3 research outputs found

    Transition-based directed graph construction for emotion-cause pair extraction

    Get PDF
    Emotion-cause pair extraction aims to extract all potential pairs of emotions and corresponding causes from unannotated emotion text. Most existing methods are pipelined framework, which identifies emotions and extracts causes separately, leading to a drawback of error propagation. Towards this issue, we propose a transition-based model to transform the task into a procedure of parsing-like directed graph construction. The proposed model incrementally generates the directed graph with labeled edges based on a sequence of actions, from which we can recognize emotions with the corresponding causes simultaneously, thereby optimizing separate subtasks jointly and maximizing mutual benefits of tasks interdependently. Experimental results show that our approach achieves the best performance, outperforming the state-of-the-art methods by 6.71% (p<0.01) in F1 measure

    Interfacing with silica boosts the catalysis of copper

    Get PDF
    厦门大学化学化工学院郑南峰教授团队长期致力于研究固体功能材料的表界面化学行为,在分子水平上实现对固体功能材料的化学性能的调控与优化。得益于固体表面物理化学国家重点实验室的多学科合作以及能源材料化学协同创新中心的多单位优势互补,郑南峰教授课题组通过与校内外多个课题组的密切合作,近期在功能材料的可控制备、复杂表界面结构的高分辨表征和表界面过程分子机制的深入理解等方面取得系列重要进展,相关成果近期均在Nature Communications发表。 与厦门大学傅钢、袁友珠教授以及中国科学院物理研究所谷林研究员密切合作,历时五年,在多相催化的金属-载体界面效应研究方面取得重要进展。SiO2被广泛用作工业负载型金属催化剂的载体,多被视为惰性载体,在催化过程中仅起到分散金属的作用。郑南峰教授领衔的合作研究打破这个催化领域的“定式”。他们发现了“惰性”载体SiO2与Cu之间存在可以数量级提升酯基加氢催化性能的活性界面,揭示了相关界面效应的分子作用机制,并应用于指导实用铜催化剂的制备。【Abstract】Metal-support interaction is one of the most important parameters in controlling the catalysis of supported metal catalysts. Silica, a widely used oxide support, has been rarely reported as an effective support to create active metal-support interfaces for promoting catalysis. In this work, by coating Cu microparticles with mesoporous SiO2, we discover that Cu/SiO2 interface creates an exceptional effect to promote catalytic hydrogenation of esters. Both computational and experimental studies reveal that Cu–Hδ− and SiO–Hδ+ species would be formed at the Cu–O–SiOx interface upon H2 dissociation, thus promoting the ester hydrogenation by stablizing the transition states. Based on the proposed catalytic mechanism, encapsulting copper phyllosilicate nanotubes with mesoporous silica followed by hydrogen reduction is developed as an effective method to create a practical Cu nanocatalyst with abundant Cu-O-SiOx interfaces. The catalyst exhibits the best performance in the hydrogenation of dimethyl oxalate to ethylene glycol among all reported Cu catalysts.We thank the National Key R&D Program of China (2017YFA0207302, 2017YFA0207303, 2017YFA0206801), the NNSF of China (21731005, 21420102001, 21721001, 21333008, 21373167, 21573178), and the Fundamental Research Funds for the Central Universities (20720160046) for financial support. 研究工作得到了科技部、国家自然科学基金委和教育部,中科院先导项目,国家重点研发计划,分子反应动力学国家重点实验室开放课题基金等项目的资助
    corecore