757 research outputs found

    Analysis and separation of time-frequency components in signals with chaotic behavior

    Get PDF
    Working document. Unpublished.The analysis of chaotic signals with time-frequency methods is considered. For this purpose, two new transformations are presented which consist in the decomposition of a signal onto an orthogonal set of respectively linear and hyperbolic chirps. The linear chirp transformation is able to discriminate and extract particular chaotic components in non-stationary square integrable signals. This is demonstrated in an example studying the reflectometry measures of a turbulent plasma. The hyperbolic chirp transformation is designed for the detection and extraction of chaotic parts in self-similar processes such as stochastic motions. Mathematical connections are made between these two methods and other well-known transformations

    Plasma turbulence measured by fast sweep reflectometry on TORE SUPRA

    Get PDF
    Traditionally devoted to electron density profile measurement we show that fast frequency sweeping reflectometry technique can bring valuable and innovative measurements onto plasma turbulence. While fast frequency sweeping technique is traditionally devoted to electron density radial profile measurements we show in this paper how we can handle the fluctuations of the reflected signal to recover plasma density fluctuation measurements with a high spatial and temporal resolution. Large size turbulence related to magneto-hydrodynamic (MHD) activity and the associated magnetic islands can be detected. The radial profile of the micro-turbulence, which is responsible for plasma anomalous transport processes, is experimentally determined through the fluctuation of the reflected phase signal.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    On non-zero space average density perturbation effects in tokamak plasma reflectometer signals

    Get PDF
    12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France)The effects of the non-zero average density perturbation on phase and amplitude measured by reflectometry are presented. The non-zero average density perturbation on the phase variation can be seen as an index effect as soon as the shape of the density perturbation does not introduce spectral effects. Amplitude modulation in time follows generally the properties of the cut-off layer seen as a mirror but some specific situations produce a time modulation two times higher than the input time variation of the density perturbation as observed in Tore Supra. The introduction of secondary cut-off can exhibit this effect as shown in 2D simulations

    Tomographic analysis of reflectometry data II: the phase derivative

    Full text link
    A tomographic technique has been used in the past to decompose complex signals in its components. The technique is based on spectral decomposition and projection on the eigenvectors of a family of unitary operators. Here this technique is also shown to be appropriate to obtain the instantaneous phase derivative of the signal components. The method is illustrated on simulated data and on data obtained from plasma reflectometry experiments in the Tore Supra.Comment: 25 pages, Latex, 17 figure

    Spatial and Wavenumber Resolution of Doppler Reflectometry

    Full text link
    Doppler reflectometry spatial and wavenumber resolution is analyzed within the framework of the linear Born approximation in slab plasma model. Explicit expression for its signal backscattering spectrum is obtained in terms of wavenumber and frequency spectra of turbulence which is assumed to be radially statistically inhomogeneous. Scattering efficiency for both back and forward scattering (in radial direction) is introduced and shown to be inverse proportional to the square of radial wavenumber of the probing wave at the fluctuation location thus making the spatial resolution of diagnostics sensitive to density profile. It is shown that in case of forward scattering additional localization can be provided by the antenna diagram. It is demonstrated that in case of backscattering the spatial resolution can be better if the turbulence spectrum at high radial wavenumbers is suppressed. The improvement of Doppler reflectometry data localization by probing beam focusing onto the cut-off is proposed and described. The possibility of Doppler reflectometry data interpretation based on the obtained expressions is shown.Comment: http://stacks.iop.org/0741-3335/46/114

    Characterizations and first plasma operation of the WEST load-resilient actively cooled ICRF launchers

    Get PDF
    The paper discusses the characterization of the three high power steady-state and load-resilient ICRF launchers of WEST before their installation in the tokamak. These launchers have been characterized and validated in low-power experiments (milliwatt range) as well as in experiments at the nominal RF voltages and currents in the TITAN vacuum chamber (~30 kV and 915 A peak). The successful commissioning of two of the launchers during the WEST C3 campaign at ~1 MW power level is illustrated. Manual and real-time controlled impedance-matching of the launchers are discussed, as well as the validation of their load-resilience. Furthermore, several redundant and complementary protection systems have been validated and are reviewed in the paper

    A tomographic analysis of reflectometry data I: Component factorization

    Full text link
    Many signals in Nature, technology and experiment have a multi-component structure. By spectral decomposition and projection on the eigenvectors of a family of unitary operators, a robust method is developed to decompose a signals in its components. Different signal traits may be emphasized by different choices of the unitary family. The method is illustrated in simulated data and on data obtained from plasma reflectometry experiments in the tore Supra.Comment: 27 pages Latex, 17 figure

    Interaction of ITER-like ICRF antenna with Tore Supra plasmas: insight from modelling

    Get PDF
    The non-linear interaction of ion cyclotron resonance frequency (ICRF) waves with the plasma edge is one of the challenges faced by high power wave heating systems in next step devices. Such interaction is often associated with parallel RF electric fields excited by spurious parallel RF currents flowing on the antenna front face I -Experimental results 1 -ICRF antenna configurations. The prototype launcher ITER-lik
    • …
    corecore