154 research outputs found

    Muscle stem cells remain viable and keep their functionality many days after death

    Get PDF
    Dernièrement, nous avons montré que les cellules souches du muscle (cellules satellites), tout comme les cellules souches hématopoïétiques, survivent très longtemps dans les tissus après la mort chez l’homme et la souris. Ces cellules restent fonctionnelles et capables de se différencier in vitro et in vivo. Nous avons modélisé in vitro l’absence d’oxygène (anoxie), très vite observée dans les tissus après la mort et mis en évidence que, de façon surprenante, les cellules satellites du muscle résistent à des séjours prolongés en anoxie et plus longtemps que lorsque les cellules sont entourées d’oxygène ambiant (normoxie). Cette caractéristique, propre aux cellules souches, déclenche une réponse de ces cellules qui induit un état de quiescence plus profond que nous avons décrit et qualifié de « dormance cellulaire ». Ces travaux montrent la possibilité d’utiliser les tissus post mortem comme source de cellules souches pour leur étude ou la thérapeutique.Recently, we showed that muscle stem cells, but also hematopoietic stem cells, survive for a very long time after death in human and mice tissues. These cells remain functional and capable of regeneration in vitro and in vivo. We modelled in vitro the absence of oxygen, very quickly observed in tissues after death and highlighted that muscle stem cells, surprisingly, survive for an extended period of time in the absence of oxygen, (anoxia), and longer than in the presence of ambient oxygen levels (normoxia). This characteristic is specific to stem cells and not to other cell types. This lack of oxygen induces a state of deeper quiescence than previously described and that we qualified as “dormancy”. This work shows the possibility of using post-mortem tissues as a source of stem cells for their study or for therapeutics

    Suicide and Microglia: Recent Findings and Future Perspectives Based on Human Studies

    Get PDF
    Suicide is one of the most disastrous outcomes for psychiatric disorders. Recent advances in biological psychiatry have suggested a positive relationship between some specific brain abnormalities and specific symptoms in psychiatric disorders whose organic bases were previously completely unknown. Microglia, immune cells in the brain, are regarded to play crucial roles in brain inflammation by releasing inflammatory mediators and are suggested to contribute to various psychiatric disorders such as depression and schizophrenia. Recently, activated microglia have been suggested to be one of the possible contributing cells to suicide and suicidal behaviors via various mechanisms especially including the tryptophan-kynurenine pathway. Animal model research focusing on psychiatric disorders has a long history, however, there are only limited animal models that can properly express psychiatric symptoms. In particular, to our knowledge, animal models of human suicidal behaviors have not been established. Suicide is believed to be limited to humans, therefore human subjects should be the targets of research despite various ethical and technical limitations. From this perspective, we introduce human biological studies focusing on suicide and microglia. We first present neuropathological studies using the human postmortem brain of suicide victims. Second, we show recent findings based on positron emission tomography (PET) imaging and peripheral blood biomarker analysis on living subjects with suicidal ideation and/or suicide-related behaviors especially focusing on the tryptophan-kynurenine pathway. Finally, we propose future perspectives and tasks to clarify the role of microglia in suicide using multi-dimensional analytical methods focusing on human subjects with suicidal ideation, suicide-related behaviors and suicide victims

    Hyperglycaemia and apoptosis of microglial cells in human septic shock

    Get PDF
    International audienceIntroductionThe effect of hyperglycaemia on the brain cells of septic shock patients is unknown. The objective of this study was to evaluate the relationship between hyperglycaemia and apoptosis in the brains of septic shock patients.MethodsIn a prospective study of 17 patients who died from septic shock, hippocampal tissue was assessed for neuronal ischaemia, neuronal and microglial apoptosis, neuronal Glucose Transporter (GLUT) 4, endothelial inducible Nitric Oxide Synthase (iNOS), microglial GLUT5 expression, microglial and astrocyte activation. Blood glucose (BG) was recorded five times a day from ICU admission to death. Hyperglycaemia was defined as a BG 200 mg/dL g/l and the area under the BG curve (AUBGC) > 2 g/l was assessed.ResultsMedian BG over ICU stay was 2.2 g/l. Neuronal apoptosis was correlated with endothelial iNOS expression (rho = 0.68, P = 0.04), while microglial apoptosis was associated with AUBGC > 2 g/l (rho = 0.70; P = 0.002). Neuronal and microglial apoptosis correlated with each other (rho = 0.69, P = 0.006), but neither correlated with the duration of septic shock, nor with GLUT4 and 5 expression. Neuronal apoptosis and ischaemia tended to correlate with duration of hypotension.ConclusionsIn patients with septic shock, neuronal apoptosis is rather associated with iNOS expression and microglial apoptosis with hyperglycaemia, possibly because GLUT5 is not downregulated. These data provide a mechanistic basis for understanding the neuroprotective effects of glycemic control

    A Mouse Model for Chikungunya: Young Age and Inefficient Type-I Interferon Signaling Are Risk Factors for Severe Disease

    Get PDF
    Chikungunya virus (CHIKV) is a re-emerging arbovirus responsible for a massive outbreak currently afflicting the Indian Ocean region and India. Infection from CHIKV typically induces a mild disease in humans, characterized by fever, myalgia, arthralgia, and rash. Cases of severe CHIKV infection involving the central nervous system (CNS) have recently been described in neonates as well as in adults with underlying conditions. The pathophysiology of CHIKV infection and the basis for disease severity are unknown. To address these critical issues, we have developed an animal model of CHIKV infection. We show here that whereas wild type (WT) adult mice are resistant to CHIKV infection, WT mouse neonates are susceptible and neonatal disease severity is age-dependent. Adult mice with a partially (IFN-α/βR+/−) or totally (IFN-α/βR−/−) abrogated type-I IFN pathway develop a mild or severe infection, respectively. In mice with a mild infection, after a burst of viral replication in the liver, CHIKV primarily targets muscle, joint, and skin fibroblasts, a cell and tissue tropism similar to that observed in biopsy samples of CHIKV-infected humans. In case of severe infections, CHIKV also disseminates to other tissues including the CNS, where it specifically targets the choroid plexuses and the leptomeninges. Together, these data indicate that CHIKV-associated symptoms match viral tissue and cell tropisms, and demonstrate that the fibroblast is a predominant target cell of CHIKV. These data also identify the neonatal phase and inefficient type-I IFN signaling as risk factors for severe CHIKV-associated disease. The development of a permissive small animal model will expedite the testing of future vaccines and therapeutic candidates

    Changes in CRH and ACTH Synthesis during Experimental and Human Septic Shock

    Get PDF
    Context The mechanisms of septic shock-associated adrenal insufficiency remain unclear. This study aimed at investigating the synthesis of corticotropin-releasing hormone (CRH) and vasopressin (AVP) by parvocellular neurons and the antehypophyseal expression of ACTH in human septic shock and in an experimental model of sepsis. Objective To test the hypothesis that ACTH secretion is decreased secondarily to alteration of CRH or AVP synthesis, we undertook a neuropathological study of the antehypophyseal system in patients who had died from septic shock and rats with experimental faecal peritonitis. Methods Brains obtained in 9 septic shock patients were compared to 10 nonseptic patients (controls). Parvocellular expression of AVP and CRH mRNA were evaluated by in situ hybridization. Antehypophyseal expression of ACTH, vasopressin V1b and CRH R1 receptors and parvocellular expression of iNOS in the PVN were evaluated by immunohistochemistry. The same experiments were carried out in a fecal peritonitis-induced model of sepsis. Data from septic rats with (n = 6) or without (n = 10) early death were compared to sham-operated (n = 8) animals. Results In patients and rats, septic shock was associated with a decreased expression of ACTH, unchanged expression of V1B receptor, CRHR1 and AVP mRNA, and increased expression of parvocellular iNOS compared to controls. Septic shock was also characterized by an increased expression of CRH mRNA in rats but not in patients, who notably had a greater duration of septic shock. Conclusion The present study suggests that in humans and in rats, septic shock is associated with decreased ACTH synthesis that is not compensated by its two natural secretagogues, AVP and CRH. One underlying mechanism might be increased expression of iNOS in hypothalamic parvocellular neurons

    How valuable are your customers in the brand value co-creation process? The development of a Customer Co-Creation Value (CCCV) scale.

    Get PDF
    Despite an increasing amount of research on co-creation of value, in general, research on brand value co-creation remains limited. Particularly, how much value customers contribute to the brand value co-creation process remains unclear. This research develops in a series of eight studies the Customer Co-Creation Value (CCCV) measurement scale that helps firms assess the value of customers in the brand value co-creation process. The findings reveal that CCCV is a multidimensional construct consisting of two higher-order factors and seven dimensions: customer-owned resources (including brand knowledge, brand skills, brand creativity, and brand connectedness) and customer motivation (comprising brand passion, brand trust, and brand commitment). Further, the CCCV scale reliably and validly gauges the value customers contribute to a firm's brand. The CCCV framework helps marketing managers understand how customers can contribute to a firm's brand value cocreation efforts and how much value customers contribute to a brand in the co-creation process
    corecore