24 research outputs found

    Crystal structure of the multifunctional Gβ5–RGS9 complex

    Get PDF
    Regulators of G-protein signaling (RGS) proteins enhance the intrinsic GTPase activity of G protein α (Gα) subunits and are vital for proper signaling kinetics downstream of G protein–coupled receptors (GPCRs). R7 subfamily RGS proteins specifically and obligately dimerize with the atypical G protein β5 (Gβ5) subunit through an internal G protein γ (Gγ)-subunit–like (GGL) domain. Here we present the 1.95-Å crystal structure of the Gβ5–RGS9 complex, which is essential for normal visual and neuronal signal transduction. This structure reveals a canonical RGS domain that is functionally integrated within a molecular complex that is poised for integration of multiple steps during G-protein activation and deactivation

    Molecular Mechanism of Membrane Docking by the Vam7p PX Domain

    Get PDF
    The Vam7p t-SNARE is an essential component of the vacuole fusion machinery that mediates membrane trafficking and protein sorting in yeast. Vam7p is recruited to vacuoles by its N-terminal PX domain that specifically recognizes PtdIns(3)P in the bilayers, however the precise mechanism of membrane anchoring remains unclear. Here we describe a molecular basis for membrane targeting and penetration by the Vam7p PX domain based on structural and quantitative analysis of its interactions with lipids and micelles. Our results derived from in vitro binding measurements using NMR, monolayer surface tension experiments and mutagenesis reveal a multivalent membrane docking mechanism involving specific PtdIns(3)P recognition that is facilitated by electrostatic interactions and accompanying hydrophobic insertion. Both the hydrophobic and electrostatic components enhance the Vam7p PX domain association with PtdIns(3)P-containing membranes. The inserting Val70, Leu71, and Trp75 residues located next to the PtdIns(3)P binding pocket are surrounded by a basic patch, which is involved in nonspecific electrostatic contacts with acidic lipids, such as PtdSer. Substitution of the insertion residues significantly reduces the binding and penetrating power of the Vam7p PX domain and leads to cytoplasmic redistribution of the EGFP-tagged protein. The affinities of the PX domain for PtdIns(3)P and other lipids reveal a remarkable synergy within the multivalent complex that stably anchors Vam7p at the vacuolar membrane

    Predicting the Impact of Long-Term Temperature Changes on the Epidemiology and Control of Schistosomiasis: A Mechanistic Model

    Get PDF
    , the causative agent of schistosomiasis in humans.The model showed that the impact of temperature on disease prevalence and abundance is not straightforward; the mean infection burden in humans increases up to 30°C, but then crashes at 35°C, primarily due to increased mortalities of the snail intermediate host. In addition, increased temperatures changed the dynamics of disease from stable, endemic infection to unstable, epidemic cycles at 35°C. However, the prevalence of infection was largely unchanged by increasing temperatures. Temperature increases also affected the response of the model to changes in each parameter, indicating certain control strategies may become less effective with local temperature changes. At lower temperatures, the most effective single control strategy is to target the adult parasites through chemotherapy. However, as temperatures increase, targeting the snail intermediate hosts, for example through molluscicide use, becomes more effective. will not respond to increased temperatures in a linear fashion, and the optimal control strategy is likely to change as temperatures change. It is only through a mechanistic approach, incorporating the combined effects of temperature on all stages of the life-cycle, that we can begin to predict the consequences of climate change on the incidence and severity of such diseases

    Capture and release of partially zipped trans-SNARE complexes on intact organelles

    Get PDF
    Soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptors (SNAREs) are hypothesized to trigger membrane fusion by complexing in trans through their membrane-distal N termini and zippering toward their membrane-embedded C termini, which in turn drives the two membranes together. In this study, we use a set of truncated SNAREs to trap kinetically stable, partially zipped trans-SNARE complexes on intact organelles in the absence of hemifusion and content mixing. We show that the C-terminal zippering of SNARE cytoplasmic domains controls the onset of lipid mixing but not the subsequent transition from hemifusion to full fusion. Moreover, we find that a partially zipped nonfusogenic trans-complex is rescued by Sec17, a universal SNARE cochaperone. Rescue occurs independently of the Sec17-binding partner Sec18, and it exhibits steep cooperativity, indicating that Sec17 engages multiple stalled trans-complexes to drive fusion. These experiments delineate distinct functions within the trans-complex, provide a straightforward method to trap and study prefusion complexes on native membranes, and reveal that Sec17 can rescue a stalled, partially zipped trans-complex

    Dendritic cells in cancer immunology and immunotherapy

    Get PDF
    Dendritic cells (DCs) are a diverse group of specialized antigen-presenting cells with key roles in the initiation and regulation of innate and adaptive immune responses. As such, there is currently much interest in modulating DC function to improve cancer immunotherapy. Many strategies have been developed to target DCs in cancer, such as the administration of antigens with immunomodulators that mobilize and activate endogenous DCs, as well as the generation of DC-based vaccines. A better understanding of the diversity and functions of DC subsets and of how these are shaped by the tumour microenvironment could lead to improved therapies for cancer. Here we will outline how different DC subsets influence immunity and tolerance in cancer settings and discuss the implications for both established cancer treatments and novel immunotherapy strategies.S.K.W. is supported by a European Molecular Biology Organization Long- Term Fellowship (grant ALTF 438– 2016) and a CNIC–International Postdoctoral Program Fellowship (grant 17230–2016). F.J.C. is the recipient of a PhD ‘La Caixa’ fellowship. Work in the D.S. laboratory is funded by the CNIC, by the European Research Council (ERC Consolidator Grant 2016 725091), by the European Commission (635122-PROCROP H2020), by the Ministerio de Ciencia, Innovación e Universidades (MCNU), Agencia Estatal de Investigación and Fondo Europeo de Desarrollo Regional (FEDER) (SAF2016-79040-R), by the Comunidad de Madrid (B2017/BMD-3733 Immunothercan- CM), by FIS- Instituto de Salud Carlos III, MCNU and FEDER (RD16/0015/0018-REEM), by Acteria Foundation, by Atresmedia (Constantes y Vitales prize) and by Fundació La Marató de TV3 (201723). The CNIC is supported by the Instituto de Salud Carlos III, the MCNU and the Pro CNIC Foundation, and is a Severo Ochoa Centre of Excellence (SEV-2015-0505).S

    Increased mobility in the membrane targeting PX domain induced by phosphatidylinositol 3-phosphate

    No full text
    Phosphoinositides (PIs) are concentrated in specific subcellular membranes in order to recruit and regulate cytosolic proteins responsible for vesicular trafficking, cytoskeletal rearrangement, and eukaryotic cell growth, differentiation, and survival. Phox homology (PX) domains are found in proteins that are integral players in endocytic pathways. For example, Vam7p is targeted by its PX domain to phosphatidylinositol 3-phosphate [PtdIns(3)P] in the yeast vacuole, where it interacts with other SNARE proteins and GTPases of the vesicular membrane fusion machinery. Although several PX structures have been solved, the role of dynamics in their interactions with membrane lipids is unclear. Here, we present the first detailed characterization of the backbone dynamics of a PX domain, that of Vam7p, in the presence and absence of its ligand. The structure appears to tumble more rapidly in solution upon binding PtdIns(3)P, revealing a conformational change that includes adjustments in the flexible membrane insertion loop (MIL). The flexibilities of the MIL and domain termini are pronounced in both states, while the α1 and α2 helices are rigid. Dynamic effects are spread across the binding pocket, with PtdIns(3)P inducing altered mobility of different residues on multiple timescales, including a shift in the MIL to slower timescale motions. The bound state is more dynamic overall, particularly in the β-sheet lobe, which packs against the ligand's 3-phosphate. Thus, the induced dynamic and structural effects are transduced from the buried heart of the binding pocket in the helical lobe through the β-sheet lobe to the exposed surface of the bilayer-inserted protein

    Can Mass Spectrometry Analysis of In Vitro Digestion Products Improve the Assessment of Allergenic Potential of a Newly Expressed Protein?

    No full text
    The rigorous safety assessment conducted on genetically modified crops includes an evaluation of allergenic potential for an associated newly expressed protein (NEP). Since no single method is recognized as a predictor for protein allergenicity, a weight of evidence approach (WOE) has been adopted. In vitro digestion is a part of the WOE approach and is used to evaluate the susceptibility of a NEP to digestion by gastrointestinal proteases. In 2017, the European Food Safety Authority outlined additional digestion conditions and suggested liquid chromatography tandem mass spectrometry (LC-MS/MS) as an analytical method to detect small post-digestion peptides. This technical review paper focuses on the question of whether LC-MS/MS can aid in assessing allergenic potential of in vitro digestion products generated under the newly proposed conditions. After an extensive review, it was determined that LC-MS/MS can detect very small digestion products. However, the method cannot provide relevant information to differentiate whether these products are allergenic or non-allergenic. Therefore, the use of LC-MS/MS for a standard in vitro digestibility assessment provides no improvement in allergenicity prediction. doi: 10.21423/jrs-v09i1wan

    Genetic inactivation of IL-1 signaling enhances atherosclerotic plaque instability and reduces outward vessel remodeling in advanced atherosclerosis in mice

    No full text
    Clinical complications of atherosclerosis arise primarily as a result of luminal obstruction due to atherosclerotic plaque growth, with inadequate outward vessel remodeling and plaque destabilization leading to rupture. IL-1 is a proinflammatory cytokine that promotes atherogenesis in animal models, but its role in plaque destabilization and outward vessel remodeling is unclear. The studies presented herein show that advanced atherosclerotic plaques in mice lacking both IL-1 receptor type I and apolipoprotein E (Il1r1(–/–)Apoe(–/–) mice) unexpectedly exhibited multiple features of plaque instability as compared with those of Il1r1(+/+)Apoe(–/–) mice. These features included reduced plaque SMC content and coverage, reduced plaque collagen content, and increased intraplaque hemorrhage. In addition, the brachiocephalic arteries of Il1r1(–/–)Apoe(–/–) mice exhibited no difference in plaque size, but reduced vessel area and lumen size relative to controls, demonstrating a reduction in outward vessel remodeling. Interestingly, expression of MMP3 was dramatically reduced within the plaque and vessel wall of Il1r1(–/–)Apoe(–/–) mice, and Mmp3(–/–)Apoe(–/–) mice showed defective outward vessel remodeling compared with controls. In addition, MMP3 was required for IL-1–induced SMC invasion of Matrigel in vitro. Taken together, these results show that IL-1 signaling plays a surprising dual protective role in advanced atherosclerosis by promoting outward vessel remodeling and enhancing features of plaque stability, at least in part through MMP3-dependent mechanisms
    corecore