52 research outputs found

    Innovative treatment targeting gangliosides aimed at blocking the formation of neurotoxic alpha-synuclein oligomers in Parkinson's disease

    Get PDF
    Parkinson's disease (PD) is a major neurodegenerative disorder which exhibits many of the characteristics of a pandemic. Current therapeutic strategies are centered on the dopaminergic system, with limited efficacy, so that a treatment that has a direct impact on the underlying disease pathogenesis is urgently needed. Although alpha-synuclein is a privileged target for such therapies, this protein has been in the past wrongly considered as exclusively intracellular, so that the impact of paracrine neurotoxicity mechanisms in PD have been largely ignored. In this article we review the data showing that lipid rafts act as plasma membrane machineries for the formation of alpha-synuclein pore-like oligomers which trigger an increase of intracellular Ca2+. This Ca2+ influx is responsible for a self-sustained cascade of neurotoxic events, including mitochondrial oxidative stress, tau phosphorylation, Ca2+ release from the endoplasmic reticulum, Lewy body formation, and extracellular release of alpha-synuclein in exosomes. The first step of this cascade is the binding of alpha-synuclein to lipid raft gangliosides, suggesting that PD should be considered as both a proteinopathy and a ganglioside membrane disorder lipidopathy. Accordingly, blocking alpha-synuclein-ganglioside interactions should annihilate the whole neurotoxic cascade and stop disease progression. A pipeline of anti-oligomer molecules is under development, among which an in-silico designed synthetic peptide AmyP53 which is the first drug targeting gangliosides and thus able to prevent the formation of alpha-synuclein oligomers and all downstream neurotoxicity. These new therapeutic avenues challenge the current symptomatic approaches by finally targeting the root cause of PD through a long-awaited paradigm shift.Peer reviewe

    AmyP53 Prevents the Formation of Neurotoxic β-Amyloid Oligomers through an Unprecedent Mechanism of Interaction with Gangliosides: Insights for Alzheimer’s Disease Therapy

    Get PDF
    A broad range of data identify Ca2+-permeable amyloid pores as the most neurotoxic species of Alzheimer’s β-amyloid peptide (Aβ1–42). Following the failures of clinical trials targeting amyloid plaques by immunotherapy, a consensus is gradually emerging to change the paradigm, the strategy, and the target to cure Alzheimer’s disease. In this context, the therapeutic peptide AmyP53 was designed to prevent amyloid pore formation driven by lipid raft microdomains of the plasma membrane. Here, we show that AmyP53 outcompetes Aβ1–42 binding to lipid rafts through a unique mode of interaction with gangliosides. Using a combination of cellular, physicochemical, and in silico approaches, we unraveled the mechanism of action of AmyP53 at the atomic, molecular, and cellular levels. Molecular dynamics simulations (MDS) indicated that AmyP53 rapidly adapts its conformation to gangliosides for an optimal interaction at the periphery of a lipid raft, where amyloid pore formation occurs. Hence, we define it as an adaptive peptide. Our results describe for the first time the kinetics of AmyP53 interaction with lipid raft gangliosides at the atomic level. Physicochemical studies and in silico simulations indicated that Aβ1–42 cannot interact with lipid rafts in presence of AmyP53. These data demonstrated that AmyP53 prevents amyloid pore formation and cellular Ca2+ entry by competitive inhibition of Aβ1–42 binding to lipid raft gangliosides. The molecular details of AmyP53 action revealed an unprecedent mechanism of interaction with lipid rafts, offering innovative therapeutic opportunities for lipid raft and ganglioside-associated diseases, including Alzheimer’s, Parkinson’s, and related proteinopathies

    AmyP53 Prevents the Formation of Neurotoxic β-Amyloid Oligomers through an Unprecedent Mechanism of Interaction with Gangliosides: Insights for Alzheimer’s Disease Therapy

    Get PDF
    A broad range of data identify Ca2+-permeable amyloid pores as the most neurotoxic species of Alzheimer’s β-amyloid peptide (Aβ1–42). Following the failures of clinical trials targeting amyloid plaques by immunotherapy, a consensus is gradually emerging to change the paradigm, the strategy, and the target to cure Alzheimer’s disease. In this context, the therapeutic peptide AmyP53 was designed to prevent amyloid pore formation driven by lipid raft microdomains of the plasma membrane. Here, we show that AmyP53 outcompetes Aβ1–42 binding to lipid rafts through a unique mode of interaction with gangliosides. Using a combination of cellular, physicochemical, and in silico approaches, we unraveled the mechanism of action of AmyP53 at the atomic, molecular, and cellular levels. Molecular dynamics simulations (MDS) indicated that AmyP53 rapidly adapts its conformation to gangliosides for an optimal interaction at the periphery of a lipid raft, where amyloid pore formation occurs. Hence, we define it as an adaptive peptide. Our results describe for the first time the kinetics of AmyP53 interaction with lipid raft gangliosides at the atomic level. Physicochemical studies and in silico simulations indicated that Aβ1–42 cannot interact with lipid rafts in presence of AmyP53. These data demonstrated that AmyP53 prevents amyloid pore formation and cellular Ca2+ entry by competitive inhibition of Aβ1–42 binding to lipid raft gangliosides. The molecular details of AmyP53 action revealed an unprecedent mechanism of interaction with lipid rafts, offering innovative therapeutic opportunities for lipid raft and ganglioside-associated diseases, including Alzheimer’s, Parkinson’s, and related proteinopathies

    AmyP53, a Therapeutic Peptide Candidate for the Treatment of Alzheimer’s and Parkinson’s Disease: Safety, Stability, Pharmacokinetics Parameters and Nose-to Brain Delivery

    Get PDF
    Neurodegenerative disorders are a major public health issue. Despite decades of research efforts, we are still seeking an efficient cure for these pathologies. The initial paradigm of large aggregates of amyloid proteins (amyloid plaques, Lewis bodies) as the root cause of Alzheimer’s and Parkinson’s diseases has been mostly dismissed. Instead, membrane-bound oligomers forming Ca2+-permeable amyloid pores are now considered appropriate targets for these diseases. Over the last 20 years, our group deciphered the molecular mechanisms of amyloid pore formation, which appeared to involve a common pathway for all amyloid proteins, including Aβ (Alzheimer) and α-synuclein (Parkinson). We then designed a short peptide (AmyP53), which prevents amyloid pore formation by targeting gangliosides, the plasma membrane receptors of amyloid proteins. Herein, we show that aqueous solutions of AmyP53 are remarkably stable upon storage at temperatures up to 45 °C for several months. AmyP53 appeared to be more stable in whole blood than in plasma. Pharmacokinetics studies in rats demonstrated that the peptide can rapidly and safely reach the brain after intranasal administration. The data suggest both the direct transport of AmyP53 via the olfactory bulb (and/or the trigeminal nerve) and an indirect transport via the circulation and the blood–brain barrier. In vitro experiments confirmed that AmyP53 is as active as cargo peptides in crossing the blood–brain barrier, consistent with its amino acid sequence specificities and physicochemical properties. Overall, these data open a route for the use of a nasal spray formulation of AmyP53 for the prevention and/or treatment of Alzheimer’s and Parkinson’s diseases in future clinical trials in humans

    Aspergillus niger Protein EstA Defines a New Class of Fungal Esterases within the α/β Hydrolase Fold Superfamily of Proteins

    Get PDF
    AbstractFrom the fungus Aspergillus niger, we identified a new gene encoding protein EstA, a member of the α/β-hydrolase fold superfamily but of unknown substrate specificity. EstA was overexpressed and its crystal structure was solved by molecular replacement using a lipase-acetylcholinesterase chimera template. The 2.1 Å resolution structure of EstA reveals a canonical Ser/Glu/His catalytic triad located in a small pocket at the bottom of a large solvent-accessible, bowl-shaped cavity. Potential substrates selected by manual docking procedures were assayed for EstA activity. Consistent with the pocket geometry, preference for hydrolysis of short acyl/propyl chain substrates was found. Identification of close homologs from the genome of other fungi, of which some are broad host-range pathogens, defines EstA as the first member of a novel class of fungal esterases within the superfamily. Hence the structure of EstA constitutes a lead template in the design of new antifungal agents directed toward its pathogenic homologs

    Gene Therapy Strategy for Alzheimer’s and Parkinson’s Diseases Aimed at Preventing the Formation of Neurotoxic Oligomers in SH-SY5Y Cells

    Get PDF
    We present here a gene therapy approach aimed at preventing the formation of Ca2+-permeable amyloid pore oligomers that are considered as the most neurotoxic structures in both Alzheimer’s and Parkinson’s diseases. Our study is based on the design of a small peptide inhibitor (AmyP53) that combines the ganglioside recognition properties of the β-amyloid peptide (Aβ, Alzheimer) and α-synuclein (α-syn, Parkinson). As gangliosides mediate the initial binding step of these amyloid proteins to lipid rafts of the brain cell membranes, AmyP53 blocks, at the earliest step, the Ca2+ cascade that leads to neurodegeneration. Using a lentivirus vector, we genetically modified brain cells to express the therapeutic coding sequence of AmyP53 in a secreted form, rendering these cells totally resistant to oligomer formation by either Aβ or α-syn. This protection was specific, as control mCherry-transfected cells remained fully sensitive to these oligomers. AmyP53 was secreted at therapeutic concentrations in the supernatant of cultured cells, so that the therapy was effective for both transfected cells and their neighbors. This study is the first to demonstrate that a unique gene therapy approach aimed at preventing the formation of neurotoxic oligomers by targeting brain gangliosides may be considered for the treatment of two major neurodegenerative disorders, Alzheimer’s and Parkinson’s diseases

    The Insertion and Transport of Anandamide in Synthetic Lipid Membranes Are Both Cholesterol-Dependent

    Get PDF
    International audienceBackground: Anandamide is a lipid neurotransmitter which belongs to a class of molecules termed the endocannabinoids involved in multiple physiological functions. Anandamide is readily taken up into cells, but there is considerable controversy as to the nature of this transport process (passive diffusion through the lipid bilayer vs. involvement of putative proteic transporters). This issue is of major importance since anandamide transport through the plasma membrane is crucial for its biological activity and intracellular degradation. The aim of the present study was to evaluate the involvement of cholesterol in membrane uptake and transport of anandamide.Methodology/Principal Findings: Molecular modeling simulations suggested that anandamide can adopt a shape that is remarkably complementary to cholesterol. Physicochemical studies showed that in the nanomolar concentration range, anandamide strongly interacted with cholesterol monolayers at the air-water interface. The specificity of this interaction was assessed by: i) the lack of activity of structurally related unsaturated fatty acids (oleic acid and arachidonic acid at 50 nM) on cholesterol monolayers, and ii) the weak insertion of anandamide into phosphatidylcholine or sphingomyelin monolayers. In agreement with these data, the presence of cholesterol in reconstituted planar lipid bilayers triggered the stable insertion of anandamide detected as an increase in bilayer capacitance. Kinetics transport studies showed that pure phosphatidylcholine bilayers were weakly permeable to anandamide. The incorporation of cholesterol in phosphatidylcholine bilayers dose-dependently stimulated the translocation of anandamide.Conclusions/Significance: Our results demonstrate that cholesterol stimulates both the insertion of anandamide into synthetic lipid monolayers and bilayers, and its transport across bilayer membranes. In this respect, we suggest that besides putative anandamide protein-transporters, cholesterol could be an important component of the anandamide transport machinery. Finally, this study provides a mechanistic explanation for the key regulatory activity played by membrane cholesterol in the responsiveness of cells to anandamide

    A Vaccine Strategy Based on the Identification of an Annular Ganglioside Binding Motif in Monkeypox Virus Protein E8L

    No full text
    The recent outbreak of Monkeypox virus requires the development of a vaccine specifically directed against this virus as quickly as possible. We propose here a new strategy based on a two-step analysis combining (i) the search for binding domains of viral proteins to gangliosides present in lipid rafts of host cells, and (ii) B epitope predictions. Based on previous studies of HIV and SARS-CoV-2 proteins, we show that the Monkeypox virus cell surface-binding protein E8L possesses a ganglioside-binding motif consisting of several subsites forming a ring structure. The binding of the E8L protein to a cluster of gangliosides GM1 mimicking a lipid raft domain is driven by both shape and electrostatic surface potential complementarities. An induced-fit mechanism unmasks selected amino acid side chains of the motif without significantly affecting the secondary structure of the protein. The ganglioside-binding motif overlaps three potential linear B epitopes that are well exposed on the unbound E8L surface that faces the host cell membrane. This situation is ideal for generating neutralizing antibodies. We thus suggest using these three sequences derived from the E8L protein as immunogens in a vaccine formulation (recombinant protein, synthetic peptides or genetically based) specific for Monkeypox virus. This lipid raft/ganglioside-based strategy could be used for developing therapeutic and vaccine responses to future virus outbreaks, in parallel to existing solutions

    Leveraging coronavirus binding to gangliosides for innovative vaccine and therapeutic strategies against COVID-19

    No full text
    International audienceCovid-19 is an infectious respiratory disease due to a coronavirus named SARS-CoV-2. A critical step of the infection cycle is the binding of the virus spike S protein to the cellular ACE-2 receptor. This interaction involves a receptor binding domain (RBD) located at the center of the S trimer, whereas the lateral N-terminal domain (NTD) displays a flat ganglioside binding site that enables the virus to bind to lipid rafts of the plasma membrane, where the ACE-2 receptor resides. S protein binding to lipid rafts can be blocked by hydroxychloroquine, which binds to gangliosides, and by azithromycin, which binds to the NTD. Based on these data, we identified the NTD of SARS-CoV-2 as a promising target for both therapeutic and vaccine strategies, a notion later supported by the discovery, in convalescent Covid-19 patients, of a neutralizing antibody (4A8) that selectively binds to the NTD. The 4A8 epitope overlaps the ganglioside binding domain, denying any access of the virus to lipid rafts when the antibody is bound to the S protein. Thus, our data explain why antibody binding to the tip of the NTD results in SARS-CoV-2 neutralization. The high level of conservation of the ganglioside binding domain of SARS-CoV-2 (100% identity in 584 of 600 isolates analyzed worldwide) offers unique opportunities for innovative vaccine/ therapeutic strategies
    • …
    corecore