across QC subsets for all cohort-capture com-
binations. The ratio of all genotypes is fairly consistent across different
QC subsets (0.922-0.956).

Lastly, we compared the genotype call rates across QC subsets
pre- and post-QC (Supplementary Fig. 4). In this plot, we showed the
percentage of variants by deciles of call rate for eachQC subset. Across
all but 3 QC subsets (a total 14), we showed the call rates increased
modestly once low-quality genotypes were excluded.

GenotypeConcordance between two different callers on a set of
overlapping individuals
The ADSP-Discovery data set, comprised of 10,786 individuals, was
sequenced and processed by three sequencing centers: Broad Insti-
tute, Baylor College ofMedicine’s HumanGenomeSequencing Center,
and Washington University’s McDonnell Genome Institute. Genotypes
for bi-allelic SNVs and indels were called using ATLAS2
on hg19/GRCh371. To evaluate the genotype quality on our 20k WES
call set, which was generated using a novel approach in which no
capture regions were used for individual sample calling, we examined
the overall concordance, by sample and by variant, of genotypes called
differently on the 10,786 samples that were present in both the ADSP-
Discovery data set and the current data set. 1,407,006 variants were
called in both sets, comprising 15,175,966,716 genotypes. Overall
concordance was 99.43%. There were five samples with a genotype
concordance <95%. Three samples had extremely low concordance
(8.21%, 10.44%, and 23.44%), reflecting low DNA concentrationTa
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samples, and the other two samples had 86.4% and 90.5% con-
cordance. We also examined variant-level genotype concordance
relative to capture kit coverage. The majority (69.3%) of variants were
covered by all ten capture kits, 18.1% by nine, 7% by eight, and 4% by
seven capture kits. These patterns may be due to differences in
sequence read coverage from the various capture kits combined with
joint-calling approaches that leverage information across samples, but
this trend only holds for a very small percentage of all called variants.

Annotation results
Using the ADSP annotation pipeline15, we found that the 8.16 million
variants are located in 28,579 transcripts based on Ensembl
annotations15,16. Every variant is annotated based on the most dama-
ging VEP predicted consequence (see “Annotation protocol for WES
samples” section). Supplementary Fig. 5a shows the top ten most
damaging consequence categories. In summary, 41%of the variants are
intronic, 15%aremissense variants, followedby upstream/downstream
gene variants (each 9%), synonymous variants (8%), and 3’UTR variants
(7%). Supplementary Fig. 5b shows the proportion of the CADD score17

that is PHRED-like scores ranging from 1 to 99, based on the rank of
each variant relative to all possible 8.6 billion substitutions in the
human reference genome. ThemeanCADD score of all variants is 9.26,
while the median value is 6. Meanwhile, 15.5% of the variants have a
CADD score >20, meaning that these variants are among the top 1% of
deleterious variants in the humangenome. In addition, 1.8% of theWES
variants are among the top 0.1% of deleterious variants in the human
genome (CADD> 30).

Next, we compared the percentage of high-impact coding variants
found in this WES dataset against the gnomADv2.1 public resource18.
The gnomADv2.1 (GRCh38) contains 17.2 million variants in 125,748

WES samples as compared to 8.2 million variants in 20,504 WES
samples in the current dataset. 10.6million (62%) and 4.0million (49%)
are coding variants in the gnomADv2.1 and thisWES data, respectively.
Next, we compared the percentage of variants that are annotated as
‘high impact’ in each set. There are 711,024 (6.7% of coding) and
220,987 (5.5% of coding) high-impact coding variants in the gno-
mADv2.1 and the current dataset, respectively.

Data sharing—NIAGADS data sharing service (DSS)
The National Institute on Aging Genetics of Alzheimer’s Disease Data
Storage Site (NIAGADS) is a national data repository that facilitates
access to genetic data by qualified investigators for the study of the
genetics of early-onset/late-onset Alzheimer’s Disease and Alzheimer’s
Disease Related Dementias (ADRD). Collaborations with large con-
sortia such as the Alzheimer’s Disease Genetics Consortium (ADGC),
Cohorts for Heart and Aging Research in Genomic Epidemiology
(CHARGE) Consortium, and the ADSP, amainmission of NIAGADS is to
manage large AD genetic datasets that can be easily accessed by the
research community.

The NIAGADS Data Sharing Service (DSS) released the CRAMs
(compressed versionof BAM files), gVCFs generated byGATK4.1.1, and
QC-ed pVCFs of the abovementioned ADSPWES data set in September
2020 (NG00067.v3), together with the capture kits, pedigree struc-
tures for family studies and phenotypes that were harmonized
according to ADSP protocols. Qualified investigators can access these
data with a submission request and approval from the NIAGADS Data
Access Committee managed by independent NIH program officers.
Data can be downloaded through the DSS portal. More information
about the data set can be found on the data set page, NG00067).
https://dss.niagads.org/datasets/ng00067/. See the Application

Fig. 3 | Jaccard similaritymeasure of the capture kits. Jaccard similarity measure was calculated on all capture regions (labeled on both the x axis and y axis) at basepair
level across these kits. A value of 1 (dark red) in this figure indicates that the kits are very similar to each other, while a 0 (blue) indicates the opposite.
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Fig. 4 | Comparison of WES CRAM quality metrics. We compared the CRAM
quality metrics across a sequencing centers (Seq_center); and b sequencing plat-
forms (Sequencer).N for each of these 8 plots (a i to iv),b (i to iv)) all equals 20,504
subjects. Quality metrics included (i) Percentage of mapped reads, (ii) Percentage
of duplicated reads, (iii) Percentage of paired reads, and iv) Quality of reads based

on Q30 score. For each box plot, the center line represents the median value, the
minimum of the whisker represents the 1st quantile (25th percentile), and the
maximumof the whisker represents the 3rd quantile (75th percentile). Source data
are provided as a Source Data file.
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Instructions page (https://dss.niagads.org/documentation/applying-
for-data/application-instructions/) on how to submit a Data Access
Request and access data.

Discussion
In this study, we developed a new bioinformatics approach, VCPA-WES,
to joint-call WES samples sequenced using multiple capture kits from
different sequencing providers. The procedure has been successfully
applied to a total of 20,504 exomes gathered through the collaborative
network of the ADSP, resulting in the generation of the world’s largest
publicly available AD WES data collection and joint-call pVCF to date.
Annotated and QC-ed following ADSP protocols, this high-quality WES
pVCFwith ~7.5million SNVs and >700,000 indels is publicly available at
NIAGADS DSS for qualified investigators worldwide.

Our approach was significantly different from what was used in
Holstege et al.19. Different software was chosen formarking duplicated
reads, and the strategies to call variants at the capture regions were

different; even if the same software was used, parameters and ver-
sioning were different (Supplementary Table 13). The sequence or
joint-genotype data reported by this group was not publicly available,
making it challenging to compare pipeline effects on variants called in
both datasets.

Joint-calling WES samples based on different capture kits poses
several challenges due to the nature of the kits. Although each capture
kit was designed primarily based on exonic regions (> 91% of the
capture regions per capture kit were covered by Ensembl exons,
(Table 3, Section Characteristics of Capture kits), they were also
designed based on different genome builds and gene annotations,
therefore resulting in substantial differences in the captured contents
(average Jaccard similarity score of ~0.6 per capture kit vs all other kits,
(Fig. 3, Section Capture kits comparison). In order to successfully
harmonize/joint-call all of the data without any systematic bias, a
uniform bioinformatics pipeline, together with the standardization of
capture kit target region definitions, is critical.

Fig. 5 | Comparison of ×20 coverage of all theWES BAMs/CRAMs.We compared
the ×20 coverage (defined by the percentage of bps with reads or more within the
sample-specific capture regions) first by a Sequencing centers, then by
b Sequencers. X axis show the “×20coverage” in percentages.N for a andb are both

20,504 subjects. For each box plot, the center line represents themedian value, the
minimum of the whisker represents the 1st quantile (25th percentile), and the
maximumof the whisker represents the 3rd quantile (75th percentile). Source data
are provided as a Source Data file.
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Fig. 6 | Comparison of the Ti/Tv ratio of exonic variants before and after QC. Ti/
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Tv ratio before QC, while the Y axis shows the Ti/Tv ratio after QC. The average Ti/

Tv ratio increases from2.53 to 3.03 after theQCprocess. This post-QCTi/Tv ratio is
similar to reports in previous findings. Source data are provided as a Source
Data file.
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In our calling strategy, we first lifted over all capture kits using the
same protocol to GRCh38 if they were not of this genome build. We
then processed all WES samples using a single analysis pipeline: VCPA-
WES (Section VCPA for WES processing). We did not use capture
region definitions to limit variant calls when we generated gVCF or
joint-called pVCFs. Capture regiondefinitionswereonlyused in theQC
steps to identify high-quality variant and genotype calls. There are two
advantages of this approach. First, in the future, when additional
samples on different capture kits need to be incorporated, we can
reuse the gVCFs of these old samples without reprocessing gVCFs.
Second, we can retain variants and genotype calls that are either out-
side the target regions but still have good quality or in regions that are
not targeted by all capture kits. Indeed, if we only look at regions that
are targeted by all capture kits, we are left with only about 45% of the
unions.

The genotype data generated by this tailor-made bioinformatics
strategy are high-quality. We have shown in Figs. 4 and 5 that there is
no systematic bias attributed to the sequencing centers and sequen-
cers on the CRAM quality (Section Data quality—WES CRAMs) (except
for Q30 scores and 20× coverage). This shows that even though the
WES data were sequenced in different ways, these experimental arti-
facts could be greatly reduced with a carefully designed data proces-
sing pipeline.

Next, we evaluated the quality of the variants using the GATK
VQSR score, Ti/Tv ratio (Fig. 6), and via our in-house GCAD/ADSP QC
protocol (Section Data quality—variants). Overall, ~97% of variants
were labeled PASS by GATK. After variant-level QCwas performed, the
Ti/Tv ratio in exonic regions in our studies was >3. This is similar to
what was previously reported, indicating that the data doesn’t contain
many false positives caused by random sequencing errors. In terms of
study-capture-specific variants, using a multi-step QC protocol as
shown in Table 4 (exclude variants with high missingness rate, exces-
sive heterozygosity, high read depth, etc.), >91% of variants have suc-
cessfully met our QC criteria, are of good quality, and can be used in
subsequent analyses.

Lastly, we performed genotype concordance analyses on the set
of overlapping samples found in both the previously published
ADSP-Discovery WES data set and this newly joint-called WES data
set. Around 11,000 samples were used for the analyses (Section
Genotype Concordance between two different callers on a set of
overlapping samples). Even though the two datasets were called
using different callers (ATLAS2 vs GATK), >1.4 million variants were
called in both datasets, comprising 15 billion genotypes. Overall
concordance was 99.43%. Variants that were not concordant may be
located in genomic regions that are difficult to be sequenced. This
shows that, despite the complexity involved in creating this new,
much larger, joint-called WES data set, the innovative bioinformatics
strategy allowed us to produce a data set with high-quality
genotypes.

The 8.16 million variants in this WES data set span across 28,579
transcripts (Section Annotation results). We annotated every variant
based on the most damaging VEP predicted consequence (Supple-
mentary Fig. 5a). The top ten most damaging consequence categories
included missense variants, upstream/downstream gene variants,
synonymous variants, and 3’UTR variants. Meanwhile, 15.5% of the
variants have a normalized CADD score >20, meaning that these var-
iants are among the top 1% of deleterious variants in the human gen-
ome (Supplementary Fig. 5b). These results showcase that the ADSP
annotation pipeline we developed is very well capable of annotating
both WGS and WES data.

In conclusion, the VCPA-WES bioinformatics pipeline, publicly
available at https://bitbucket.org/NIAGADS/vcpa-pipeline/src/master/,
together with the QC and annotation protocol GCAD developed,
enable us to generate a high-quality AD-specific WES data set con-
taining over 8 million variants on 20,504 samples. The pipeline works

well when joint-calling anyWES data (of different phenotypes) that are
sequenced in different batches using different sequencing machines
and capture kits.

This harmonization approach to alignment and variant calling has
minimized the impact of different experimental and analytical pipe-
lines on this valuable dataset, which is, by far, the largest publicly
available AD WES data set. It is available at NIAGADS DSS: https://dss.
niagads.org/datasets/ng00067/. Qualified and approved investigators
can apply to access and download the data for various research
purposes.

Methods
Data description
Sample selection. The data set consists of 20,504 samples across nine
studies (Table 1). Approximately half of the samples are from theADSP-
Discovery (part of the ADSP case/control data). Case-control statuses
were defined using the NINCDS-ADRDA (National Institute of Neuro-
logical and Communicative Disorders and Stroke, and the Alzheimer’s
Disease and Related Disorders Association) criteria20 or NIA-AA
(National Institute on Aging Alzheimer’s Association) criteria21,22.
GCAD reached out to ADGC/ADSP PIs in the collaborative network and
received 9847 additional WES samples from eight different studies.
None of the studies prioritize one sex over the other when doing
recruitment or study design. Sex and/or gender of participants were
determined based on self-report. Table 1 contains counts of samples
that have passed through QC (see the section on Sample-level quality
assurance checks for details).

Genome sequencing and capture kit information
Libraries were constructed from sample DNA with PCR amplification.
Sequencing was performed across fourteen sites using different
combinations of Illumina sequencing platforms and capture kits.
Several studies (e.g., ADSP-Discovery) used multiple kits. While other
studies used a single capture kit for all samples in their study design
(e.g., Roche Nimblegen’s VCRome v2 kit was used in ADSP-Discovery,
PSP, and Knight ADRC studies). The details are summarized in Table 1.

Demographics
Phenotype information, such as disease status (AD andother dementia
case or cognitively intact control), self-reported race/ethnicity, sex,
and age-at-onset (cases)/age-at-last exam (controls), as well as the
number of APOE ε2/ε3/ε4 alleles per individual, were obtained from
the phenotype data shared by the data contributors. The demo-
graphics of this dataset are summarized in Table 2. Altogether, there
are a total of 9955 cases (mean± SD: 75.8 ± 8.9 years old) and 9717
controls (mean± SD: 81.5 ± 8.1 years old). 60%of the caseswere female,
with a similar sex-gender ratio for controls. 44% of the cases (and 23%
of the controls) have ≥1 APOE ε4 alleles, which is a known genetic risk
factor for AD.

Methods
IntegratingmultipleWES capture kits. As summarized in Table 1, 10
different capture kits were used for sequencing samples across nine
studies. These capture kits were manufactured over the years by
three different vendors (Illumina, Agilent, and Roche) and had sub-
stantial differences in kit contents, as the capture kits were generated
based on different genomic annotation databases (e.g., Ensembl8 on
different reference genome builds [GRCh36, GRCh37]). Whenever
possible, capture kit annotation files (in BED format) were received
directly from the data contributors. If not, GCAD downloaded the
original capture kit annotation files from the vendor’s website. Note
that these files contain genomic coordinate information and do not
include the exact sequences of the designed regions. If GRCh38
information of capture kits is not available, we performed UCSC
liftOver23 converting coordinates to GRCh38. All regions were further
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combined as a single BED file that contains the union of the capture
kits’ genomic intervals (with flanking ± 7 basepairs [bps]). The BED
files for individual capture kits, as well as the BED file containing all
the captures’ intervals, are available in NIAGADS DSS (https://dss.
niagads.org/wp-content/uploads/2021/08/gcad.wes_.20650.VCPA1_.
1.2019.11.01.targetregions.zip?x78736).

ProcessingWES using VCPA at the individual sample level. VCPA, a
BWA/GATK-based pipeline24,25, was developed by GCAD and the
ADSP and optimized for processing large-scale, short-read WGS
data5. To adopt VCPA for ADSP WES data processing, GCAD followed
GATK Best Practices26 with the following steps modified to accom-
modate for the use of multiple WES capture kits (VCPA-WES, Fig. 1).
Instead of calling variants limited to the capture regions per
sample3,4, VCPA-WES keeps all detected variants (same as that of
VCPA-WGS, but different than other WES based pipelines3,4), as we
envision that (1) the research community will use the joint-called VCF
for different kinds of analyses (i.e., one project will select a few stu-
dies for its analyses, but another project might pick different stu-
dies); and (2) Any WES datasets in the future may use different
capture kits. Compared to VCPA-WGS, VCPA-WES (at the individual
sample level) differs in the following steps (components highlighted
with a “star” in Fig. 1):

• Coverage calculation—the 20× coverage metric (i.e., percentage
of bps with 20 reads ormore)4,9–13 was calculated on regions that
were included in the capture kits only. Nobad-quality readswere
filtered prior to assessment.

• Variant evaluation—Ti/Tv ratio (ratio of the number of transitions
to the number of transversions) and counts of SNPs/indels were
calculated on regions that were included in the capture kits only.

Joint-genotype calling of 20,504 WES samples. All WES samples
were jointly called using GATK4.1.1 to create a joint genotype called
project-level VCF (pVCF). This included these major steps:

• VCPA-WESperforms joint-genotype calling across samples on all
possible variants called (not limited to captures). CombineGVCF
and GenotypeGVCF are the same in both VCPA-WGS and VCPA-
WES pipelines. gVCFs of all 20,504 samples were combined in
parallel across 5,000 genomic windows/regions across all the
chromosomes.

• Generating the VQSR model—a Variant Quality Score Recalibra-
tion (VQSR) indicator is used for defining qualities of variants via
a machine-learning model. Only variants that were called within
any of the capture kitswere used to build the VQSRmodel. VQSR
model classify the variants in any capture kits with different
quality scores (VQSR tranches). This step is modified upon
VCPA-WGS (Fig. 1).

• Applying the VQSR model—the trained VCPA-WES VQSR model
(on variants within any capture kits) was applied to all the
autosomal chromosomes, as well as chromosomes X and Y, and
mitochondria.

Sample-level quality assurance (QA) checks. Three quality assur-
ance checks were applied prior to joint-genotype calling to identify
problematic samples:

• SNV concordance check with existing SNP array genotypes to
identify possible sample errors. Using verifyBamID27 to compare
between SNP array data and WES BAM files, samples with con-
cordance <0.95 were excluded.

• check for variants outside PAR region to identify possible sample
swaps or misreporting. Using PLINK, samples with F
statistics < 0.2 or > 0.8.

• Contamination check for possible sample swaps. Using
verifyBamID27 to calculate the concordance estimate between
the array genotypes and theGRCh38-mappedBAMfile. A sample
is potentially contaminated if the CHIPMIX value is <0.05.

In total, we dropped 55 samples that failed the SNP concordance
check, 41 samples that were recorded with the incorrect sex, and
211 samples that failed the contamination check. An additional
266 samples were dropped due to consent issues, resulting in a call set
containing 20,504 samples.

Quality control (QC) protocol for WES samples. The GCAD quality
control (QC) pipeline uses a modified protocol originally developed
by the ADSP QCWorking Group onWGS14 and includes several major
components: (1) pre-QC quality checks; (2) variant-level QC;
(3) sample-level QC; and (4) post-QC quality checks. These steps are
applied to both SNVs and indels. We implemented variant-level QC to
SNVs and indels in the project-level VCFs. Data were stratified into
sequencing subsets based on the capture kit, sequencing assay, and
sequencing center. We applied filters in the following order within
sequencing subsets, resulting in the exclusion of (1) variants outside
of designated capture regions specific to the capture kit used on a
sample; (2) variants failing GATK quality assessment (those without
“PASS” or in a VQSR Tranche of 99.5% or more extreme); mono-
morphic variants; (3) variants with a highmissingness rate (≥20%); (4)
variants with excessive heterozygosity and (5) variants with high
average read depth (>500x). We estimated allelic read ratios (ABHet)
among heterozygotes for each variant as an optional metric for
excluding variants with extreme deviations from the expected
ABHet of 0.5.

Additionally, we generated several metrics within ancestry
groups. Phenotype data on all participants included self-reported
race and ethnicity values corresponded almost exactly with mem-
bership in specific data sources/originating studies. To identify pre-
liminary ancestry groupings (NHW/AFA/CHI), we partitioned the
dataset by data source/originating study and grouped them by the
originating study’s recruitment criteria based on self-reported race/
ethnicity (e.g., studies recruiting self-identifying African American
subjects with AFA, studies recruiting in Caribbean Hispanic com-
munities with CHI). Source datasets containing more than one self-
identifying race/ancestry group with at least 200 participants were
partitioned, and the subsets added to each preliminary ancestry
grouping. Separately for NHW, AFA, and CHI groupings, we com-
bined the samples in each with 1000 Genomes (1kG) reference
populations and sampled ~20,000 variants in low linkage dis-
equilibrium (LD) within the data (r2 < 0.2) that overlapped the
ancestry grouping dataset and the 1kG reference (MAF > 0.01). We
then estimated population substructure within ancestry grouping
through principal components analysis on these ~20,000 variants
using EIGENSOFT28,29. This was used to broadly confirm sample set
clustering within expected 1kG reference populations and to filter
out outliers within each ancestry grouping. Participant samples were
defined as NHW if they clustered in principal components (PCs) 1 and
2 within 3 SD of the European (EUR) populations in 1kG, which led to
the exclusion of 32 outlier samples; as AFA if they clustered within 3
SD of EUR and African (AFR) populations in 1kG or between EUR and
AFR clusters, which led to the exclusion of 29 samples; and as CHI if
they clustered within 3 SD of EUR and AFR populations or between
those clusters and subsets of Puerto Rican, Peruvian, and Mexican,
and Amerindian ancestry individuals in 1kG (no samples were
excluded in this subset). Excluded samples were not reincluded in
other ancestry groupings because of differences by sequencing
center/assay and capture kit.

Among the metrics estimated within each ancestry group were
departure fromHardy-WeinbergEquilibrium (HWE) amongcontrols or
excess heterozygosity for datasetswith related samples. Either of these
metrics may be used as potential exclusion criteria by end-users of
the data.

We also explored sample-level QC criteria and evaluated multiple
filters to further exclude potential low-quality samples. We estimated
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multiple quality metrics within each sample including (1) counts of
singleton/doubleton variant calls (to identify an excess of private
variants); (2) genotype missingness rate within the sample; (3) Tran-
sition/Transversion (Ti/Tv) ratio (for SNVs only); (4) heterozygosity-to-
homozygosity ratio across all variants within individuals; and (5) the
mean within-sample read depth. Samples were considered for exclu-
sion if their values for any of these criteria were greater than 6 SD from
the mean value.

Genotype concordance analyses with the previously published
ADSP-DiscoveryWES data. Genotype calls generated by VCPA in this
data set (20,504 samples) include samples that were part of the ADSP-
Discovery data set1. To provide a comparison of genotype quality, we
examined the concordance between genotype calls using the ATLAS2
approach30 on 10,786 samples that overlapped between the two sets.
The previous genotype calling was conducted based on GRCh37,
which was lifted to GRCh38 using liftOver23. For these analyses, gen-
otype concordance was defined as identical genotype calls (including
missing genotypes) between the two call sets. Concordance was cal-
culated by sample, by variant, and overall. Because VCPA employs a
joint-calling approach, we also investigated the impact of the capture
kit coverage on genotype concordance under the hypothesis that
limited coverage in additional samples of the current data set could
alter the quality control metrics.

Annotation protocol for WES samples. Variants were annotated
using our published annotation pipeline with updated resources (VEP
9816, CADDv1.417, SnpEffv4.1k31) in GRCh38, described elsewhere15.
Briefly, we assign a “most damaging consequence” via a custom
prioritization routine that down-weights non-coding transcripts or
transcripts flagged as undergoing nonsense-mediated decay.

To compare the distribution of coding variants against publicly
available WES annotation resource, we downloaded gnomADv2.1
GRCh38/hg38 lifted-over variant dataset from: https://gnomad.
broadinstitute.org/downloads#v2-liftover .

Recommended post-QC processing for analysis. To prepare data
for analysis, we recommend a number of filtering steps. Initially, we
recommend the removal of samples based on an available list of
unintentional duplicates across sequencing studies and subsets, as
well as a list of intentional replicates included to perform compar-
isons between sequencing experiments. We provide recommenda-
tions to end-users as to which samples should be kept or excluded,
prioritizing (a) completeness of genotype data, (b) data collection
with which the replicate or duplicate was originally ascertained, and
(c) sample size of the dataset to which the replicate or duplicate
belongs, prioritizing keeping samples in smaller subsets or studies.
We then recommend identifying and removing samples flagged for
not having a GATK FILTER value of “PASS”; having all genotypes set
to missing after genotype-level QC; being monomorphic within
subset; having a low call rate (<0.8) across all subsets; having
extremely high read depth (DP > 500) indicating potential read mis-
alignment; and having allelic read ratios >0.75 or <0.25. Due to subset
sizes, we do not recommend filtering on Hardy-Weinberg dis-
equilibrium or excess heterozygosity. Finally, for association ana-
lyses including data across subsets, we recommend using one of
multiple approaches, including (a) filtering on variants not failing in
all subsets and performing joint analysis across subsets adjusting for
population substructure estimated across all samples, and indicator
variables for study subset (this can be modified to perform analysis
within ancestry groups across subsets); or (b) filtering failing variants
out of each subset, estimating population substructure within sub-
set, performing association analysis within subset, and then per-
forming meta-analysis across subsets to combine results (this
approach can include random-effects meta-analysis across ancestry

groups to get cross-ancestry associations). While this approach did
not directly address every potential sequence quality issue indivi-
dually, this filtering strategy minimized most notable quality issues
(including differential retention of low read depth genotype calls by
genotype) by excluding off-target variants.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All CRAMs, gVCFs generated by GATK4.1.1, and QC-ed pVCFs of the
abovementioned ADSP WES data set are available in the NIAGADS
Data Sharing Service (DSS) (NG00067.v3), together with pedigree
structures for family studies and phenotypes that were harmonized
according to ADSP protocols. The WES target regions (fromGRCh36,
GRCh37) now lifted to GRCh38 for analyses are available as well.
Qualified investigators can access these data with a submission
request and approval from the NIAGADS Data Access Committee
managed by independent NIH program officers. Data can be down-
loaded through the DSS portal. More information about the data set
can be found on the data set page, NG00067. See the Application
Instructions page (https://dss.niagads.org/documentation/applying-
for-data/application-instructions/) on how to submit a Data Access
Request and access data. Source data are provided in this paper.

Code availability
VCPA-WES code is publicly accessible at https://bitbucket.org/
NIAGADS/vcpa-pipeline/src/master/.
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