1,817 research outputs found

    Selfconsistent gauge-invariant theory of in-plane infrared response of high-Tc cuprate superconductors involving spin fluctuations

    Full text link
    We report on results of our theoretical study of the in-plane infrared conductivity of the high-Tc cuprate superconductors using the model where charged planar quasiparticles are coupled to spin fluctuations. The computations include both the renormalization of the quasiparticles and the corresponding modification of the current-current vertex function (vertex correction), which ensures gauge invariance of the theory and local charge conservation in the system. The incorporation of the vertex corrections leads to an increase of the total intraband optical spectral weight (SW) at finite frequencies, a SW transfer from far infrared to mid infrared, a significant reduction of the SW of the superconducting condensate, and an amplification of characteristic features in the superconducting state spectra of the inverse scattering rate 1/tau. We also discuss the role of selfconsistency and propose a new interpretation of a kink occurring in the experimental low temperature spectra of 1/tau around 1000cm^{-1}.Comment: 9 pages with 6 figures, submitted to Physical Review

    The effect of cigarette price increase on the cigarette consumption in Taiwan: evidence from the National Health Interview Surveys on cigarette consumption

    Get PDF
    BACKGROUND: This study uses cigarette price elasticity to evaluate the effect of a new excise tax increase on cigarette consumption and to investigate responses from various types of smokers. METHODS: Our sample consisted of current smokers between 17 and 69 years old interviewed during an annual face-to-face survey conducted by Taiwan National Health Research Institutes between 2000 to 2003. We used Ordinary Least Squares (OLS) procedure to estimate double logarithmic function of cigarette demand and cigarette price elasticity. RESULTS: In 2002, after Taiwan had enacted the new tax scheme, cigarette price elasticity in Taiwan was found to be -0.5274. The new tax scheme brought about an average annual 13.27 packs/person (10.5%) reduction in cigarette consumption. Using the cigarette price elasticity estimate from -0.309 in 2003, we calculated that if the Health and Welfare Tax were increased by another NT$ 3 per pack and cigarette producers shifted this increase to the consumers, cigarette consumption would be reduced by 2.47 packs/person (2.2%). The value of the estimated cigarette price elasticity is smaller than one, meaning that the tax will not only reduce cigarette consumption but it will also generate additional tax revenues. Male smokers who had no income or who smoked light cigarettes were found to be more responsive to changes in cigarette price. CONCLUSIONS: An additional tax added to the cost of cigarettes would bring about a reduction in cigarette consumption and increased tax revenues. It would also help reduce incidents smoking-related illnesses. The additional tax revenues generated by the tax increase could be used to offset the current financial deficiency of Taiwan's National Health Insurance program and provide better public services

    Using Strategy Improvement to Stay Alive

    Full text link
    We design a novel algorithm for solving Mean-Payoff Games (MPGs). Besides solving an MPG in the usual sense, our algorithm computes more information about the game, information that is important with respect to applications. The weights of the edges of an MPG can be thought of as a gained/consumed energy -- depending on the sign. For each vertex, our algorithm computes the minimum amount of initial energy that is sufficient for player Max to ensure that in a play starting from the vertex, the energy level never goes below zero. Our algorithm is not the first algorithm that computes the minimum sufficient initial energies, but according to our experimental study it is the fastest algorithm that computes them. The reason is that it utilizes the strategy improvement technique which is very efficient in practice

    Marijuana and Youth

    Get PDF
    This paper contains the first estimates of the price sensitivity of the prevalence of youth marijuana use. Survey data on marijuana use by high school seniors from the Monitoring the Future Project are combined with data on marijuana prices and potency from the Drug Enforcement Administration Office of Intelligence or Intelligence Division. Our estimates of the price elasticity of annual marijuana participation range from 0.06 to 0.47, while those for thirty day participation range from 0.002 to 0.69. These estimates clearly imply that changes in the real, quality adjusted price of marijuana contributed significantly to the trends in youth marijuana use between 1982 and 1998, particularly during the contraction in use from 1982 to 1992. Similarly, changes in youth perceptions of the harms associated with regular marijuana use had a substantial impact on both the contraction in use during the 1982 though 1992 period and the subsequent expansion in use after 1992. These findings underscore the usefulness of considering price in addition to more traditional determinants in any analysis of marijuana consumption decisions made by youths.

    Will jets reduce the elliptic flow at LHC, while decays of resonances restore the constituent quark scaling?

    Full text link
    Formation and evolution of the elliptic flow pattern in Pb+Pb collisions at sqrt{s}=5.5 ATeV and in Au+Au collisions at sqrt{s}=200 AGeV are analyzed for different hadron species within the framework of HYDJET++ Monte-Carlo model. The model contains both hydrodynamic state and jets, thus allowing for a study of the interplay between the soft and hard processes. It is found that jets are terminating the rise of the elliptic flow with increasing transverse momentum. Since jets are more influential at LHC compared to RHIC, the elliptic flow at LHC should be weaker than that at RHIC. The influence of resonance decays on particle elliptic flow is investigated also. These final state interactions enhance the low-p_T part of the v_2 of pions and light baryons, and work towards the fulfilment of idealized constituent quark scaling.Comment: 8 pages, 9 figures, 3 table

    Spectroscopic distinction between the normal state pseudogap and the superconducting gap of cuprate high T_{c} superconductors

    Get PDF
    We report on broad-band infrared ellipsometry measurements of the c-axis conductivity of underdoped RBa_{2}Cu_{3}O_{7-d} (R=Y, Nd, and La) single crystals. Our data provide a detailed account of the spectral weight (SW) redistributions due to the normal state pseudogap (PG) and the superconducting (SC) gap. They show that these phenomena involve different energy scales, exhibit distinct doping dependencies and thus are likely of different origin. In particular, the SW redistribution in the PG state closely resembles the one of a conventional charge- or spin density wave (CDW or SDW) system.Comment: 4 pages, 4 figure

    Higgs mode and its decay in a two dimensional antiferromagnet

    Full text link
    Condensed-matter analogs of the Higgs boson in particle physics allow insights into its behavior in different symmetries and dimensionalities. Evidence for the Higgs mode has been reported in a number of different settings, including ultracold atomic gases, disordered superconductors, and dimerized quantum magnets. However, decay processes of the Higgs mode (which are eminently important in particle physics) have not yet been studied in condensed matter due to the lack of a suitable material system coupled to a direct experimental probe. A quantitative understanding of these processes is particularly important for low-dimensional systems where the Higgs mode decays rapidly and has remained elusive to most experimental probes. Here, we discover and study the Higgs mode in a two-dimensional antiferromagnet using spin-polarized inelastic neutron scattering. Our spin-wave spectra of Ca2_2RuO4_4 directly reveal a well-defined, dispersive Higgs mode, which quickly decays into transverse Goldstone modes at the antiferromagnetic ordering wavevector. Through a complete mapping of the transverse modes in the reciprocal space, we uniquely specify the minimal model Hamiltonian and describe the decay process. We thus establish a novel condensed matter platform for research on the dynamics of the Higgs mode.Comment: original submitted version, Nature Physics (2017). arXiv admin note: substantial text overlap with arXiv:1510.0701

    Manifestation of pseudogap in ab-plane optical characteristics

    Full text link
    A model in which a gap forms in the renormalized electronic density of state (DOS) with missing states recovered just above the pseudogap Δpg\Delta_{pg}, is able to give a robust description of the striking, triangular like, peak seen in the real part of the optical self-energy of underdoped cuprates. We use this model to explore the effect of the pseudogap on the real part of the optical conductivity and on the partial sum rule associated with it. An important result is that the optical spectral weight redistributes over a much larger frequency window than it does in the DOS.Comment: 12 pages, 3 figures. Submitted to Journal of Physics: Condensed Matte

    Dimensionality Control of Electronic Phase Transitions in Nickel-Oxide Superlattices

    Get PDF
    The competition between collective quantum phases in materials with strongly correlated electrons depends sensitively on the dimensionality of the electron system, which is difficult to control by standard solid-state chemistry. We have fabricated superlattices of the paramagnetic metal LaNiO3 and the wide-gap insulator LaAlO3 with atomically precise layer sequences. Using optical ellipsometry and low-energy muon spin rotation, superlattices with LaNiO3 as thin as two unit cells are shown to undergo a sequence of collective metalinsulator and antiferromagnetic transitions as a function of decreasing temperature, whereas samples with thicker LaNiO3 layers remain metallic and paramagnetic at all temperatures. Metal-oxide superlattices thus allow control of the dimensionality and collective phase behavior of correlated-electron systems
    corecore