14 research outputs found

    Standardization of Caco-2 cell culture as in vitro model for intestinal permeability

    Get PDF
    The aim of this study was to find out the optimal experimental conditions for Caco-2 cell culture (time and density) and permeability assays (diffusion system and drug concentration) in order to study the in vitro drugs permeability as a predictive method for drug absorption across intestinal epithelium. The integrity of the monolayers used in each assay was determined by measuring the transepithelial electrical resistance (TEER) and the permeability of the atenolol-a drug which is transported across the monolayers by the paracellular pathway-. The best working condition was obtained with a cell seeding of 7.104 cells/insert in a vertical difussion chamber. In such context, the monolayers had a TEER higher than 550 Ω.cm2 and the apparent permeability coefficient of atenolol was 0.71 ± 0.19 x 10-6 cm/seg.Colegio de Farmacéuticos de la Provincia de Buenos Aire

    Inhibition of Non Canonical HIV-1 Tat Secretion Through the Cellular Na+,K+-ATPase Blocks HIV-1 Infection

    Get PDF
    Besides its essential role in the activation of HIV-1 gene expression, the viral Tat protein has the unusual property of trafficking in and out of cells. In contrast to Tat internalization, the mechanism involved in extracellular Tat release has so far remained elusive. Here we show that Tat secretion occurs through a Golgi-independent pathway requiring binding of Tat with three short, non-consecutive intracytoplasmic loops at the C-terminus of the cellular Na+,K+-ATPase pump alpha subunit. Ouabain, a pump inhibitor, blocked this interaction and prevented Tat secretion; virions produced in the presence of this drug were less infectious, consistent the capacity of virion-associated Tat to increase HIV-1 infectivity. Treatment of CD4+ T-cells with short peptides corresponding to the Tat-binding regions of the pump alpha subunit impaired extracellular Tat release and blocked HIV-1 replication. Thus, non canonical, extracellular Tat secretion is essential for viral infectivity

    Acetylation of Conserved Lysines in the Catalytic Core of Cyclin-Dependent Kinase 9 Inhibits Kinase Activity and Regulates Transcription▿ †

    No full text
    Promoter clearance and transcriptional processivity in eukaryotic cells are fundamentally regulated by the phosphorylation of the carboxy-terminal domain of RNA polymerase II (RNAPII). One of the kinases that essentially performs this function is P-TEFb (positive transcription elongation factor b), which is composed of cyclin-dependent kinase 9 (CDK9) associated with members of the cyclin T family. Here we show that cellular GCN5 and P/CAF, members of the GCN5-related N-acetyltransferase family of histone acetyltransferases, regulate CDK9 function by specifically acetylating the catalytic core of the enzyme and, in particular, a lysine that is essential for ATP coordination and the phosphotransfer reaction. Acetylation markedly reduces both the kinase function and transcriptional activity of P-TEFb. In contrast to unmodified CDK9, the acetylated fraction of the enzyme is specifically found in the insoluble nuclear matrix compartment. Acetylated CDK9 associates with the transcriptionally silent human immunodeficiency virus type 1 provirus; upon transcriptional activation, it is replaced by the unmodified form, which is involved in the elongating phase of transcription marked by Ser2-phosphorylated RNAPII. Given the conservation of the CDK9 acetylated residues in the catalytic task of virtually all CDK proteins, we anticipate that this mechanism of regulation might play a broader role in controlling the function of other members of this kinase family

    Neuronal cytoskeletal alterations in an experimental model of depression

    No full text
    It has been proposed that depression is associated with hippocampal morphological changes. The apical dendrite atrophy of hippocampal CA3 pyramidal neurons has been described in experimental models of depression. The aim of the present study was to determine which cytoskeletal components are involved in the morphological changes previously described in the hippocampus of depressed animals. The expression of different neuronal cytoskeletal markers was analyzed by immunohistochemistry in rats exposed to a learned helplessness paradigm, an experimental model of depression. Rats were trained with 60 inescapable foot shocks (0.6 mA/15 s) and escape latencies and failures were tested 4 days after training. Animals in which learned helplessness behavior persisted for 21 days were included in the depressed group. No foot shocks were delivered to control rats. Microtubule-associated protein 2 (MAP-2) and light (NFL; 68 kDa), medium (NFM; 160 kDa) and heavy (NFH; 200 kDa) neurofilament subunit immunostainings were analyzed employing morphometric parameters. In the depressed group, NFL immunostaining decreased 55% (P<0.05) and 60% (P<0.001) in CA3 and dentate gyrus, respectively. In the same areas, MAP-2, NFM and NFH immunostainings did not differ between depressed and control animals. Since NFL is present in the core of mature neurofilament, it is proposed that hippocampal depression-associated plastic alterations may be due to changes in the dynamics of the neurofilament assembly.Fil: Reines, Analia Gabriela.Fil: Marina Cereseto. ININFA; ArgentinaFil: Ferrero, Alejandro Javier. ININFA; ArgentinaFil: Carla Bonavita. ININFA; ArgentinaFil: Wikinski, Silvia Ines. ININFA; Argentin

    Adaptive changes in the rat hippocampal glutamatergic neurotransmission are observed during long-term treatment with lorazepam

    Get PDF
    Rationale: Chronic treatment with benzodiazepines induces tolerance to most of their pharmacological effects. The best-studied neurochemical correlation to this phenomenon involves GABAergic adaptive changes. However, some compensation by excitatory neurotransmission could also be postulated. Objective: The aim of this work was to investigate the effect of chronic treatment with benzodiazepines on several parameters of hippocampal glutamatergic neurotransmission. Methods: Rats were injected (IP) with a single dose or daily doses (21 days) of 1 mg/kg lorazepam (LZ) or vehicle. Thirty minutes after the last dose, animals were killed and parameters were measured in the dissected hippocampi. We determined one presynaptic parameter, in vitro glutamate release induced by a 60 mM K+ stimulus. [3H]MK-801 binding to postsynaptic NMDA receptors and the NMDA-stimulated efflux of cGMP were also evaluated. Results: While no changes were observed in any of the parameters after a single dose of the drug, we found an increase of 206% in in vitro glutamate release in chronically treated animals [two-way ANOVA: F(1,16)=6.22], together with an increment of 103% in the NMDA-stimulated cGMP efflux [two-way ANOVA: F(1,18)=14.05]. No changes either in KD or in Bmax values for [3H]MK-801 binding to hippocampal membranes were observed. Conclusions: Taken together, these changes strongly suggest that a compensatory increase in the glutamatergic response develops in the hippocampus during chronic treatment with LZ. Our findings might indicate a contribution of glutamatergic mechanisms to the tolerance to hippocampal-mediated effects of LZ, such as amnesic and anticonvulsant activities.Fil: Bonavita, C.. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología. Cátedra de Farmacología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Farmacológicas. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Investigaciones Farmacológicas; ArgentinaFil: Ferrero, Alejandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Farmacológicas. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Investigaciones Farmacológicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología. Cátedra de Farmacología; ArgentinaFil: Cereseto, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Farmacológicas. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Investigaciones Farmacológicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología. Cátedra de Farmacología; ArgentinaFil: Velardez, Miguel Omar. Universidad de Buenos Aires. Facultad de Medicina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rubio, M.. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología. Cátedra de Farmacología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Farmacológicas. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Investigaciones Farmacológicas; ArgentinaFil: Wikinski, Silvia Ines. Universidad de Buenos Aires. Facultad de Medicina. Cátedra de Farmacología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Farmacológicas. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Investigaciones Farmacológicas; Argentin

    Chronic treatment with fluoxetine decreases seizure threshold in naïve but not in rats exposed to the learned helplessness paradigm: Correlation with the hippocampal glutamate release

    Get PDF
    The proconvulsive effect of the new generation of antidepressants remains controversial. The authors investigated in naïve rats the effect of chronic treatment with fluoxetine (FLX) on the convulsive threshold and on two parameters of the hippocampal glutamatergic neurotransmission: the in vitro glutamate release and the binding of [3H] MK801 to NMDA receptors. While the acute treatment with FLX provoked no change either in seizure susceptibility or in the glutamate release, the chronic treatment decreased the convulsive threshold in coincidence with an increment in the in vitro glutamate release. No significant effects on the binding of [3H] MK801 to NMDA receptors were found to be attributable to the FLX treatment. We also assessed the effect of the chronic treatment with FLX on the seizure threshold in rats exposed to an experimental model of depression, the learned helplessness paradigm (LH). While a decrease in the K+-stimulated glutamate release was observed in non treated LH animals, when they were chronically injected with FLX, no changes in the epileptic susceptibility and no increments in the glutamate release were found. Our results indicate that chronic treatment with FLX decreases the epileptic threshold in naïve but not in LH rats and that this effect correlates with the levels of the hippocampal glutamate release.Fil: Carabajal Ferrero, Claudio Marcelo. Hospital Italiano; ArgentinaFil: Cereseto, Marina. ININFA; ArgentinaFil: Reines, Analia Gabriela. ININFA; ArgentinaFil: Bonavita, Liliana Noemi. NINFA; ArgentinaFil: Sifonios, Laura Lucrecia. ININFA; ArgentinaFil: Rubio, Modesto Carlos. ININFA; ArgentinaFil: Wikinski, Silvia Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Farmacológicas. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Investigaciones Farmacológicas; Argentina. ININFA; Argentin

    Concerted action of cellular JNK and Pin1 restricts HIV-1 genome integration to activated CD4+ T lymphocytes.

    No full text
    Long-standing evidence indicates that quiescent human peripheral blood T lymphocytes (PBLs) do not support efficient HIV infection. In resting PBLs, reverse transcription of viral RNA takes longer than in activated cells, partially because formation of the late products of reverse transcription is decreased by RNA binding by apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G (APOBEC3G). In a subsequent step, integration of the viral complementary DNA that is eventually formed is markedly impaired. Here we show that cellular c-Jun N-terminal kinase (JNK), an enzyme that is not expressed in resting CD4+ T cells, regulates permissiveness to HIV-1 infection, and we unravel a new, sequential post-translational pathway of protein modification that regulates viral DNA integration. We found that, in activated T lymphocytes, viral integrase, which mediates HIV-1 cDNA integration into the host cell genome, is phosphorylated by JNK on a highly conserved serine residue in its core domain. Phosphorylated integrase, in turn, becomes a substrate for the cellular peptidyl prolyl-isomerase enzyme Pin1, which catalyzes a conformational modification of integrase. These concerted activities increase integrase stability and are required for efficient HIV-1 integration and infection. Lack of these modifications restricts viral infection in nonactivated, primary CD4+ T lymphocytes
    corecore