7,955 research outputs found

    Inverse Avalanches On Abelian Sandpiles

    Full text link
    A simple and computationally efficient way of finding inverse avalanches for Abelian sandpiles, called the inverse particle addition operator, is presented. In addition, the method is shown to be optimal in the sense that it requires the minimum amount of computation among methods of the same kind. The method is also conceptually nice because avalanche and inverse avalanche are placed in the same footing.Comment: 5 pages with no figure IASSNS-HEP-94/7

    Analysis of Two-Body Decays of Charmed Baryons Using the Quark-Diagram Scheme

    Full text link
    We give a general formulation of the quark-diagram scheme for the nonleptonic weak decays of baryons. We apply it to all the decays of the antitriplet and sextet charmed baryons and express their decay amplitudes in terms of the quark-diagram amplitudes. We have also given parametrizations for the effects of final-state interactions. For SU(3) violation effects, we only parametrize those in the horizontal WW-loop quark diagrams whose contributions are solely due to SU(3)-violation effects. In the absence of all these effects, there are many relations among various decay modes. Some of the relations are valid even in the presence of final-state interactions when each decay amplitude in the relation contains only a single phase shift. All these relations provide useful frameworks to compare with future experiments and to find out the effects of final-state interactions and SU(3) symmetry violations.Comment: 28 pages, 20 Tables in landscape form, 4 figures. Main changes are: (i) some errors in the Tables and in the relations between the quark-diagram amplitudes of this paper and those of Ref.[10] are corrected, (ii) improvements are made in the presentation so that comparisons with previous works and what have been done to include SU(3) breaking and final-state interactions are more clearly stated; to appear in the Physical Review

    Validation of three-dimensional incompressible spatial direct numerical simulation code: A comparison with linear stability and parabolic stability equation theories for boundary-layer transition on a flat plate

    Get PDF
    Spatially evolving instabilities in a boundary layer on a flat plate are computed by direct numerical simulation (DNS) of the incompressible Navier-Stokes equations. In a truncated physical domain, a nonstaggered mesh is used for the grid. A Chebyshev-collocation method is used normal to the wall; finite difference and compact difference methods are used in the streamwise direction; and a Fourier series is used in the spanwise direction. For time stepping, implicit Crank-Nicolson and explicit Runge-Kutta schemes are used to the time-splitting method. The influence-matrix technique is used to solve the pressure equation. At the outflow boundary, the buffer-domain technique is used to prevent convective wave reflection or upstream propagation of information from the boundary. Results of the DNS are compared with those from both linear stability theory (LST) and parabolized stability equation (PSE) theory. Computed disturbance amplitudes and phases are in very good agreement with those of LST (for small inflow disturbance amplitudes). A measure of the sensitivity of the inflow condition is demonstrated with both LST and PSE theory used to approximate inflows. Although the DNS numerics are very different than those of PSE theory, the results are in good agreement. A small discrepancy in the results that does occur is likely a result of the variation in PSE boundary condition treatment in the far field. Finally, a small-amplitude wave triad is forced at the inflow, and simulation results are compared with those of LST. Again, very good agreement is found between DNS and LST results for the 3-D simulations, the implication being that the disturbance amplitudes are sufficiently small that nonlinear interactions are negligible

    Acoustic noise radiated by PWM-controlled induction machine drives

    Get PDF
    This paper investigates the acoustic noise radiated from two nominally identical induction motors when fed from sinusoidal, and asymmetric regular sampling subharmonic and space-vector pulsewidth modulation (PWM) converters. The theory for analyzing the noise spectrum is developed further to account for the interaction between the motor and the drive. It is shown that manufacturing tolerances can result in significant differences in the noise level emitted from nominally identical motors, and that mechanical resonances can result in extremely high noise emissions. Such resonances can be induced by stator and rotor slot air-gap field harmonics due to the fundamental component of current, and by the interaction between the airgap field harmonics produced by the fundamental and the PWM harmonic currents. The significance of the effect of PWM strategy on the noise is closely related to the mechanical resonance with vibration mode order zero, while the PWM strategy will be critical only if the dominant cause of the emitted noise is the interaction of the fundamental air-gap field and PWM harmonic

    Web Fact Seeking Meta Engine for Business Information Needs

    Get PDF
    published_or_final_versio

    Comments on the Quark Content of the Scalar Meson f0(1370)f_0(1370)

    Full text link
    Based on the measurements of (Ds+,D+)f0(1370)π+(D_s^+,D^+)\to f_0(1370)\pi^+ we determine, in a model independent way, the allowed ssˉs\bar s content in the scalar meson f0(1370)f_0(1370). We find that, on the one hand, if this isoscalar resonance is a pure nnˉn\bar n state [ nnˉ(uuˉ+ddˉ)/2]n\bar n\equiv(u\bar u+d\bar d)/\sqrt{2} ], a very large WW-annihilation term will be needed to accommodate Ds+f0(1370)π+D_s^+\to f_0(1370)\pi^+. On the other hand, the ssˉs\bar s component of f0(1370)f_0(1370) should be small enough to avoid excessive Ds+f0(1370)π+D_s^+\to f_0(1370)\pi^+ induced from the external WW-emission. Measurement of f0(1370)f_0(1370) production in the decay Ds+K+Kπ+D_s^+\to K^+K^-\pi^+ will be useful to test the above picture. For the decay D0f0(1370)Kˉ0D^0\to f_0(1370)\bar K^0 which is kinematically barely or even not allowed, depending on the mass of f0(1370)f_0(1370), we find that the finite width effect of f0(1370)f_0(1370) plays a crucial role on the resonant three-body decay D0f0(1370)Kˉ0π+πKˉ0D^0\to f_0(1370)\bar K^0\to\pi^+\pi^-\bar K^0.Comment: 12 pages, 2 figure

    Implications of Shock Wave Experiments with Precompressed Materials for Giant Planet Interiors

    Full text link
    This work uses density functional molecular dynamics simulations of fluid helium at high pressure to examine how shock wave experiments with precompressed samples can help characterizing the interior of giant planets. In particular, we analyze how large of a precompression is needed to probe a certain depth in a planet's gas envelope. We find that precompressions of up to 0.1, 1.0, 10, or 100 GPa are needed to characterized 2.5, 5.9, 18, to 63% of Jupiter's envelope by mass.Comment: Submitted As Proceedings Article For The American Physical Society Meeting On Shock Compression Of Condensed Matter, Hawaii, June, 200

    Propagation of highly nonlinear signals in a two dimensional network of granular chains

    Get PDF
    We report the first experimental observation of highly nonlinear signals propagating in a two dimensional system composed of granular chains. In this system one of the chains contacts two others to allow splitting and redirecting the solitary-like signal formed in the first chain. The system consists of a double Y-shaped guide in which high- and low-modulus chains of spheres are arranged in various geometries. We observed fast splitting of the initial pulse, rapid chaotization of the signal and sharp bending of the propagating acoustic information. Pulse and energy trapping was also observed in composite systems assembled from hard- and soft-particles in the branches

    Imaging radar observations and nonlocal theory of large-scale plasma waves in the equatorial electrojet

    No full text
    International audienceLarge-scale (l ~ 1 km) waves in the daytime and night-time equatorial electrojet are studied using coherent scatter radar data from Jicamarca. Images of plasma irregularities within the main beam of the radar are formed using interferometry with multiple baselines. These images are analyzed according to nonlocal gradient drift instability theory and are also compared to nonlinear computer simulations carried out recently by Ronchi et al. (1991) and Hu and Bhattacharjee (1999). In the daytime, the large-scale waves assume a non-steady dynamical equilibrium state characterized by the straining and destruction of the waves by shear and diffusion followed by spontaneous regeneration as predicted by Ronchi et al. (1991). At night, when steep plasma density gradients emerge, slowly propagating large-scale vertically extended waves predominate. Eikonal analysis suggests that these waves are trapped (absolutely unstable) or are nearly trapped (convectively unstable) and are able to tunnel between altitude regions which are locally unstable. Intermediate-scale waves are mainly transient (convectively stable) but can become absolutely unstable in narrow altitude bands determined by the background density profile. These characteristics are mainly consistent with the simulations presented by Hu and Bhattacharjee (1999). A new class of large-scale primary waves is found to occur along bands that sweep westward and downward from high altitudes through the E-region at twilight

    Quantum Convolutional Error Correcting Codes

    Get PDF
    I report two general methods to construct quantum convolutional codes for NN-state quantum systems. Using these general methods, I construct a quantum convolutional code of rate 1/4, which can correct one quantum error for every eight consecutive quantum registers.Comment: Minor revisions and clarifications. To appear in Phys. Rev.
    corecore