128 research outputs found

    Stability and BPS branes

    Get PDF
    We define the concept of Pi-stability, a generalization of mu-stability of vector bundles, and argue that it characterizes N=1 supersymmetric brane configurations and BPS states in very general string theory compactifications with N=2 supersymmetry in four dimensions.Comment: harvmac, 18 p

    Application of the finite-temperature Lanczos method for the evaluation of magnetocaloric properties of large magnetic molecules

    Full text link
    We discuss the magnetocaloric properties of gadolinium containing magnetic molecules which potentially could be used for sub-Kelvin cooling. We show that a degeneracy of a singlet ground state could be advantageous in order to support adiabatic processes to low temperatures and simultaneously minimize disturbing dipolar interactions. Since the Hilbert spaces of such spin systems assume very large dimensions we evaluate the necessary thermodynamic observables by means of the Finite-Temperature Lanczos Method.Comment: 7 pages, 10 figures, invited for the special issue of EPJB on "New trends in magnetism and magnetic materials

    New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation

    Full text link
    (abridged) The heating mechanism at high densities during M dwarf flares is poorly understood. Spectra of M dwarf flares in the optical and near-ultraviolet wavelength regimes have revealed three continuum components during the impulsive phase: 1) an energetically dominant blackbody component with a color temperature of T \sim 10,000 K in the blue-optical, 2) a smaller amount of Balmer continuum emission in the near-ultraviolet at lambda << 3646 Angstroms and 3) an apparent pseudo-continuum of blended high-order Balmer lines. These properties are not reproduced by models that employ a typical "solar-type" flare heating level in nonthermal electrons, and therefore our understanding of these spectra is limited to a phenomenological interpretation. We present a new 1D radiative-hydrodynamic model of an M dwarf flare from precipitating nonthermal electrons with a large energy flux of 101310^{13} erg cm2^{-2} s1^{-1}. The simulation produces bright continuum emission from a dense, hot chromospheric condensation. For the first time, the observed color temperature and Balmer jump ratio are produced self-consistently in a radiative-hydrodynamic flare model. We find that a T \sim 10,000 K blackbody-like continuum component and a small Balmer jump ratio result from optically thick Balmer and Paschen recombination radiation, and thus the properties of the flux spectrum are caused by blue light escaping over a larger physical depth range compared to red and near-ultraviolet light. To model the near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer lines, we include the extra Balmer continuum opacity from Landau-Zener transitions that result from merged, high order energy levels of hydrogen in a dense, partially ionized atmosphere. This reveals a new diagnostic of ambient charge density in the densest regions of the atmosphere that are heated during dMe and solar flares.Comment: 50 pages, 2 tables, 13 figures. Accepted for publication in the Solar Physics Topical Issue, "Solar and Stellar Flares". Version 2 (June 22, 2015): updated to include comments by Guest Editor. The final publication is available at Springer via http://dx.doi.org/10.1007/s11207-015-0708-

    Association between diet-quality scores, adiposity, total cholesterol and markers of nutritional status in European adults: findings from the Food4Me study

    Get PDF
    Diet-quality scores (DQS), which are developed across the globe, are used to define adherence to specific eating patterns and have been associated with risk of coronary heart disease and type-II diabetes. We explored the association between five diet-quality scores (Healthy Eating Index, HEI; Alternate Healthy Eating Index, AHEI; MedDietScore, MDS; PREDIMED Mediterranean Diet Score, P-MDS; Dutch Healthy Diet-Index, DHDI) and markers of metabolic health (anthropometry, objective physical activity levels (PAL), and dried blood spot total cholesterol (TC), total carotenoids, and omega-3 index) in the Food4Me cohort, using regression analysis. Dietary intake was assessed using a validated Food Frequency Questionnaire. Participants (n = 1480) were adults recruited from seven European Union (EU) countries. Overall, women had higher HEI and AHEI than men (p < 0.05), and scores varied significantly between countries. For all DQS, higher scores were associated with lower body mass index, lower waist-to-height ratio and waist circumference, and higher total carotenoids and omega-3-index (p trends < 0.05). Higher HEI, AHEI, DHDI, and P-MDS scores were associated with increased daily PAL, moderate and vigorous activity, and reduced sedentary behaviour (p trend < 0.05). We observed no association between DQS and TC. To conclude, higher DQS, which reflect better dietary patterns, were associated with markers of better nutritional status and metabolic health

    Chronic obstructive pulmonary disease and related phenotypes: polygenic risk scores in population-based and case-control cohorts

    Get PDF
    Background Genetic factors influence chronic obstructive pulmonary disease (COPD) risk, but the individual variants that have been identified have small effects. We hypothesised that a polygenic risk score using additional variants would predict COPD and associated phenotypes. Methods We constructed a polygenic risk score using a genome-wide association study of lung function (FEV1 and FEV1/forced vital capacity [FVC]) from the UK Biobank and SpiroMeta. We tested this polygenic risk score in nine cohorts of multiple ethnicities for an association with moderate-to-severe COPD (defined as FEV1/FVC <0·7 and FEV1 <80% of predicted). Associations were tested using logistic regression models, adjusting for age, sex, height, smoking pack-years, and principal components of genetic ancestry. We assessed predictive performance of models by area under the curve. In a subset of studies, we also studied quantitative and qualitative CT imaging phenotypes that reflect parenchymal and airway pathology, and patterns of reduced lung growth. Findings The polygenic risk score was associated with COPD in European (odds ratio [OR] per SD 1·81 [95% CI 1·74–1·88] and non-European (1·42 [1·34–1·51]) populations. Compared with the first decile, the tenth decile of the polygenic risk score was associated with COPD, with an OR of 7·99 (6·56–9·72) in European ancestry and 4·83 (3·45–6·77) in non-European ancestry cohorts. The polygenic risk score was superior to previously described genetic risk scores and, when combined with clinical risk factors (ie, age, sex, and smoking pack-years), showed improved prediction for COPD compared with a model comprising clinical risk factors alone (AUC 0·80 [0·79–0·81] vs 0·76 [0·75–0·76]). The polygenic risk score was associated with CT imaging phenotypes, including wall area percent, quantitative and qualitative measures of emphysema, local histogram emphysema patterns, and destructive emphysema subtypes. The polygenic risk score was associated with a reduced lung growth pattern. Interpretation A risk score comprised of genetic variants can identify a small subset of individuals at markedly increased risk for moderate-to-severe COPD, emphysema subtyp

    Error sources and data limitations for the prediction ofsurface gravity: a case study using benchmarks

    Get PDF
    Gravity-based heights require gravity values at levelled benchmarks (BMs), whichsometimes have to be predicted from surrounding observations. We use EGM2008 andthe Australian National Gravity Database (ANGD) as examples of model and terrestrialobserved data respectively to predict gravity at Australian national levelling network(ANLN) BMs. The aim is to quantify errors that may propagate into the predicted BMgravity values and then into gravimetric height corrections (HCs). Our results indicatethat an approximate ±1 arc-minute horizontal position error of the BMs causesmaximum errors in EGM2008 BM gravity of ~ 22 mGal (~55 mm in the HC at ~2200 melevation) and ~18 mGal for ANGD BM gravity because the values are not computed atthe true location of the BM. We use RTM (residual terrain modelling) techniques toshow that ~50% of EGM2008 BM gravity error in a moderately mountainous regioncan be accounted for by signal omission. Non-representative sampling of ANGDgravity in this region may cause errors of up to 50 mGals (~120 mm for the Helmertorthometric correction at ~2200 m elevation). For modelled gravity at BMs to beviable, levelling networks need horizontal BM positions accurate to a few metres, whileRTM techniques can be used to reduce signal omission error. Unrepresentative gravitysampling in mountains can be remedied by denser and more representative re-surveys,and/or gravity can be forward modelled into regions of sparser gravity
    corecore