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Quantum convolutional error-correcting codes

H. F. Chad
Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong
(Received 27 February 1998

| report two general methods to construct quantum convolutional codéé-$tate quantum systems. Using
these general methods, | construct a quantum convolutional code of rate 1/4, which can correct one quantum
error for every eight consecutive quantum registg84.050-294{@8)07608-2

PACS numbd(ps): 03.67.Lx, 89.70+c, 89.80+h

A quantum computer is more efficient than a classicalsibly infinite) sequence of classical binary numbers
computer in useful applications such as integer factorizatiofa; ,a,, . ...am, - --), the  encoding b:,¢1,b5,
[1] and database searf]. However, decoherence remains Cy, . .. ,bn,Cm, - . . ) with
one of the major obstacles to building a quantum computer
[3]. Nevertheless, the effect of decoherence can be compen-
sated for if one introduces redundancy in the quantum Statgor a” i, and aO: a_]_:O is able to correct up to one error
By first encoding a quantum state into a larger Hilbert spacgor every two consecutive bif22].
H. Then by projecting the wave function into a suitable sub- | classical error correction, good convolutional codes of-
spaceC of H. And finally by applying a unitary transforma- ten can encode with higher efficiencies than their corre-
tion to the orthogonal complement & according to the  sponding block codes in a noisy chanf@d,21]. It is, there-
measurement result; it is possible to correct quantum errofgre, instructive to find quantum convolutional cod€CC)
due to decoherence. This scheme is called the quantum errgpd to analyze their performance. In this paper, | first report
correction codgQECQ [4]. Many QECCs have been dis- a way to construct a QCC from a known quantum block code
coveredsee, for example, Reff4—15]) and various theories  (QBC). Then | discuss a way to construct a QCC from a
on the QECC have also been develogeee, for example, known classical convolutional code. Finally, | report the con-
Refs.[8-18)). In particular, the necessary and sufficient con-struction of a QCC of rate 1/4, which can correct one quan-
dition for a QECC if16-19 tum error for every eight consecutive quantum registers.
. - _ Let me first introduce some notations before | construct
(TencoabA ' Bljencodd = A 4,5 » (1) QCCs. Suppose each quantum register Nasrthogonal

where|igneoqd denotes the encoded quantum sfajeusing eigenstates foN>2. Then, the basis (_)f a general quantum
the QECC;.4,B are the possible errors the QECC can State consisting of many quantum registers can be written as
handle; andA 4z is a complex constant independent of }={lk1.ka, ... Ky, )} for all ke Zy. And | abuse
liencoad @Nd |jencoad. Note that the above condition for a the notation by deflnmgm:O(k];or allm<0. _
QECC is completely general, working for finite or infinite Supposgk)—ZX; i, . iy ig, e im||l1|2! .im) bea
number ofN-state quantum registets. QBC mapping one quantum register to a code of lemgth
All QECCs discovered so far are block codes. That is, theHence, the rate of the code equalsliThe effect of deco-
original state ket is first divided intfinite blocks of the same herence can be regarded as an error operator acting on cer-
length. Each block is then encoded separately using a codain quantum registers. | denote the set of all possible errors
that isindependenof the state of the other blocKsf. Refs.  that can be corrected by the above quantum block code. by
[20,27)). Based on this QBC, one can construct a family of QCCs as
In addition to block codes, convolutional codes are wellfollows:
known in classical error correction. Unlike a block code, the Theorem 1.Given the above QBC and a quantum state
encoding operation depends on current as well as a numbgk)=|k;,k,, ... k., ...) making up of possibly infinitely
of past information bit§20,21]. For instance, given gos- many quantum registers, then the encoding

bj=a;+a;_,mod 2, ci=a;+a_;+a,_,mod 2 (2)

400
Lk . . .
|k>E|klak21 ---1kn1 "'>H|kEHCOdéE® i1 2 i a;ipjﬁ;p,_p_).,jimljilJiZ’ ---:Jim> (3)
i=1 i1:di2s -0 im

forms a QCC of rate i provided that the matriy;, is invertible. This QCC can handle errors in the fOEWE® - - -.

*Electronic address: hfchau@hkusua.hku.hk
!Perhaps the simplest way to see that @gholds for infinite number oN-state registers is to observe that Gottesman’s proof in[R&f.
does not depend on the finiteness of the Hilbert space for encoded state.
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Proof. | consider the effects of erroz=£,0&,® - - - andf'=£,®E,® - - - e EQ E® - - - on the encoded quantum registers
by computing

’ ’ _(E’i’k/ ") ik ] s ’ : H
<kencodé€ T‘S"kencodé:il;[l { _ 2’ a, P Mp" P a@pﬂp ?i)m“il! s ’Jimlg iTgiljily e inm>1- (4)

i Jizr - dim Jigr oo

Substituting Eq(1) into Eq. (4), we have

+ oo

<k1’ancod$8’T5| kencodé:].:[ {< ( 2 /”«ipkrr)) lgl?&‘ ( 2 /J«ipkp) ) }
=1 p encod P encod

+
=11 085 b, 3pupi e ] ®
|
for some constantd ¢ & independent ok andk’. Since the Corollary 1. The encoding scheme given by E) gives
matrix u is invertible,k;=k/ for all i is the unique solution @ QCC from a QBC provided thdt) the elements in the
of the systems of linear equations u,ko= = puip ' Con- Matrix u are either zeros or one€) ui, is a function ofi
sequently, P —p only; and (3) wi,=pw(i—p) consists of finitely many
ones.
(KincodhE "€l Kencodd = Sk A e v (6) Corollary 2. The encoding scheme given by Eg) gives

) ) a QCC from a QBC if1) N is a prime power(2) w is not a
for some constand ¢ . independent ok andk’. Thus, the  ;er0 matrix; and?3) wip is @ function ofi —p only.

encodmg in 'Eq(3) is a QECC. . O Let me illustrate the above analysis by an example.

At this point, readers should realize that the above scheme Example 1.Starting from the spin five register code in
can be generalized to construct a QCC from a QBC tha
mapsn quantum registers tom(>n) registers. It is also clear
that the following two useful corollaries follow directly from

Ref. [12], one knows that the following QCC can correct up
to one error in every five consecutive quantum registers:

theorem 1:
io [ 4 NI
ke, K, >H® N3Z qEr -0 “’E\lki+ki_1)(pi+qi+ri)+piri|pi i Pt gt r Pt tkitkiog) | ()
1= isHishi—

wherek,, e Zy, wy is a primitive Nth root of unity, and all  corrects(independent spin flip errors in certain quantum

additions in the state ket are modNo The rate of this code registers withj; € Zy . Then, the following QECC, which is

equals 1/5. obtained by discrete Fourier transforming every quantum
Although the QCC in Eq(3) looks rather complicated, register in Eq.(8),

the actual encoding process can be performed readily. Be-

cause u is invertible, one can reversibly map

Ky, Ko, oo Ky, . tO Ky > al.

20

IEPIEER

% ,ulpkp,zp ,U,zpkp,...,Ep MnpKp s - - oo

1 )
. . . \/—ij,\'lp')ml,pz,...) 9
[23—-25. Then, one obtains the above five register QCC by
encoding each quantum register using the procedure in Ref.
[12]. corrects (independent phase errors occurring in the same
Now, | turn to the construction of QCCs from classical quantum registers. The converse is also true.
convolutional codes. Let me first introduce two technical Proof. Observe that one can freely choose a computa-

lemmas(which work for both QBCs and QCEs tional basis for the encoded quantum state. In particular, if
Lemma 1Suppose the QECC one chooses the discrete Fourier transformed bgsn}
={=} g wl"lj)} for each of the encoded quantum register,
Ky > aJ('OJ. itz ) (8)  thenthe encoding in E¢9) is reduced to the encoding in Eq.
itdg.... 177 (8). Thus, the code in Eq9) handles spin flip errors with
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respect to the discrete Fourier transformed b§§$}- Con- Proof. From Corollary 3,. it sgffices to show that the new
sequently, the same code handles phase errors in the origifdECC C corrects both spin flip and phase errors. By the
{|m)} basis. construction ofC, it clearly can correct spin flip errors. And

Converse|y’ suppose one chooses the onqiha}} basis USing the same trick in the prOOf Of Lemma 2, it is easy to
to encode a phase error correcting code. Then with respect f1€ck thatC can correct phase shift errors as well.
the {|m)} basis, it is easy to check that the same code cor- _R_eaders should hote that the order of pasting in Theor_em
rects spin flip errors O 2 is important. Reversing the order of encoding does not give

Lemma 2.Suppose a QECC handles errdgs and E, a good quantum code. Also, proofs of Corollary 3 and Theo-
satisfying (&) for all &eE, (i=1,2), there exist€)eE, rem 2 for the case dfi=2 can also be found, for example, in

) Ref.[9].
TO = TO ! . ‘, . =
Sl#Ch, that£206,=£,°&;; and (b), for &.& eRi(i=1,2), Theorem 3.SupposeC is a classicalblock or convolu-
E,/°& € E; whenever error§; and& occur at the same set of

. ) tional) code of rater that can correcp (classical errors for
guantum registers; then the QECC actually handles errors 'Qveryq consecutive registers. The@, can be extended to a
EcE,={&106,:6,€Eq,E,€ E, and errorséy &, occur at

) QECC of rater? that can correct at leagt quantum errors
the same set of quantum regisers for everyg? consecutive quantum registers.

,Proof.T , One  knows  from Eq. (1)_ that Proof. SupposeC is a classical code. By mapping to
(Kencodd€i € [Kencodd = dic k1A, & for someA ¢ indepen- |m) for all me Zy ,C can be converted to a quantum code for
dent ofk (i=1,2). Also, Eq.(1) implies that the effect of an spin flip errors. LetC’ be the QECC obtained by Fourier
error&; is simply to rigidly rotate and to contratr expand  transforming each quantum register 6f Then Lemma 1
the encoded ket space independent of the $kafg,qq itself.  implies thatC’ is a code for phase shift errors. From Theo-

Thus, one concludes that rem 2, pasting code€ andC’ together will create a QECC
C” of rater?. Finally, one can verify the error correcting
K/ S+ e (& +E) K =5 T capability of C" readily[26]. O
(Kencoad(E17+E2) (E1F E2) Kencoad = s e 2, (104 Theorem 3 is useful to create high rate QCCs from high

rate classical convolutional codes. Note that one of the sim-
and plest classical convolutional code with rate 1/2 is given by
Eq. (2). Being a nonsystemafi@and non-catastrophicode
, ot ) _ , [22], it serves as an ideal starting point to construct good
(Kéncogd(E1TiE) (€1+|52)|kencodé_5kvk'F51,52 QCCs. First, let me write down this code in quantum me-
(10b  chanical form:
. , . Lemma 3:The QCC

for all & eE; (i=1,2), wherel'g ¢, andrglyg2 are indepen-
dent ofk. By expanding Eqs(10a and(10b), one arrives at oo
. |ka. ko, --->®|ki+ki—2:ki+ki—l+ki—2> (13
(Kencodd€ 1€2|Kencodd = Sk k' Ee, e, 11 =1

for SomeES £ independent ok. Fina”y’ | consider errors for all ki e ZN s where all additions in the state ket are modulo
1 N, can correct up to one spin flip error for every four con-
secutive quantum registers.

Proof. Using nqrtations as in the proof of Theorem 1, |
consider{k;coad€’ "€l Kencoge- Clearly, the worst case hap-
(Kencodb(E1€2)T(E1€2) [ Kencoad = (Kencoak€s €1 E1€2lKencodd  pens when error€ and €’ occur at different quantum regis-

ters. And in this case, E@13) implies that exactly two of the

= (Kéncoak€1E3|Kencods following four equations hold:
(12

& ,& eE; (i=1,2) occurring at the same set of quantum
registers, then

for some¢& e E;(i=1,2). Hence from Egs(1) and (11), | Koi + Koi — o=k + Ky _»,
conclude that the QECC handles errors in theEseE,. [

The next corollary follows directly from Lemma 2.

Corollary 3. A QECC handles general quantum error if Kai +Kai -1+ Kai—2=Kgi + Ky -1 + Ky 5,
and only if it handles both spin flip and phase errors in the
corresponding quantum registers.

Now, | am ready to prove the following theorem regard-
ing the construction of quantum codes from classical codes.
Theorem 2.Suppose QECCE1 andC2 handle phase
shift and spin flip errors, respectively, for the same set of
guantum registers. Then, pasting the two codes together by

first encoding the quantum state usi@d then further en-
coding the resultant quantum state usf®@, one obtains a  2That is, bothb; andc; are not equal ta; .

QECCC that corrects general errors in the same set of quan-3That is, a finite number of channel errors does not create an
tum registers. infinite number of decoding errors.

Koiy 11 Kai-1=Kgi 41T Ky _ 1, (14

Koi 1+ Koi T Koi—1=Kgj 1 Ko+ Kp g
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for all i. One may regardt;’s as unknowns anl/’s as arbi-  solution ki=k/ for all i. Thus, (Kl cosE' 5|kencodé
trary but fixed constants. Then, by stralghtforward computa= s, ,, 8. and hence this lemma is proved. 0
tion, one can show that pickingny two equations out of Eq. Example 2Theorem 3 and Lemma 3 imply that the fol-

(14) for eachi will form an invertible system with the unique |owing QCC of rate 1/4:

|klik21 i ->'_>|kencodé

= 1 (Kt ke g
- P qE N¢ (k+k 2>pl+(kl+kl71+kl72)ql|pi+pi—lvpi+pi—1+qi—1yqi+Qi—1:Qi+qi—1+pi) (15
i=1 1:42, - -

for all k; e Zy, where all additions in the state ket are modilocan correct at least one error for every 16 consecutive
guantum registers. But, in fact, this code is powerful enough to correct one error for every eight consecutive quantum registers
(see also Ref.26]).

Proof. Let £ and &’ be two quantum errors affecting at most one quantum register per every eight consecutive ones. By
considering(kéncodJEE’T£|kencodg, I know that at least six of the following eight equations hold:

P2i—1+ Pai—2= P17 Pai—2,
P2i—1F Pai—2F U2i—2=Pai—1+ Pai 2T Uz 2,
Ooi—1FO2i—2= 031+ 032,
O2i—1+O2i—2F Pai—1= 051+ 0gi 2+ P21, (16)
P2i+ Pa2i—1=Pai + Poi -1
P2it+ Pai—1+02i-1= Pai+Pai—1+ Uz 1,
Ozi+02i—1= 0 T g1,

OoitA2i—1+P2i=0z+ 211 Payi

forallieZ". Let me regard; andg; as unknowns; ang; andq; as arbitrary but fixed constants. Then, it is straightforward
to show that choosingmy six equations in Eq(16) for eachi e Z* would result in a consistent system having a unique
solution of p;=p; andq;=q/ for all i e Z*. Consequently,

+ oo
encodeLg 5|kencodé E |H [wNEJZIzzi’lpj(kj+kj727kj,7kj,’quj(kj+kj’1+ki’27ki,7ki,*17kjlf2)
P1.d1.P2.d2, - .. i=1
X<fi|5,r|fi><gi|5|gi>]J 17

for some linearly independent functiohgp,,d1,P2,9>, - . .) andgi(p1,91,P2,d2, - - - ).
Now, | consider a basiéh;(p1,d1,P2,0, - - . )} for the orthogonal complement of the span{éf,g;};7+. By summing
over allh;’s while keepingf;’s andg;’s constant in Eq(17), one ends up with the constraints that k/{ for all i € Z*. Thus,

+ oo

iljl [(fi(p1.d1, - DIETi(P1,A1, - - ))Gi(P1.G1, - - )IElGi(P1,01, - - -)>]}
(18

<kéncod(l>5’ Tg| I(encodé = 5k,k’ 2
P1,9d1.P2,92, - -

Hence, Eq(15) corrects up to one quantum error per everyvolutional codegsuch as variouk/(k+ 1)-rate codes in Ref.
eight consecutive quantum registers. O  [27]] into QCCs. On the other hand, it is impossible to con-
The above rate 1/4 QCC is constructed from a classicastruct a four quantum register QBC that can correct one
convolutional code of rate 1/2. One may further boost up thejuantum errof12,16. With modification, the same argu-
code performance by converting other efficient classical conment can be used to show that no QCC can correct one error
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for every four consecutive quantum regist€e§]. It is in-  ends up with changing|ky,Ky, ... Ki, ... .encoqd 1O
structive to compare the performances of QBCs and QCCs ifk, ks, ... ki_1,ki+1Ki .1, . . . encoad- Clearly, the above
other situations. operation is fault tolerant and involves only a finite number

In addition, in order use QCCs in quantum computation,of quantum registers. Fault tolerant implementation of single
one must investigate the possibility of fault tolerant compu-register phase shift can be obtained in a similar way. Further
tation on them. Moreover, it would be ideal if the fault tol- results on fault tolerant implementation on QCCs will be
erant implementation of single- and two-quantum registefeported elsewher9].
operations must involve only a finite number of quantum Finally, decoding a classical convolutional code can be
registers in the QCC. While a general QCC may not admit gjuite involved[28]. So, it is worthwhile to investigate the
finite fault tolerant implementation, many QCCs with finite efficiency of decoding a QCC. | plan to report them in future
memorie§ can be manipulated fault tolerantly. works[29].

Example 3.By subtracting those quantum registers con-

tainingp;, Pi+2, i » Gi+1, andd;.., by one in Eq(15), one I would like to thank T. M. Ko for introducing me to the

subject of convolutional codes. | would also like to thank
Debbie Leung, H.-K. Lo, and Eric Rains for their useful
“That is, codes with encoding schemes that depend on a finitdiscussions. This work is supported by Hong Kong Govern-
number of quantum registers jk). ment RGC Grant No. HKU 7095/97P.
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