210 research outputs found

    Structure of Native Lens Connexin 46/50 Intercellular Channels by Cryo-EM

    Get PDF
    Gap junctions establish direct pathways for cell-to-cell communication through the assembly of twelve connexin subunits that form intercellular channels connecting neighbouring cells. Co-assembly of different connexin isoforms produces channels with unique properties and enables communication across cell types. Here we used single-particle cryo-electron microscopy to investigate the structural basis of connexin co-assembly in native lens gap junction channels composed of connexin 46 and connexin 50 (Cx46/50). We provide the first comparative analysis to connexin 26 (Cx26), which—together with computational studies—elucidates key energetic features governing gap junction permselectivity. Cx46/50 adopts an open-state conformation that is distinct from the Cx26 crystal structure, yet it appears to be stabilized by a conserved set of hydrophobic anchoring residues. ‘Hot spots’ of genetic mutations linked to hereditary cataract formation map to the core structural–functional elements identified in Cx46/50, suggesting explanations for many of the disease-causing effects

    Structure of the fanconi anaemia monoubiquitin ligase complex

    Get PDF
    The Fanconi anaemia (FA) pathway repairs DNA damage caused by endogenous and chemotherapy-induced DNA crosslinks, and responds to replication stress1,2. Genetic inactivation of this pathway by mutation of genes encoding FA complementation group (FANC) proteins impairs development, prevents blood production and promotes cancer1,3. The key molecular step in the FA pathway is the monoubiquitination of a pseudosymmetric heterodimer of FANCD2-FANCI4,5 by the FA core complex-a megadalton multiprotein E3 ubiquitin ligase6,7. Monoubiquitinated FANCD2 then recruits additional protein factors to remove the DNA crosslink or to stabilize the stalled replication fork. A molecular structure of the FA core complex would explain how it acts to maintain genome stability. Here we reconstituted an active, recombinant FA core complex, and used cryo-electron microscopy and mass spectrometry to determine its structure. The FA core complex comprises two central dimers of the FANCB and FA-associated protein of 100 kDa (FAAP100) subunits, flanked by two copies of the RING finger subunit, FANCL. These two heterotrimers act as a scaffold to assemble the remaining five subunits, resulting in an extended asymmetric structure. Destabilization of the scaffold would disrupt the entire complex, resulting in a non-functional FA pathway. Thus, the structure provides a mechanistic basis for the low numbers of patients with mutations in FANCB, FANCL and FAAP100. Despite a lack of sequence homology, FANCB and FAAP100 adopt similar structures. The two FANCL subunits are in different conformations at opposite ends of the complex, suggesting that each FANCL has a distinct role. This structural and functional asymmetry of dimeric RING finger domains may be a general feature of E3 ligases. The cryo-electron microscopy structure of the FA core complex provides a foundation for a detailed understanding of its E3 ubiquitin ligase activity and DNA interstrand crosslink repair

    Structural determinants of lipid specificity within Ups/PRELI lipid transfer proteins

    Get PDF
    Conserved lipid transfer proteins of the Ups/PRELI family regulate lipid accumulation in mitochondria by shuttling phospholipids in a lipid-specific manner across the intermembrane space. Here, we combine structural analysis, unbiased genetic approaches in yeast and molecular dynamics simulations to unravel determinants of lipid specificity within the conserved Ups/PRELI family. We present structures of human PRELID1–TRIAP1 and PRELID3b–TRIAP1 complexes, which exert lipid transfer activity for phosphatidic acid and phosphatidylserine, respectively. Reverse yeast genetic screens identify critical amino acid exchanges that broaden and swap their lipid specificities. We find that amino acids involved in head group recognition and the hydrophobicity of flexible loops regulate lipid entry into the binding cavity. Molecular dynamics simulations reveal different membrane orientations of PRELID1 and PRELID3b during the stepwise release of lipids. Our experiments thus define the structural determinants of lipid specificity and the dynamics of lipid interactions by Ups/PRELI proteins

    The generation of phase differences and frequency changes in a network model of inferior olive subthreshold oscillations

    Get PDF
    This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedicationIt is commonly accepted that the Inferior Olive (IO) provides a timing signal to the cerebellum. Stable subthreshold oscillations in the IO can facilitate accurate timing by phase-locking spikes to the peaks of the oscillation. Several theoretical models accounting for the synchronized subthreshold oscillations have been proposed, however, two experimental observations remain an enigma. The first is the observation of frequent alterations in the frequency of the oscillations. The second is the observation of constant phase differences between simultaneously recorded neurons. In order to account for these two observations we constructed a canonical network model based on anatomical and physiological data from the IO. The constructed network is characterized by clustering of neurons with similar conductance densities, and by electrical coupling between neurons. Neurons inside a cluster are densely connected with weak strengths, while neurons belonging to different clusters are sparsely connected with stronger connections. We found that this type of network can robustly display stable subthreshold oscillations. The overall frequency of the network changes with the strength of the inter-cluster connections, and phase differences occur between neurons of different clusters. Moreover, the phase differences provide a mechanistic explanation for the experimentally observed propagating waves of activity in the IO. We conclude that the architecture of the network of electrically coupled neurons in combination with modulation of the inter-cluster coupling strengths can account for the experimentally observed frequency changes and the phase differences.Peer reviewedFinal Published versio

    Functional diversity among cardiolipin binding sites on the mitochondrial ADP/ATP carrier

    Get PDF
    Lipid-protein interactions play a multitude of essential roles in membrane homeostasis. Mitochondrial membranes have a unique lipid-protein environment that ensures bioenergetic efficiency. Cardiolipin (CL), the signature mitochondrial lipid, plays multiple roles in promoting oxidative phosphorylation (OXPHOS). In the inner mitochondrial membrane, the ADP/ATP carrier (AAC in yeast; adenine nucleotide translocator, ANT in mammals) exchanges ADP and ATP, enabling OXPHOS. AAC/ANT contains three tightly bound CLs, and these interactions are evolutionarily conserved. Here, we investigated the role of these buried CLs in AAC/ANT using a combination of biochemical approaches, native mass spectrometry, and molecular dynamics simulations. We introduced negatively charged mutations into each CL-binding site of yeast Aac2 and established experimentally that the mutations disrupted the CL interactions. While all mutations destabilized Aac2 tertiary structure, transport activity was impaired in a binding site-specific manner. Additionally, we determined that a disease-associated missense mutation in one CL-binding site in human ANT1 compromised its structure and transport activity, resulting in OXPHOS defects. Our findings highlight the conserved significance of CL in AAC/ANT structure and function, directly tied to specific lipid-protein interactions

    The Tetraodon nigroviridis reference transcriptome: Developmental transition, length retention and microsynteny of long non-coding RNAs in a compact vertebrate genome

    Get PDF
    Pufferfish such as fugu and tetraodon carry the smallest genomes among all vertebrates and are ideal for studying genome evolution. However, comparative genomics using these species is hindered by the poor annotation of their genomes. We performed RNA sequencing during key stages of maternal to zygotic transition of Tetraodon nigroviridis and report its first developmental transcriptome. We assembled 61,033 transcripts (23,837 loci) representing 80% of the annotated gene models and 3816 novel coding transcripts from 2667 loci. We demonstrate the similarities of gene expression profiles between pufferfish and zebrafish during maternal to zygotic transition and annotated 1120 long non-coding RNAs (lncRNAs) many of which differentially expressed during development. The promoters for 60% of the assembled transcripts result validated by CAGE-seq. Despite the extreme compaction of the tetraodon genome and the dramatic loss of transposons, the length of lncRNA exons remain comparable to that of other vertebrates and a small set of lncRNAs appears enriched for transposable elements suggesting a selective pressure acting on lncRNAs length and composition. Finally, a set of lncRNAs are microsyntenic between teleost and vertebrates, which indicates potential regulatory interactions between lncRNAs and their flanking coding genes. Our work provides a fundamental molecular resource for vertebrate comparative genomics and embryogenesis studies

    Inspired or foolhardy: sensemaking, confidence and entrepreneurs' decision-making.

    Get PDF
    The purpose of this paper is to investigate the role of confidence in how both new and experienced entrepreneurs interpret and make sense of their business environment to inform decision-making. We illustrate our conceptual arguments with descriptive results from a large-scale (n = 6289) survey on entrepreneurs' perception of business performance and their decisions taken at a time of uncertainty in an economic downturn. Quantitative findings are stratified along experiential lines to explore heterogeneity in entrepreneurial decision-making and directly inform our conceptual arguments, while qualitative data from open questions are used to explain the role of confidence. Newer entrepreneurs are found to be more optimistic in the face of environmental risk, which impacts on their decision-making and innovative capabilities. However, the more experienced entrepreneurs warily maintain margin and restructure to adapt to environmental changes. Instead of looking directly at the confidence of individuals, we show how confidence impacts sensemaking, and ultimately, decision-making. These insights inform research on the behaviour of novice and experienced entrepreneurs in relation to innovative business activities. Specifically, blanket assumptions on the role of confidence may be misplaced as its impact changes with experience to alter how entrepreneurs make sense of their environment

    Washington dissensus:Ambiguity and conflict at the international monetary fund

    Get PDF
    During the 1990s, the International Monetary Fund failed to develop clear exchange rate policy norms for developing countries, despite the fact that oversight of the international monetary system is central to its mandate. Explaining this behaviour requires revising theories of autonomous agenda-setting and ‘ceremonial conformity’ in international organizations (IOs). I argue that IOs often adopt a posture of strategic ambiguity when confronted with a combination of divisions among major member states and a lack of consensus in the profession that provides the organization's source of expert legitimacy. However, while the ambiguity helps avoid conflict in the short run, it undermines organizational governance capacity in the medium run, resulting in coordination failures. The empirical analysis relies on internal records of Fund meetings on the exchange rate issue, interviews with former IMF officials and analysis of the organization's governance role during currency crises in Mexico, Russia, Brazil and Argentina

    Environmental Effects Dominate the Folding of Oligocholates in Solution, Surfactant Micelles, and Lipid Membranes

    Get PDF
    Oligocholate foldamers with different numbers and locations of guanidinium−carboxylate salt bridges were synthesized. The salt bridges were introduced by incorporating arginine and glutamic acid residues into the foldamer sequence. The conformations of these foldamers were studied by fluorescence spectroscopy in homogeneous solution, anionic and nonionic micelles, and lipid bilayers. Environmental effects instead of inherent foldability were found to dominate the folding. As different noncovalent forces become involved in the conformations of the molecules, the best folder in one environment could turn into the worst in another. Preferential solvation was the main driving force for the folding of oligocholates in solution. The molecules behaved very differently in micelles and lipid bilayers, with the most critical factors controlling the folding−unfolding equilibrium being the solvation of ionic groups and the abilities of the surfactants/lipids to compete for the salt bridge. Because of their ability to fold into helices with a nonpolar exterior and a polar interior, the oligocholates could transport large hydrophilic molecules such as carboxyfluorescein across lipid bilayers. Both the conformational properties of the oligocholates and their binding with the guest were important to the transport efficiency.Reprinted (adapted) with permission from Journal of the American Chemical Society 132 (2010): 9890, doi:10.1021/ja103694p. Copyright 2010 American Chemical Society.</p
    corecore