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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract

The analysis of chaotic signals with time-frequency methods is considered. For this purpose, two

new transformations are presented which consist in the decomposition of a signal onto an orthogonal

set of respectively linear and hyperbolic chirps. The linear chirp transformation is able to discrimi-

nate and extract particular chaotic components in non-stationary square integrable signals. This is

demonstrated in an example studying the reflectometry measures of a turbulent plasma. The hyper-

bolic chirp transformation is designed for the detection and extraction of chaotic parts in self-similar

processes such as stochastic motions. Mathematical connections are made between these two methods

and other well-known transformations.

For a rapid detection of chaotic patterns in non-stationary signals, new analysis are

necessary. This is what our paper addresses. The links between our new methods and other

well-known signal processing transformations are described. Some results on experimental

data confirm the adequacy of our methods.
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1 Introduction

Many numerical techniques have been designed to analyze the dynamics of chaotic systems. Among them

are the computation of the Poincaré section, the estimation of asymptotic quantities such as Lyapunov

exponents, entropy or fractal dimension. Although they can give accurate information on the average

and long-time behavior of chaotic systems, they may be unable to retrieve particular crucial information.

In the context of control of chaos for instance, the procedure may involve real-time estimation of the

system state and fast detection of chaotic patterns. In such cases, a signal processing approach with

time-frequency methods may be an appropriate choice. For example, the wavelet transform and the

scalogram have been extensively used [1] to study turbulent signals. The analysis of ridges in the time-

scale or time-frequency plane allows to characterize particular chaotic behaviors. Resonance transition

or trapping can be detected as well as signs of weak or strong chaos [2].

Our work has two goals. The first one is to present a new transformation allowing a fast and ef-

ficient detection and extraction of ridges in the time-frequency domain. It is called the Linear Chirp

Transformation (LCT). A key advantage of the method is that a tuning parameter is associated to the

transformation. Unlike usual time-frequency methods, it allows to adapt the transformation to the shape

of the chaotic components which are to be detected and extracted. The second advantage is its fast

computation as it is related to the fast Fourier transform. The inverse transformation, which provides

the temporal expression of the extracted ridges, can also be implemented with a fast algorithm. This

transformation is illustrated with an application to the analysis of data issued from the reflectometer

of the toroidal fusion machine Tore Supra [3]. The actual importance of the transformation and the

main motivation for its development originate from the need in fusion experiment to obtain an accurate

plasma density profile. The edge turbulence must be measured precisely and controlled as it can break

the confinement and create plasma leaks. Reflectometry appears to be particularly suited for retrieving

this information. It allows to probe the state of the plasma in a fast and accurate way. Nevertheless,

the reconstruction of the density profile can be delicate: chaotic transport creates multi reflections in the

signal, difficult to interpretate. Recent studies [4, 5] revealed the efficiency of a chirp-like transformation

to filter out undesired echos in such signals and our work presents the improved results obtained with

the LCT.
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The second goal is to extend the time-frequency analysis to other types of signals. Indeed, the

standard tools are dedicated to square integrable signals usually fluctuating around a mean value. But

no equivalent method exists for the investigation of stochastic processes such as Brownian or fractional

Brownian motions. A connection has been made between self-similar and stationary signals in [6, 7]: we

will show that this opens the door to an application of time-frequency analysis to such processes. We

present a second new transformation, called the Hyperbolic Chirp Transformation (HCT). We establishes

its connection with the LCT using the results of the previously cited articles. It hence suggests that the

HCT can extract chaotic parts in signals issued from stochastic processes in the same manner as the LCT

does for square integrable signals.

The definition and properties of the chirp transformations are given in Section 2. The connection

between these two transformations is discussed together with their relations to other types of time-

frequency methods such as the fractional Fourier, the Mellin or the Lamperti transformation. Then

section 3 exhibits the procedure for the application of the linear chirp transformation along with the

different results obtained on an example: the extraction of the plasma reflections in chaotic reflectometry

signals. Eventually, in section 4 some important characteristics of this signal processing technique are

discussed.

2 The chirp transformations

In this section we define the new transformations. We derive some of their properties which are important

for their use in applications and for efficient numerical implementation. We also connect them to more

familiar transformations.

A square integrable function f observed from a different point of view can reveal interesting properties.

A convenient way may be to use the projection of the function onto the set {ψk}k of (generalized)

eigenvectors of a selfadjoint operator. The operator is chosen depending on which signal properties

we want to emphasize. For example, the decomposition on the eigenvectors of the operator generator of

translation will highlight stationary signals whereas the decomposition on the eigenvectors of the generator

of dilatations will underline self-similar signals. This has been the point of view adopted in [8, 9] to define

the tomogram transforms and it is at the origin of the transformations which are the focus of this paper.
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Let f be an element of the Hilbert space L2(T1, T2) (T1, T2 may be infinity). Its projection on the vector

ψk is given by the scalar product

(f, ψk) =

∫ T2

T1

f(t)ψk(t)dt. (1)

Then the spectral theorem states that the signal f can be written as the sum:

f(t) =
∑

k

(f, ψk)ψk, (2)

if k is discrete or with an integral if k is continuous. Two important reasons for the choice of the operator

approach are:

i) the equation (2) provides the inverse transformation associated to the projection. Hence a signal

can be reconstructed in a straightforward manner thanks to the orthogonality property of the

eigenvectors.

ii) when the selfadjoint operator depends on a parameter θ, so does its eigenvectors but changing θ

does not affect the orthogonality property. Hence θ can be used as a tuning parameter.

2.1 The Linear Chirp Transformation

Definition

We define the linear chirp transform Cθ
Lf of a function f ∈ L2(R) by the scalar product:

(Cθ
Lf)(x) = (f, ψθ

x),

where the {ψθ
x}x are orthonormal and have the following expression for θ 6= nπ, n ∈ Z:

ψθ
x(t) =

1√
2π| sin θ|

exp

(
−i 1

2 tan θ
t2 + i

x

sin θ
t

)
. (3)

For the case θ = nπ, the vectors are the Dirac distributions:

ψnπ
x (t) =






δ(t− x) if n is even or 0

δ(t+ x) if n is odd

.

The parameter θ allows to pass from the time representation of the signal (θ = 0) to the frequency one

(θ = π/2) via intermediate representations. In fact, each ψθ
x is a linear chirp with phase derivative:

φ′(t) = − 1
tan θ · t+ x

sin θ . Thus, this transform can be seen as the projection on a basis of linear chirps.
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Properties and relations with other transforms

The linear chirp transformation is closely related to the theoretical work of [8, 9] in quantum mechanics

where the tomogram transform is introduced. Several selfadjoint operators with their eigenvectors are

presented and among them the operator B(θ). The tomogram transform associated to B(θ) consists in

the analysis of the energy density of the signal when projected onto the eigenvectors of this operator.

The LCT is connected to the selfadjoint operator AL(θ):

AL(θ) = cos θ · t− i sin θ · d
dt

= B(−θ), (4)

where t and d/dt are respectively the t-multiplication operator and the derivative operator. It acts on

the Hilbert space L2(R) and its generalized eigenfunctions, are the set of linear chirps {ψθ
x}x. That is to

say: AL(θ)ψ
θ
x = xψθ

x. Although coming from the same operator, the LCT and the Tomogram transform

are not designed for the same purpose. Whereas the tomogram is designed to study the distribution of

energy in a signal, the LCT stresses more on the extraction and separation of different parts of a signal,

in a fast numerical manner.

The goal of this subsection is to show two important properties concerning the use and computation

of the LCT, in particular its possibility to be implemented with a fast algorithm. It is deduced from the

operator approach. For θ 6= nπ, since

d

dt

(
exp(i

1

2 tan θ
t2)f(t)

)
= exp(i

1

2 tan θ
t2)

(
i

tan θ
t+

d

dt

)
f(t),

the operator AL(θ) can be written equivalently as:

AL(θ) = exp(−i 1

2 tan θ
t2)

(
−i sin θ d

dt

)
exp(i

1

2 tan θ
t2). (5)

Moreover, let Dθ be the dilatation operator such that:

(Dθf)(t) =
√
| sin θ|f(sin θt).

It is unitary and its inverse is

(D−1
θ f)(t) =

1√
| sin θ|

f(
t

sin θ
).

Since for any f

D−1
θ

d

dt
Dθf = sin θ

d

dt
f,
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the operator AL(θ) can be written as

AL(θ) = exp(−i 1

2 tan θ
t2)D−1

θ

(
−i d
dt

)
Dθ exp(i

1

2 tan θ
t2) (6)

= exp(−i 1

2 tan θ
t2)D−1

θ AL(
π

2
)Dθ exp(i

1

2 tan θ
t2).

Eq. (6) shows that for all θ 6= nπ:

i) since D−1
θ and exp(it2/2 tan θ) are analytic with respect to θ, the eigenvectors are analytic with

respect to θ (see chap. 7 of [10]) and so are the chirp transform components Cθ
L. This is an

important property: the smoothness with respect to θ guarantee the robustness of the method i.e.

a small change in θ causes a small change of Cθ
L.

ii) AL(θ) is unitary equivalent to the derivative operator. Then the eigenvectors {ψθ
x}x of (4) are

related to the eigenvectors {ψπ/2
x }x of the derivative operator i.e. the Fourier basis {eixt}x. Rel. (6)

implies:

ψθ
x(t) = e−i 1

2 tan θ
t2D−1

θ ψπ/2
x (t). (7)

Hence the projection can be computed using the Fourier transform as (Dθ is unitary so that

(D−1
θ )∗ = Dθ):

(f, ψθ
x) = (f, e−i 1

2 tan θ
t2D−1

θ ψπ/2
x ) = (Dθe

i 1
2 tan θ

t2f, ψπ/2
x ).

As a consequence, a fast Fourier transform algorithm can be used to compute the chirp transform.

The action of Dθe
i 1
2 tan θ

t2 can be seen as a deformation of the time-frequency plane proportional

to θ. Linear chirps become stationary signals and they can be decomposed efficiently by a Fourier

transform. From this point of view, the LCT transformation may be seen as a two steps process:

first a smooth deformation of the function and second a projection onto the Fourier basis.

Eventually, it is worth noticing that the linear chirp transform is related to the fractional Fourier transform

Xα(u) as defined in [11] by:

Xα(u) =

√
1− i cosα

sinα
exp(

u2

2 tanα
)(Cα

Lf)(u).

This latter transform is connected to fractional calculus and fractional derivatives [12].
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Definition on the interval

For signals of finite time length T , and for θ 6= nπ, n ∈ Z, the ψθ
x on the domain [0, T ] have the following

expression [4]:

ψθ
x(t) =

1√
T

exp

(
−i 1

2 tan θ
t2 + i

x

sin θ
t

)
. (8)

They form an orthonormal basis of the space L2(0, T ). The real quantity x is the associated eigenvalue

which takes discrete values in this case:

x =
2π sin θ

T
m, m ∈ Z. (9)

In order to keep the domain bounds unchanged, the relation given in Eq. (6) is modified to:

AL(θ) = exp(−i 1

2 tan θ
t2)D̃−1

θ AL(
π

2
)D̃θ exp(i

1

2 tan θ
t2), (10)

where

D̃−1
θ ψπ/2

x (t) = ψ
π/2
x/ sin θ(t).

Then the previous properties i) and ii) hold and:

(f, e−i 1
2 tan θ

t2D̃−1
θ ψπ/2

x ) =
1√
T

∫ T

0

ei
1

2 tan θ
t2f(t)ψ

π/2
x/ sin θ(t)dt (11)

=(ei
1

2 tan θ
t2f, ψ

π/2
x/ sin θ).

This insures that, even in the finite time context, a fast algorithm can be used.

Eventually, let us state a remark on the boundary conditions of the domain. A function possessing

a discontinuity involves a Fourier series containing a large number of non negligible harmonics. For

continuous signals satisfying f(0) = f(T ), the Fourier transform is well adapted and gives a compact

expression. This is also true for the linear chirp transformation if the following condition (given by

Eq. (11)) is satisfied:

f(0) = ei
1

2 tan θ
T 2

f(T ). (12)

The parameter θ allows to tune the transformation in order to obtain this condition on a given signal f .
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2.2 The Hyperbolic Chirp Transformation

Definition

This transformation is defined on L2(R+). Let c be a real valued function of t ∈ R+. The vectors of the

basis associated to the hyperbolic chirp transformation are the following ones:

ϕθ
x(t) =

1√
2π| sin θ|t

exp

(
−i 1

tan θ
c(t) + i

x

sin θ
ln t

)
. (13)

Let f ∈ L2(R+). For all θ 6= nπ, n ∈ Z, we define the hyperbolic chirp transform Cθ
H,c of f by:

Cθ
H,c(x) = (f, ϕθ

x). (14)

For the case θ = nπ, the vectors are the Dirac distributions:

ϕnπ
x (t) =






δ(t− x) if n is even or 0

δ(t+ x) if n is odd

.

The parameter θ allows to pass from the time representation of the signal (θ = 0) to the “scale repre-

sentation” (θ = π/2) via intermediate ones. For θ = π/2, the hyperbolic chirp transform is related to

the operator generator of dilatations. For θ 6= nπ, each ψθ
x can be seen as a hyperbolic chirp with phase

derivative: φ′(t) = − 1
tan θ c

′(t) + x
sin θ

1
t .

Properties and relations with other transforms

The Hyperbolic Chirp Transformation can be related to other transformations for particular values of

c and θ. For example it is a generalization of the second tomogram transform suggested in [8, 9]: the

time-scale tomogram is the HCT with c(t) = t.

Let us show how the HCT can be implemented with a fast algorithm. Let D be the generator of

dilatations acting in L2(R+) and defined by:

D =
i

2
(t
d

dt
+
d

dt
t) = i(t

d

dt
+

1

2
).

The HCT is associated with the following operator:

AH(θ) = cos θ · t c′(t)− sin θ ·D = cos θ · t c′(t)− i sin θ · (t d
dt

+
1

2
), (15)
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where c′ stands for the derivative of c. Indeed, for θ 6= nπ, ϕθ
x are the eigenvectors of AH(θ):

dϕθ
x

dt
(t) =

(
i

x

t sin θ
− i

c′(t)

tan θ
− 1

2t

)
ϕθ
x(t) ⇔

it sin θ
dϕθ

x

dt
(t) =

(
−x+ tc′(t) cos θ − i

sin θ

2

)
ϕθ
x(t) ⇔

tc′(t) cos θϕθ
x(t)− i sin θ(t

d

dt
+

1

2
)ϕθ

x(t) = xϕθ
x(t).

Since D is selfadjoint and c′ is a real-valued function, the operator AH(θ) is selfadjoint and as a conse-

quence (spectral theorem) the vectors {ϕθ
x}x are orthonormal and (2) holds. Similarly to the LCT case,

the operator AH(θ) can be put under the form:

AH(θ) = − sin θe−i c(t)
tan θDei

c(t)
tan θ . (16)

When θ = π/2, AH(π/2) = −D and the HCT is (up to a normalization constant) the Mellin transform

(as defined in [13]) where the real part of the exponent is restricted to the value 1/2 and the imaginary

part is equal to (−x):

C
π/2
H,c (x) =

∫
∞

0

1√
2πt

exp (−ix ln t) f(t)dt = 1√
2π

∫
∞

0

t(−ix+ 1
2 )−1f(t)dt. (17)

Then the HCT can be written in term of Mellin transform since from Eq. (16) the following relation can

be deduced:

ϕθ
x = e−i c(t)

tan θϕ
π/2
x/ sin θ and (f, ϕθ

x) = (ei
c(t)
tan θ f, ϕ

π/2
x/ sin θ). (18)

In conclusion, let us remark that fast algorithms exist for the computation of the Mellin Transform [14].

2.3 Self-similar and stationary processes

A one-to-one connection has been established between stationary and self-similar stochastic processes

in [6]. It is done by means of the Lamperti transformation. We show that the same process allows

to connect the LCT and the HCT together. Since the LCT is efficient for detecting deviations from

stationarity, this demonstrates that the HCT is appropriate to detect deviation from self-similarity.

Let us briefly recall the Lamperti transformation. Let f be a complex-valued function of t ∈ R. The

Lamperti transform of f is defined for a > 0 and t > 0 by:

(Laf)(t) = taf(ln t). (19)
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It has for inverse transform, for g : R+ → C:

(L−1
a g)(t) = e−atg(et), t ∈ R. (20)

To show the relation between LCT and HCT we exhibit the link between their respective associated

operator. For this purpose, we need to extend the definition of [6] to a = −1/2. Since

(L−1/2f, L−1/2f)L2(R+) =

∫
∞

0

t−1|f(ln t)|2dt =
∫

∞

−∞

|f(τ)|2dτ = (f, f)L2(R),

(L−1
−1/2f, L

−1
−1/2f)L2(R) =

∫

R

et|f(et)|2dt =
∫

∞

0

|f(τ)|2dτ = (f, f)L2(R+),

L−1/2 is well defined as a unitary operator from L2(R) to L2(R+). The last step of the proof consists in

noticing the following two relations: first we have a correspondence between the derivative operator and

the dilatation operator,

Lai
d

dt
L−1
a g(t) =La

(
−aie−atg(et) + ie−atetg′(et)

)

=− ag(t) + tg′(t)

=− i(a+
1

2
)g(t) +Dg(t).

Secondly, the Lamperti operator turns a multiplication operator by a complex-valued function h into

another multiplication operator:

LahL
−1
a (t) = h(ln t). (21)

As a consequence one has:

La(cos θt− i sin θ
d

dt
)L−1

a = cos θ ln t− sin θD + i sin θ(a+
1

2
). (22)

Then L−1/2 makes the connection between the LCT and the HCT with c(t) = ln t. More precisely, let

{ϕ̃θ
x}x be the set of eigenvectors of the operator AH(θ) with c(t) = ln t, then

ψθ
x = L−1/2ϕ̃

θ
x and Cθ

L(f) = Cθ
H,ln t(L

−1
−1/2f). (23)

3 Linear chirp transformation and turbulent plasma

A plasma of density d has the property to absorb, reflect or be transparent to a wave, depending on its

frequency. The density of the reflective layer can then be deduced from the frequency of the incident
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wave. Reflectometry consists in emitting a wave during 20 µs with a frequency increasing linearly with

time, and detecting the reflected echo. The phase difference between emitted and reflected waves gives

the position of the plasma reflective layer. Thus a well chosen sweep of frequencies allows to probe

the density in depth and obtain the density profile. It can be reconstructed from the output signal of

the reflectometer through a mathematical relation [15]. The calculation of the density profile from this

relation is based on the assumption that the signal is of the form:

y(t) = A(t)eiφ(t),

with a slowly varying amplitude A compared to the variations of eiφ. Furthermore, at each time t a single

frequency Fb(t) (beat frequency) must be associated to φ(t) via the relation:

Fb =
1

2π

dφ

dt
.

This latter assumption fails when multi reflections occur as each echo adds its beat frequency to the phase

φ. A part of them is due to reflections on the walls surrounding the plasma while the other part is caused

by abrupt density fluctuations, resulting from the plasma turbulence. The former must be filtered out

whereas the latter must be taken into account in the calculations since it is a consequence of the density

shape. A previous work on the subject [4, 5] has shown the ability of the time-frequency tomogram to

separate the plasma signal from the undesired wall echoes. As pointed out in the previous section, this

tomogram is closely related to the linear chirp transform. However, it does not treat the plasma multi

reflections and it is still not possible to obtain a correct density profile. The following analysis shows

that the linear chirp transform can be applied to separate these multi reflections. This could lead to a

more accurate reconstruction of the density profile and a better understanding of the plasma turbulent

behavior.

The spectrogram of the reflectometer output signal has been plotted on Fig. 1-(a). The (multivalued)

beat frequency can be seen in black. At the beginning of the sweep the plasma is transparent for the

wave: in that region, the reflection of the wave is due solely to the porthole and the back wall. Since these

obstacles are fixed, the fight time of the reflected wave is constant and y contains two components of

constant frequency. As the porthole is close to the reflectometer, it gives a low beat frequency component

(around −5 MHz) whereas the back wall is associated to a higher frequency one (around 20 MHz). After

a certain time, the frequency of the emitted wave reach the first plasma cutoff frequency and the plasma
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Figure 1: (a) Spectrogram of the reflectometer output (Sliding FFT). (b) Ridges of the spectrogram.

The linear chirp transform can cut the time-frequency plane with a specified angle θ; red lines delimit

the different parts separated by LCT for θ = π/5.

start to be reflective. The plasma reflection appears at 6 µs. In the same time, the back wall reflection

intensity decreases and disappears since the plasma screens the wall. The beat frequency of the plasma-

reflected wave increases from 10 to 20 MHz as the frequency of the emitted wave increases: the wave

enters deeper and deeper inside the plasma. A change in the reflection behavior appears after 12 µs where

the beat frequency starts to decrease and is not anymore linear and single valued, revealing a turbulent

zone in the plasma.

In order to analyze the plasma multi reflections, the ridge detection algorithm of [2] has been applied

to the signal. The result is plotted on Fig. 1-(b). The chaotic region appears to be a superposition of

small chirps where many of them have a similar slope. This is exactly the type of pattern which can be

separated by the linear chirp transform. The dashed red lines on the graph are chirps of the LCT with

a parameter θ = π/5. They are the delimiter of different domains of the time-frequency plane. Two of

them separate the porthole and back wall from the plasma reflection (the ones with a starting frequency

of 2.5 and 16 MHz respectively). In addition, the plasma multi reflections can be isolated: an example is

given where two chirps starting at 6 and 7 MHz frame a single component of the multi reflections. The

LCT of the reflectometry signal has been performed for θ = π/5 and the square modulus is plotted on

figure 2. Up to a constant (sin(π/5)), the eigenvalue x corresponds in practice to the initial frequency

of the chirp (at t = 0) used for the projection. Let us recall that the slope of the chirp is given by

12
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Figure 2: Square modulus of the linear chirp transform Cθ
L of the reflectometry signal for θ = π/5.

1/ tan(π/5). The square modulus of C
π/5
L corresponds to the amount of energy contained in the signal

projection. As expected, three regions of high energy can be seen distinctively on the graph. Defined by

the intervals [X1, X2], [X3, X4] and [X5, X6] are the porthole, plasma and back wall regions respectively.

The middle zone corresponds to the plasma reflection with its multi reflections: each peak and its direct

neighborhood corresponds to a particular ridge of the time-frequency plane. If the ridge is sharp and

possesses a slope close to 1/ tan(π/5) the peak is narrow, otherwise it broadens as a part of the ridge

energy is shared between several nearby chirps. By setting a threshold value on |Cθ
L|, several peaks can

be isolated. Then the associated time signals are synthesized by inverse transform following (2). The

sum in this formula is taken over x in the respective peak intervals. These signals are shown on Fig. 3.

Each one corresponds to a ridge of the time-frequency plane. The bottom one is the sum of the multi

reflections.

4 Conclusion

We presented a method for the analysis of chaotic signal involving two new transformations. It is based

on the extraction of ridges in the time-frequency domain. The ability to isolate the chaotic behavior

(or a part of it) from a raw signal could considerably ease the interpretation of nonlinear effects. The

results obtained in the case of plasma turbulences are promising. The free parameter θ in the linear chirp

transformation gives a flexibility which allows to adapt the separation to the shape of the ridges in the

time-frequency plane. This is much more powerful than a Fourier transform, a frequency filtering or a
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Figure 3: Re-synthesis of the separated plasma multi reflections by the linear chirp transformation. Each

component (1 to 6) corresponds to a different ridge in the turbulent region of the time-frequency plane.

The bottom one is the raw signal.

wavelet transform. In addition, this choice is robust, i.e. a small error in the estimation of the best θ

will not affect dramatically the result. This property also apply to the HCT when analyzing self-similar

signals. The function c in the HCT gives an additional degree of freedom and open a way toward improved

chaos detection methods.

One of the major results concerns the algorithms of the transformations. The chirp transformations

and their inverse are done using a relatively simple implementation, thanks to the orthogonality property.

Moreover, fast algorithms (fast Fourier transform) can be used for the computation. This is an important

property if the computation of many decomposition is needed or if the result is demanded immediately

for a fast reaction in a control purpose.

Concerning the relation established between the LCT, the HCT and the Lamperti transform, it shows

that the HCT could be a tool well suited for the detection of chaos in self-similar processes. In a analogous

manner as what the LCT analysis obtains for square integrable signals, it could extract chaotic regions in

a signal issued from stochastic motions. Thus the present study shows a way to extend the ridge analysis

to theses types of signals.
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