21 research outputs found

    Epidemiological Tools in Focus: A Comprehensive Assessment of Their Role in Addressing Infectious Disease Challenges in Zambia

    Get PDF
    In the relentless pursuit of mitigating infectious diseases, this investigative study critically examines the nuanced application and effectiveness of epidemiological tools within the context of Zambia. The study meticulously navigates the landscape of infectious diseases in Zambia, considering its unique ecological and socio-economic features. Employing a rigorous methodology that integrates primary data from epidemiological reports, field observations, and laboratory analyses with insights from diverse scientific literature, the study investigates the types and applications of epidemiological tools such as spatial analysis, case-control studies, molecular epidemiology, and serological assays. Unfolding the challenges posed by resource constraints, data reliability issues, and the dynamic nature of infectious diseases in Zambia, the study offers a comprehensive assessment that extends to the implications of these tools for informed public health decision-making. This scholarly inquiry concludes by affirming the significance of ongoing refinement and adaptation of epidemiological tools, emphasizing their pivotal role in addressing infectious disease challenges within Zambia and advocating for their continued enhancement on the global public health stage

    Multicriteria Risk Ranking of Zoonotic Diseases in a Developing Country: A Case Study of Zambia

    Get PDF
    The integration of a multicriteria decision analysis approach, including techniques such as the Analytic Hierarchy Process (AHP) and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), has yielded valuable insights in the realm of zoonotic disease risk assessment. This analytical framework draws from the OIE-supported manual, utilizing impact assessments, transmission pathways, and categorizations as provided by the OIE itself. Moreover, the consideration of specific zoonotic disease scenarios tailored to individual countries enhances the contextual relevance of the analysis. Through this approach, the ranking of zoonotic diseases is systematically established, offering a comprehensive evaluation of their potential impacts and risks. This methodology encompasses pivotal criteria, including prevalence, economic impact, health impact, transmission pathways, and healthcare capacity, collectively offering a holistic perspective that mirrors the intricate nature of zoonotic diseases. The resultant rankings, derived from both ECDC and OIE data, illuminate diseases that harbor significant threats to both human and animal populations. This ranking fosters the identification of diseases with potential for rapid spread and substantial impact, guiding resource allocation towards prevention, control, and mitigation strategies. The alignment between ECDC and OIE rankings underscores the robustness of the applied methodology, with Plague and Zoonotic TB consistently emerging as high-ranking diseases, reinforcing their acknowledged significance. A consolidated ranking, amalgamating data from both sources, provides an insightful overview of potential risks linked to various zoonotic diseases. Plague, Zoonotic TB, Brucellosis, Trypanosomiasis, and Rabies consistently occupy top positions, presenting a valuable instrument for policymakers, public health officials, and stakeholders in prioritizing resource allocation and intervention strategies. The implementation of a multicriteria decision analysis approach, integrating AHP and TOPSIS methodologies, underpins the generation of informed rankings for Zambian zoonotic diseases. The intricate interplay of criteria like prevalence, economic impact, health impact, transmission pathways, and healthcare capacity forms a comprehensive framework for evaluating the potential risks of diverse diseases. The ensuing ranking, led by Plague and succeeded by Anthrax, Rabies, and others, mirrors their collective risk scores calculated via the adopted methodology. This approach empowers strategic decision-making by pinpointing diseases with heightened potential for adverse impacts on both human and animal populations. The rankings serve as invaluable aids in directing resources, devising strategic interventions, and formulating targeted measures for prevention and control. However, acknowledgment of the dynamic disease landscape and the imperative of adaptive strategies underscores the ongoing importance of monitoring and managing zoonotic diseases effectively in Zambia. By amalgamating data from authoritative sources and embracing a systematic, evidence-based approach, this study accentuates the necessity of addressing zoonotic diseases with a holistic lens, fostering proactive perspectives that augment public health and avert future outbreaks

    Quantitative detection of isotopically enriched E. coli cells by SERS

    No full text
    It is clear that investigating how bacterial cells work by analysing their functional roles in microbial communities is very important in environmental, clinical and industrial microbiology. The benefits of linking genes to their respective functions include the reliable identification of the causative agents of various diseases, which would permit appropriate and timely treatment in healthcare systems. In industrial and municipal wastewater treatment and management, such knowledge may allow for the manipulation of microbial communities, such as through bioaugmentation, in order to improve the efficiency and effectiveness of bioremediation processes. Stable isotope probing coupled with identification techniques has emerged to be a potentially reliable tool for the discrimination, identification and characterization of bacteria at community and single cell levels, knowledge which can be utilized to link microbially mediated bioprocesses to phylogeny. Development of the surface-enhanced Raman scattering (SERS) technique offers an exciting alternative to the Raman and Fourier-transform infrared spectroscopic techniques in understanding the metabolic processes of microorganismsin situ. SERS employing Ag and Au nanoparticles can significantly enhance the Raman signal, making it an exciting candidate for the analysis of the cellular components of microorganisms. In this study,Escherichia colicells were cultivated in minimal medium containing different ratios of12C/13C glucose and/or14N/15N ammonium chloride as the only carbon and nitrogen sources respectively, with the overall final concentrations of these substrates being constant. After growth, theE. colicells were analyzed with SERS employing anin situsynthesis of Ag nanoparticles. This novel investigation of the SERS spectral data with multivariate chemometrics demonstrated clear clusters which could be correlated to the SERS spectral shifts of biomolecules from cells grown and hence labelled with13C and15N atoms. These shifts reflect the isotopic content of the bacteria and quantification of the isotope levels could be established using chemometrics based on partial least squares regression.</p

    Surface-Enhanced Raman Scattering (SERS) in Microbiology:Illumination and Enhancement of the Microbial World

    No full text
    The microbial world forms a huge family of organisms that exhibit the greatest phylogenetic diversity on Earth and thus colonize virtually our entire planet. Due to this diversity and subsequent complex interactions, the vast majority of microorganisms are involved in innumerable natural bioprocesses and contribute an absolutely vital role toward the maintenance of life on Earth, whilst a small minority cause various infectious diseases. The ever-increasing demand for environmental monitoring, sustainable ecosystems, food security, and improved healthcare systems drives the continuous search for inexpensive but reproducible, automated and portable techniques for detection of microbial isolates and understanding their interactions for clinical, environmental, and industrial applications and benefits. Surface-enhanced Raman scattering (SERS) is attracting significant attention for the accurate identification, discrimination and characterization and functional assessment of microbial cells at the single cell level. In this review, we briefly discuss the technological advances in Raman and Fourier transform infrared (FT-IR) instrumentation and their application for the analysis of clinically and industrially relevant microorganisms, biofilms, and biological warfare agents. In addition, we summarize the current trends and future prospects of integrating Raman/SERS-isotopic labeling and cell sorting technologies in parallel, to link genotype-to-phenotype in order to define community function of unculturable microbial cells in mixed microbial communities which possess admirable traits such as detoxification of pollutants and recycling of essential metals. </jats:p

    Metabolism in action: stable isotope probing using vibrational spectroscopy and SIMS reveals kinetic and metabolic flux of key substrates

    No full text
    Microbial communities play essential functions which drive various ecosystems supporting animal and aquatic life. However, linking bacteria with specific metabolic functions is difficult, since microbial communities consist of numerous and...</p
    corecore