81 research outputs found

    Catalytic Kinetic Resolution of a Dynamic Racemate: Highly Stereoselective β-Lactone Formation by N-Heterocyclic Carbene Catalysis

    Get PDF
    This study describes the combined experimental and computational elucidation of the mechanism and origins of stereoselectivities in the NHC-catalyzed dynamic kinetic resolution (DKR) of α-substituted-β-ketoesters. Density functional theory computations reveal that the NHC-catalyzed DKR proceeds by two mechanisms, depending on the stereochemistry around the forming bond: 1) a concerted, asynchronous formal (2+2) aldol-lactonization process, or 2) a stepwise spiro-lactonization mechanism where the alkoxide is trapped by the NHC-catalyst. These mechanisms contrast significantly from mechanisms found and postulated in other related transformations. Conjugative stabilization of the electrophile and non-classical hydrogen bonds are key in controlling the stereoselectivity. This reaction constitutes an interesting class of DKRs in which the catalyst is responsible for the kinetic resolution to selectively and irreversibly capture an enantiomer of a substrate undergoing rapid racemization with the help of an exogenous base

    Peroxiredoxin Catalysis at Atomic Resolution

    Get PDF
    Peroxiredoxins (Prxs) are ubiquitous cysteine-based peroxidases that guard cells against oxidative damage, are virulence factors for pathogens, and are involved in eukaryotic redox regulatory pathways. We have analyzed catalytically active crystals to capture atomic resolution snapshots of a PrxQ-subfamily enzyme (from Xanthomonas campestris) proceeding through thiolate, sulfenate, and sulfinate species. These analyses provide structures of unprecedented accuracy for seeding theoretical studies, and show novel conformational intermediates giving insight into the reaction pathway. Based on a highly non-standard geometry seen for the sulfenate intermediate, we infer that the sulfenate formation itself can strongly promote local unfolding of the active site to enhance productive catalysis. Further, these structures reveal that preventing local unfolding, in this case via crystal contacts, results in facile hyperoxidative inactivation even for Prxs normally resistant to such inactivation. This supports previous proposals that conformation-specific inhibitors may be useful for achieving selective inhibition of Prxs that are drug targets

    Isothiourea-catalysed acylative dynamic kinetic resolution of tetra-substituted morpholinone and benzoxazinone lactols

    Get PDF
    Funding: The research leading to these results has received funding from the CSC St Andrews Scheme (PhD Scholarship to H.Z.), and the EPSRC (K.K., EP/T023643/1). The authors thank the University of Salamanca, the Spanish Government and European Union for a Margarita Salas grant (Orden UNI/551/2021, A.M.). P.H.-Y.C. and A. O. F gratefully acknowledge financial support from the Bert and Emelyn Christensen and the Stone Family of OSU. A.O.F. acknowledges the Larry W. Martin & Joyce B. O'Neill Endowed Fellowship of OSU. A.O.F. and P.H.-Y.C. acknowledge computing infrastructure in part provided by the National Science Foundation (NSF) CHE-1352663 and NSF Phase-2 CCI, Center for Sustainable Materials Chemistry (CHE-1102637).The development of methods to allow the selective acylative dynamic kinetic resolution (DKR) of tetra-substituted lactols is a recognised synthetic challenge. In this manuscript, a highly enantioselective isothiourea-catalysed acylative DKR of tetra-substituted morpholinone and benzoxazinone-derived lactols is reported. The scope and limitations of this methodology have been developed, with high enantioselectivity and good to excellent yields (up to 89 %, 99 : 1 er) observed across a broad range of substrate derivatives incorporating substitution at N(4) and C(2), di- and spirocyclic substitution at C(5) and C(6), as well as benzannulation (>35 examples in total). The DKR process is amenable to scale-up on a 1 g laboratory scale. The factors leading to high selectivity in this DKR process have been probed through computation, with an N−C=O⋅⋅⋅isothiouronium interaction identified as key to producing ester products in highly enantioenriched form.Peer reviewe

    Presentación

    Get PDF
    A reaction between imines and anhydrides has been developed with chiral disubstituted anhydrides and chiral imines. The synthesis of highly substituted γ-lactams with three stereogenic centers, including one quaternary center, proceeds at room temperature in high yield and with high diastereoselectivity in most cases. Enantiomerically pure alkyl-substituted anhydrides proceed with no epimerization, thus providing access to enantiomerically pure penta-substituted lactam products

    Catalytic Enantioselective [2,3]-Rearrangements of Allylic Ammonium Ylides: A Mechanistic and Computational Study

    Get PDF
    The research leading to these results (T. H. W., J. E. T., G. C. L.-J. and A.D.S) has received funding from the ERC under the European Union's Seventh Framework Programme (FP7/2007-2013) / E.R.C. grant agreements n° 279850 and n° 340163. A.D.S. thanks the Royal Society for a Wolfson Research Merit Award. P.H.-Y.C. is the Bert and Emelyn Christensen Professor and gratefully acknowledges financial support from the Stone Family of OSU. Financial support from the National Science Foundation (NSF) (CHE-1352663) is acknowledged. D.M.W. acknowledges the Bruce Graham and Johnson Fellowships of OSU. A.C.B. acknowledges the Johnson Fellowship of OSU. D.M.W., A.C.B., and R.C.J. and P.H.-Y.C. also acknowledge computing infrastructure in part provided by the NSF Phase2 CCI, Center for Sustainable Materials Chemistry (CHE1102637).A mechanistic study of the isothiourea-catalyzed enantioselective [2,3]-rearrangement of allylic ammonium ylides is described. Reaction kinetic analyses using 19F NMR and density functional theory computations have elucidated a reaction profile and allowed identification of the catalyst resting state and turnover-rate limiting step. A catalytically-relevant catalyst-substrate adduct has been observed, and its constitution elucidated unambiguously by 13C and 15N isotopic labeling. Isotopic entrainment has shown the observed catalyst-substrate adduct to be a genuine intermediate on the productive cycle towards catalysis. The influence of HOBt as an additive upon the reaction, catalyst resting state, and turnover-rate limiting step has been examined. Crossover experiments have probed the reversibility of each of the proposed steps of the catalytic cycle. Computations were also used to elucidate the origins of stereocontrol, with a 1,5-S•••O interaction and the catalyst stereodirecting group providing transition structure rigidification and enantioselectivity, while preference for cation-π interactions over C-H•••π is responsible for diastereoselectivity.Publisher PDFPeer reviewe
    corecore