1,115 research outputs found

    Effects of Angelica dahurica

    Get PDF
    The main objective of wound treatments is to restore the functional skin properties and prevent infection. Traditional Chinese medicine provides alternative anti-inflammatory, antimicrobial, and wound healing therapies. Both Angelica dahurica extract (AE) and Rheum officinale extract (RE) possess antimicrobial activity. In this study, AE and RE were applied in wound treatment to investigate their healing effects. Thirty Sprague-Dawley rats with dorsal full-thickness skin excision were divided into normal saline (NS), AE, RE, AE plus RE (ARE), and Biomycin (BM) groups. The treatment and area measurement of wounds were applied daily for 21 days. Wound biopsies and blood samples were obtained for histology examinations and cytokine analysis. Results showed that wound contraction in ARE group was significantly higher than that in NS and BM groups (P 0.05), and plasma TGF-β1 levels were significantly lower than those in the NS group on days 3-4 (P < 0.05). In conclusion, ARE accelerates wound healing during inflammation and proliferation phases

    Spontaneous Dissecting Aneurysm of the Renal Artery: A Case Report

    Get PDF
    Primary dissecting aneurysms of the renal artery are exceedingly rare. The triad of flank pain, hematuria, and hypertension of acute onset in the absence of urinary obstruction should suggest this rare condition. We report a case of spontaneous dissecting aneurysm of the renal artery treated using conservative medical treatment. The diagnosis, therapeutic management, and outcome are discussed

    Role of tissue transglutaminase 2 in the acquisition of a mesenchymal-like phenotype in highly invasive A431 tumor cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer progression is closely linked to the epithelial-mesenchymal transition (EMT) process. Studies have shown that there is increased expression of tissue tranglutaminase (TG2) in advanced invasive cancer cells. TG2 catalyzes the covalent cross-linking of proteins, exhibits G protein activity, and has been implicated in the modulation of cell adhesion, migration, invasion and cancer metastasis. This study explores the molecular mechanisms associated with TG2's involvement in the acquisition of the mesenchymal phenotype using the highly invasive A431-III subline and its parental A431-P cells.</p> <p>Results</p> <p>The A431-III tumor subline displays increased expression of TG2. This is accompanied by enhanced expression of the mesenchymal phenotype, and this expression is reversed by knockdown of endogenous TG2. Consistent with this, overexpression of TG2 in A431-P cells advanced the EMT process. Furthermore, TG2 induced the PI3K/Akt activation and GSK3β inactivation in A431 tumor cells and this increased Snail and MMP-9 expression resulting in higher cell motility. TG2 also upregulated NF-κB activity, which also enhanced Snail and MMP-9 expression resulting in greater cell motility; interestingly, this was associated with the formation of a TG2/NF-κB complex. TG2 facilitated acquisition of a mesenchymal phenotype, which was reversed by inhibitors of PI3K, GSK3 and NF-κB.</p> <p>Conclusions</p> <p>This study reveals that TG2 acts, at least in part, through activation of the PI3K/Akt and NF-κB signaling systems, which then induce the key mediators Snail and MMP-9 that facilitate the attainment of a mesenchymal phenotype. These findings support the possibility that TG2 is a promising target for cancer therapy.</p

    Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA

    Get PDF
    Indolicidin, a l3-residue antimicrobial peptide-amide, which is unusually rich in tryptophan and proline, is isolated from the cytoplasmic granules of bovine neutrophils. In this study, the structures of indolicidin in 50% D(3)-trifluoroethanol and in the absence and presence of SDS and D(38)-dodecylphosphocholine were determined using NMR spectroscopy. Multiple conformations were found and were shown to be due to different combinations of contact between the two WPW motifs. Although indolicidin is bactericidal and able to permeabilize bacterial membranes, it does not lead to cell wall lysis, showing that there is more than one mechanism of antimicrobial action. The structure of indolicidin in aqueous solution was a globular and amphipathic conformation, differing from the wedge shape adopted in lipid micelles, and these two structures were predicted to have different functions. Indolicidin, which is known to inhibit DNA synthesis and induce filamentation of bacteria, was shown to bind DNA in gel retardation and fluorescence quenching experiments. Further investigations using surface plasmon resonance confirmed the DNA-binding ability and showed the sequence preference of indolicidin. Based on our biophysical studies and previous results, we present a diagram illustrating the DNA-binding mechanism of the antimicrobial action of indolicidin and explaining the roles of the peptide when interacting with lipid bilayers at different concentrations

    Is Instructional Scaffolding a Better Strategy for Teaching Writing to EFL Learners? A Functional MRI Study in Healthy Young Adults

    Get PDF
    To test the scaffolding theory when applied to the teaching and learning of writing English as a foreign language, this cross-sectional study was conducted to collect physiological data. A total of 53 participants were randomly assigned into two groups, and brain activity was investigated during a guided-writing task using storytelling pictures. The writing task was further divided into four parts using graded levels of difficulty. The experimental group performed tasks in sequence from easy to difficult, whereas the comparison group performed the tasks at random. Outcomes included handwriting assessments and fMRI measurements. Writing outcome assessments were analyzed using SPSS, and scanned images were analyzed using Statistical Parametric Mapping (SPM) software. The results revealed a positive learning effect associated with scaffolding instruction. The experimental group performed better during the writing tasks, and the fMRI images showed less intense and weaker reactions in the language processing region than were observed in the comparison group. The fMRI results also presented the experimental group with reduced motor and cognitive functions when writing in English. This study provides insight regarding brain activity during writing tasks in humans and may have implications for English-language instruction

    Cytotoxic Phenylpropanoids and a New Triterpene, Turformosinic Acid, from Turpinia formosana Nakai

    Get PDF
    One new phenylpropanoid, turformosin A (1), and one new triterpene, turformosinic acid (2), together with 16 known compounds, were isolated from the stems of Turpinia formosana Nakai. All structures were elucidated on the basis of spectroscopic analysis, including 1D- and 2D-NMR techniques and MS analysis. Selected isolated compounds were evaluated for in vitro cytotoxicity against four human cancer cell lines and antioxidant scavenging effects on DPPH. (-)-(7'S,8'S)-threo-carolignan X (3) exhibited cytotoxicity against Hep2, WiDr, Daoy, and MCF-7 cell lines with ED(50) values of 3.60, 4.45, 6.07, and 13.7 μg/mL, respectively. Turformosin A (1), (-)-(7'S,8'S)- threo-carolignan X (3), methoxyhydroquinone-4-β-D-glucopyranoside (5), and methoxy-hydroquinone-1-β-D-glucopyranoside (6), exhibited similar anti-oxidative activity. Hep2 cells treated with 10 μg/mL of 3 showed elevation of sub-G1 population (from 20% at 8 h to 60% at 48 h), and activation of caspase-9/caspase-3/PARP cascade. Compound 3 induced intrinsic apoptotic pathway in Hep2 cells with dose and time dependence (10 μg/mL for 8 h)

    Multidrug resistance-selective antiproliferative activity of Piper amide alkaloids and synthetic analogues

    Get PDF
    Twenty-five amide alkaloids (1–25) from Piper boehmeriifolium and 10 synthetic amide alkaloid derivatives (39–48) were evaluated for antiproliferative activity against eight human tumor cell lines, including chemosensitive and multidrug-resistant (MDR) cell lines. The results suggested tumor type-selectivity. 1-[7-(3,4,5-Trimethoxyphenyl)heptanoyl]piperidine (46) exhibited the best inhibitory activity (IC50 = 4.94 µM) against the P-glycoprotein (P-gp)-overexpressing KBvin MDR sub-line, while it and all other tested compounds, except 9, were inactive (IC50 >40 µM) against MDA-MB-231 and SK-BR-3. Structure-activity relationships (SARs) indicated that (i) 3,4,5-trimethoxy phenyl substitution is critical for selectivity against KBvin, (ii) the 4-methoxy group in this pattern is crucial for antiproliferative activity, (iii) double bonds in the side chain are not needed for activity, and (iv), in arylalkenylacyl amide alkaloids, replacement of an isobutylamino group with pyrrolidin-1-yl or piperidin-1-yl significantly improved activity. Further study on Piper amides is warranted, particularly whether side chain length affects the ability to overcome the MDR cancer phenotype

    Antitumor agents. 258. Syntheses and evaluation of dietary antioxidant—taxoid conjugates as novel cytotoxic agents

    Get PDF
    Various dietary antioxidants, including vitamins, flavonoids, curcumin, and a coumarin, were conjugated with paclitaxel (1) through an ester linkage. The newly synthesized compounds were evaluated for cytotoxic activity against several human tumor cell lines as well as the corresponding normal cell lines. Interestingly, most tested conjugates selectively inhibited the growth of 1A9 (ovarian) and KB (nasopharyngeal) tumor cells without activity against other cell lines. Particularly, conjugates 16 and 20 were highly active against 1A9 (ED50 value of 0.005 μg/mL) as well as KB (ED50 values of 0.005 and 0.14 μg/mL, respectively) cells. Compound 22b, the glycinate ester salt of vitamin E conjugated with 1, appears to be a promising lead for further development as a clinical trial candidate as it exhibited strong inhibitory activity against Panc-1 (pancreatic cancer) with less effect on the related E6E7 (normal) cell line

    Cytotoxic Polyisoprenyl Benzophenonoids from Garcinia subelliptica

    Get PDF
    Six new polyisoprenyl benzophenonoids, (±)-garcinialiptone A (1, 2), garcinialiptone B (3), (−)-cycloxanthochymol (4), garcinialiptone C (5), and garcinialiptone D (6), along with three known compounds, xanthochymol (7), isoxanthochymol (8), and cycloxanthochymol (9), were isolated from the fruits of Garcinia subelliptica. The structures of 1–6 were elucidated by spectroscopic analysis. Biological evaluation showed that all compounds 1–9 exhibited cytotoxic activity against a small panel of human tumor cell lines (A549, DU145, KB, vincristine-resistant KB)
    corecore