161 research outputs found

    Selective nanomanipulation using optical forces

    Full text link
    We present a detailed theoretical study of the recent proposal for selective nanomanipulation of nanometric particles above a substrate using near-field optical forces [Chaumet {\it et al.} Phys. Rev. Lett. {\bf 88}, 123601 (2002)]. Evanescent light scattering at the apex of an apertureless near-field probe is used to create an optical trap. The position of the trap is controlled on a nanometric scale via the probe and small objects can be selectively trapped and manipulated. We discuss the influence of the geometry of the particles and the probe on the efficiency of the trap. We also consider the influence of multiple scattering among the particles on the substrate and its effect on the robustness of the trap.Comment: 12 pages, 17 figure

    The effect of addition of sucrose and aeration to grape must on growth and metabolic activity of Saccharomyces cerevisiae

    Get PDF
    Supplementation of grape must with sucrose has an inhibitory effect on yeast growth, but increases the catabolic activity of yeast populations. It is best done after the initial phase of yeast growth (between days 2 and 4), simultaneously to a short period of aeration which stimulates yeast growth and rate of sugar utilisation

    Invisibility and supervisibility: Radiation dynamics in a discrete electromagnetic cloak

    Full text link
    We study the radiation dynamics of an electric dipole source placed near or inside a discrete invisibility cloak. We show that the main features of radiation dynamics can be understood in terms of the interaction of the source with a nonideal cloak in which local-field effects associated with the discrete geometry play a crucial role. As a result, radiation dynamics in a discrete cloak can differ drastically from what a source would experience in an ideal, continuous cloak. This can lead, for instance, to an enhancement of the emission by the cloak, thus making the source more visible to an outside observer than it would be without the cloak. The two main physical mechanisms for enhanced, or inhibited, radiation dynamics are the coupling of the source to leaky modes inside the cloak, and the coupling of the source with the lattice of the discrete cloak, via the local field. We also explore the robustness of the effect to material dispersion and losses

    Optical binding of particles with or without the presence of a flat dielectric surface

    Full text link
    Optical fields can induce forces between microscopic objects, thus giving rise to new structures of matter. We study theoretically these optical forces between two spheres, either isolated in water, or in presence of a flat dielectric surface. We observe different behavior in the binding force between particles at large and at small distances (in comparison with the wavelength) from each other. This is due to the great contribution of evanescent waves at short distances. We analyze how the optical binding depends of the size of the particles, the material composing them, the wavelength and, above all, on the polarization of the incident beam. We also show that depending on the polarization, the force between small particles at small distances changes its sign. Finally, the presence of a substrate surface is analyzed showing that it only slightly changes the magnitudes of the forces, but not their qualitative nature, except when one employs total internal reflection, case in which the particles are induced to move together along the surface.Comment: 8 pages, 9 figures, and 1 tabl

    Discrete dipole approximation in time domain through the Laplace transform

    Full text link
    We present a form of the discrete dipole approximation for electromagnetic scattering computations in time domain. We show that the introduction of complex frequencies, through the Laplace transform, significantly improves the computation time. We also show that the Laplace transform and its inverse can be combined to extract the field inside a scatterer at a real resonance frequenc

    An Ultrawideband Time Reversal-based RADAR for Microwave-range Imaging in Cluttered Media

    No full text
    This work presents a new RADAR prototype built for the purpose of imaging targets located in a cluttered environment. The system is capable of performing Phase Conjugation experiments in the ultrawideband [2-4] GHz. In addition, applying the D.O.R.T. method to the inter-element matrix allows us to selectively focus onto targets, hence reducing the clutter contribution. We aim to experimentally explore the use of this focusing wave into an inversion algorithm, in order to improve its robustness against noise. Before testing this idea, we show here the first results validating the prototype separately in the frame of selective focusing via the DORT method and of multistatic-multifrequency inversion

    Isotropic Single Objective (ISO) microscopy : Theory and Experiment

    No full text
    International audienceIsotropic single-objective (ISO) microscopy is a recently proposed imaging technique that can theoretically exhibit the same axial and transverse resolutions as 4Pi microscopy while using a classical single-objective confocal microscope. This achievement is obtained by placing the sample on a mirror and shaping the illumination beam so that the interference of the incident and mirror-reflected fields yields a quasi-spherical spot. In this work, we model the image formation in the ISO fluorescence microscope and simulate its point spread function. Then, we describe the experimental implementation and discuss its practical difficulties

    Two-photon fluorescence isotropic-single-objective microscopy

    No full text
    International audienceTwo-photon excitation provides efficient optical sectioning in three-dimensional fluorescence microscopy, independently of a confocal detection. In two-photon laser-scanning microscopy, the image resolution is governed by the volume of the excitation light spot, which is obtained by focusing the incident laser beam through the objective lens of the microscope. The light spot being strongly elongated along the optical axis, the axial resolution is much lower than the transverse one. In this Letter we show that it is possible to strongly reduce the axial size of the excitation spot by shaping the incident beam and using a mirror in place of a standard glass slide to support the sample. Provided that the contribution of sidelobes can be removed through deconvolution procedures, this approach should allow us to achieve similar axial and lateral resolution
    • …
    corecore