143 research outputs found

    Confocal Imaging at 0.3 THz with depth resolution of a painted wood artwork for the identification of buried thin metal foils

    Get PDF
    A compact confocal terahertz microscope working at 0.30 THz based on all-solid-state components is used to locate buried thin metal foils in a painted wood artwork. Metal foils are used for decoration, and their precise localization under the pictorial layer is relevant information for conservation scientists and restorers, which can neither be obtained by X-ray radiography nor by spectroscopic imaging in the infrared, as we directly show here. The confocal microscopy principle based on the spatial pinhole concept is here implemented by positioning the first focus of an ellipsoidal reflector at the phase center of horn antennas coupled to Schottky diode detector and emitter mounted in rectangular waveguide blocks, together with an optical beamsplitter. The second focus of the reflector is mechanically scanned inside the sample in three dimensions. The predictions of diffraction theory for a confocal microscope at an imaging wavelength of 1.00 mm with numerical aperture of 0.53 are verified experimentally (1.2 and 2.8 mm for the lateral and the axial resolution, respectively). These values of resolution allow a precise determination of the position of buried metal foils in an ancient piece of art hence making restoration interventions possible

    Second Harmonic Generation in Germanium Quantum Wells for Nonlinear Silicon Photonics

    Get PDF
    econd-harmonic generation (SHG) is a direct measure of the strength of second-order nonlinear optical effects, which also include frequency mixing and parametric oscillations. Natural and artificial materials with broken center-of-inversion symmetry in their unit cell display high SHG efficiency, however, the silicon-foundry compatible group IV semiconductors (Si, Ge) are centrosymmetric, thereby preventing full integration of second-order nonlinearity in silicon photonics platforms. Here we demonstrate strong SHG in Ge-rich quantum wells grown on Si wafers. Unlike Si-rich epilayers, Ge-rich epilayers allow for waveguiding on a Si substrate. The symmetry breaking is artificially realized with a pair of asymmetric coupled quantum wells (ACQW), in which three of the quantum-confined states are equidistant in energy, resulting in a double resonance for SHG. Laser spectroscopy experiments demonstrate a giant second-order nonlinearity at mid-infrared pump wavelengths between 9 and 12 μm. Leveraging on the strong intersubband dipoles, the nonlinear susceptibility χ(2) almost reaches 105 pm/V, 4 orders of magnitude larger than bulk nonlinear materials for which, by the Miller’s rule, the range of 10 pm/V is the norm

    Terahertz absorption-saturation and emission from electron-doped germanium quantum wells

    Get PDF
    We study radiative relaxation at terahertz frequencies in n-type Ge/SiGe quantum wells, optically pumped with a terahertz free electron laser. Two wells coupled through a tunneling barrier are designed to operate as a three-level laser system with non-equilibrium population generated by optical pumping around the 1→3 intersubband transition at 10 THz. The non-equilibrium subband population dynamics are studied by absorption-saturation measurements and compared to a numerical model. In the emission spectroscopy experiment, we observed a photoluminescence peak at 4 THz, which can be attributed to the 3→2 intersubband transition with possible contribution from the 2→1 intersubband transition. These results represent a step towards silicon-based integrated terahertz emitters

    Electron population dynamics in optically pumped asymmetric coupled Ge/SiGe quantum wells: experiment and models

    Get PDF
    n-type doped Ge quantum wells with SiGe barriers represent a promising heterostructure system for the development of radiation emitters in the terahertz range such as electrically pumped quantum cascade lasers and optically pumped quantum fountain lasers. The nonpolar lattice of Ge and SiGe provides electron–phonon scattering rates that are one order of magnitude lower than polar GaAs. We have developed a self-consistent numerical energy-balance model based on a rate equation approach which includes inelastic and elastic inter- and intra-subband scattering events and takes into account a realistic two-dimensional electron gas distribution in all the subband states of the Ge/SiGe quantum wells by considering subband-dependent electronic temperatures and chemical potentials. This full-subband model is compared here to the standard discrete-energy-level model, in which the material parameters are limited to few input values (scattering rates and radiative cross sections). To provide an experimental case study, we have epitaxially grown samples consisting of two asymmetric coupled quantum wells forming a three-level system, which we optically pump with a free electron laser. The benchmark quantity selected for model testing purposes is the saturation intensity at the 1→3 intersubband transition. The numerical quantum model prediction is in reasonable agreement with the experiments and therefore outperforms the discrete-energy-level analytical model, of which the prediction of the saturation intensity is off by a factor 3

    n-type Ge/SiGe multi quantum-wells for a THz quantum cascade laser

    Get PDF
    Exploiting intersubband transitions in Ge/SiGe quantum cascade devices provides a way to integrate terahertz light emitters into silicon-based technology. With the view to realizing a Ge/SiGe Quantum Cascade Laser, we present the optical and structural properties of n-type strain-symmetrized Ge/SiGe asymmetric coupled quantum wells grown on Si(001) substrates by means of ultrahigh vacuum chemical vapor deposition. We demonstrate the high material quality of strain-symmetrized structures and heterointerfaces as well as control over the inter-well coupling and electron tunneling. Motivated by the promising results obtained on ACQWs, which are the basic building block of a cascade structure, we investigate, both experimentally and theoretically, a Ge/SiGe THz QCL design, optimized through a non-equilibrium Green's function formalism

    THz Intersubband Emitter based on Silicon

    Get PDF
    We present THz quantum cascade emitters realized on a Si substrate. The emission centered at 3.4 and 4.9 THz originates from L-valley transitions in strain-compensated n-type Ge/SiGe heterostructures. This is an important step towards the realization of Si-based THz quantum cascade lasers

    Terahertz intersubband electroluminescence from n-type germanium quantum wells

    Get PDF
    The Quantum Cascade Laser (QCL) has been demonstrated in polar III-V semiconductor materials employing transitions between conduction band states [1] . Harnessing intersubband transitions allows lasing at mid-infrared and far-infrared wavelengths. Buried InGaAs/InAlAs QCLs unlocked the mid-infrared application space, because they are operational at room-temperature and in continuous wave [2] . However, THz QCLs remain limited up to 250 K in pulsed operation with a large dissipation [3] . The quenching of the laser emission is related to ther-mally activated LO phonon emission in polar materials. Exploiting intersubband transitions in non-polar group IV materials with weaker electron-phonon interaction is an exciting approach to realize a Si-based THz QCL and to eventually elevate the operation temperature [4]
    • …
    corecore