104 research outputs found
Myoinositol: The Bridge (PONTI) to Reach a Healthy Pregnancy
The use of folic acid in the periconceptional period can prevent about 70% of neural tube defects (NTDs). In the remaining cases, no medical prevention is available, and those conditions should be defined as folate-resistant NTDs. Rodent models suggest that some folate-resistant NTDs can be prevented by inositol (myoinositol and chiroinositol) supplementation prior to pregnancy. Should folic acid be combined with myoinositol periconceptional supplementation to reduce the overall risk of NTDs even in humans? Hereafter, we discuss the results from the PONTI study that strongly support both the effectiveness and safety of myoinositol periconceptional supplementation in preventing human NTDs. We further report on the largest case series of pregnancies treated with myoinositol and folic acid. At our institution, a sequential study during 12 years involved mothers at risk of fetal NTDs, and 29 babies from 27 pregnancies were born after periconceptional combined myoinositol and folic acid supplementation. No case of NTDs was observed, despite the high recurrence risk in the mothers. Taken together, those data suggest that periconceptional folic acid plus myoinositol can reduce both the occurrence and recurrence risks of NTDs in a greater number of cases than folic acid alone
First trimester diagnosis of iniencephaly associated with fetal malformations and trisomy 18: Report of a new case and gene analysis on folate metabolism in parents
ABSTRACTâ Iniencephaly is a rare congenital malformation consisting of a complex alteration of the embryonic development occurring around the third postâfertilization week and characterized by a hyperâretroflexion of the cephalic pole. We report a case of iniencephaly associated with acraniaâencephalocele, spina bifida and abnormal ductus venosus in a fetus with trisomy 18 diagnosed at 12âweek's gestation in a 41âyearâold woman. A coâoccurrence between aneuploidy and iniencephaly was documented and polymorphisms on folate metabolismârelated genes were investigated in the parents to assess possible etiologic factors and recurrence risk for neural tube defects (NTD). An homozygous state for the MTRR polymorphism was diagnosed in the mother, identifying a clinical risk for NTD. Once iniencephaly or any other NTD are suspected, genetic analysis, second level ultrasound and fetal karyotype are recommended. Autopsy should also be performed in all cases of early ultrasoundâbased diagnosis of fetal malformations
Chromosome territories, X;Y translocation and Premature Ovarian Failure: is there a relationship?
<p>Abstract</p> <p>Background</p> <p>Premature ovarian failure (POF) is a secondary hypergonadotrophic amenorrhea occurring before the age of 40 and affecting 1-3% of females. Chromosome anomalies account for 6-8% of POF cases, but only few cases are associated with translocations involving X and Y chromosomes.</p> <p>This study shows the cytogenetic and molecular analysis of a POF patient came to our attention as she developed a left ovary choriocarcinoma at the age of 10 and at 14 years of age she presented secondary amenorrhea with elevated levels of gonadotropins.</p> <p>Results</p> <p>Breakpoint position on X and Y chromosomes was investigated using Fluorescent In Situ Hybridisation (FISH) with a panel of specific BAC probes, microsatellite analysis and evaluation of copy number changes and loss of heterozigosity by Affymetrix<sup>Âź </sup>GeneChip platform (Santa Clara, CA, USA). Patient's karyotype resulted 46, X, der(Y)t(X;Y)(q13.1;q11.223). X inactivation study was assessed by RBA banding and showed preferential inactivation of derivative chromosome. The reciprocal spatial disposition of sexual chromosome territories was investigated using whole chromosome painting and centromeres probes: patient's results didn't show a significant difference in comparison to normal controls.</p> <p>Conclusion</p> <p>The peculiar clinical case come to our attention highlighted the complexity of POF aetiology and of the translocation event, even if our results seem to exclude any effect on nuclear organisation. POF phenotype could be partially explained by skewed X chromosome inactivation that influences gene expression.</p
Nitrogen fertiliser value of digested dairy cow slurry, its liquid and solid fractions, and of dairy cow slurry
An understanding of crop availability of livestock slurry nitrogen (N) is necessary to maximise crop N use efficiency and to minimise environmental losses. Results from field and laboratory incubation experiments suggest that first-year crop availability of slurry N comes mainly from its ammonium fraction because net mineralisation of organic N is often negligible in the short term. A two-year field experiment during 2011 and 2012 in northern Italy was undertaken with several aims: to estimate the N fertiliser value of raw dairy cow slurry, digested dairy cow slurry, and the liquid and solid fractions of the digested slurry, and to verify if applied ammonium recovery was similar both among slurries and between slurries and inorganic N fertiliser (ammonium sulphate). Different fertilisers were applied before silage maize cultivation followed by an unfertilised Italian ryegrass crop. The results showed that ammonium recovery was significantly higher in mineral-fertilised (75%) versus slurry-fertilised (30%) treatments, except in digested slurry (65%). This indicates that ammonium applied with organic materials is less efficient than when applied with mineral fertiliser. For the digested slurry and its liquid fraction, most of the applied ammonium was available to the maize during its application year (55%) due to a low carbon (C)/organic N ratio. The apparent N recovery of the raw slurry and digested slurry solid fraction increased substantially between the first (-1.4%) and second (20%) years, as these materials had high C/organic N ratios; they likely immobilised N for several months post application, producing residual effects during the Italian ryegrass and next maize crops
Anti-chemokine antibodies after SARS-CoV-2 infection correlate with favorable disease course.
Infection by SARS-CoV-2 leads to diverse symptoms, which can persist for months. While antiviral antibodies are protective, those targeting interferons and other immune factors are associated with adverse COVID-19 outcomes. Instead, we discovered that antibodies against specific chemokines are omnipresent after COVID-19, associated with favorable disease, and predictive of lack of long COVID symptoms at one year post infection. Anti-chemokine antibodies are present also in HIV-1 and autoimmune disorders, but they target different chemokines than those in COVID-19. Finally, monoclonal antibodies derived from COVID- 19 convalescents that bind to the chemokine N-loop impair cell migration. Given the role of chemokines in orchestrating immune cell trafficking, naturally arising anti-chemokine antibodies associated with favorable COVID-19 may be beneficial by modulating the inflammatory response and thus bear therapeutic potential.
One-Sentence Summary
Naturally arising anti-chemokine antibodies associate with favorable COVID-19 and are predictive of lack of long COVID
Autoantibodies against chemokines post-SARS-CoV-2 infection correlate with disease course
Infection with severe acute respiratory syndrome coronavirus 2 associates with diverse symptoms, which can persist for months. While antiviral antibodies are protective, those targeting interferons and other immune factors are associated with adverse coronavirus disease 2019 (COVID-19) outcomes. Here we discovered that antibodies against specific chemokines were omnipresent post-COVID-19, were associated with favorable disease outcome and negatively correlated with the development of long COVID at 1âyr post-infection. Chemokine antibodies were also present in HIV-1 infection and autoimmune disorders, but they targeted different chemokines compared with COVID-19. Monoclonal antibodies derived from COVID-19 convalescents that bound to the chemokine N-loop impaired cell migration. Given the role of chemokines in orchestrating immune cell trafficking, naturally arising chemokine antibodies may modulate the inflammatory response and thus bear therapeutic potential
Report from Working Group 3: Beyond the standard model physics at the HL-LHC and HE-LHC
This is the third out of five chapters of the final report [1] of the Workshop on Physics at HL-LHC, and perspectives on HE-LHC [2]. It is devoted to the study of the potential, in the search for Beyond the Standard Model (BSM) physics, of the High Luminosity (HL) phase of the LHC, defined as ab of data taken at a centre-of-mass energy of 14 TeV, and of a possible future upgrade, the High Energy (HE) LHC, defined as ab of data at a centre-of-mass energy of 27 TeV. We consider a large variety of new physics models, both in a simplified model fashion and in a more model-dependent one. A long list of contributions from the theory and experimental (ATLAS, CMS, LHCb) communities have been collected and merged together to give a complete, wide, and consistent view of future prospects for BSM physics at the considered colliders. On top of the usual standard candles, such as supersymmetric simplified models and resonances, considered for the evaluation of future collider potentials, this report contains results on dark matter and dark sectors, long lived particles, leptoquarks, sterile neutrinos, axion-like particles, heavy scalars, vector-like quarks, and more. Particular attention is placed, especially in the study of the HL-LHC prospects, to the detector upgrades, the assessment of the future systematic uncertainties, and new experimental techniques. The general conclusion is that the HL-LHC, on top of allowing to extend the present LHC mass and coupling reach by on most new physics scenarios, will also be able to constrain, and potentially discover, new physics that is presently unconstrained. Moreover, compared to the HL-LHC, the reach in most observables will, generally more than double at the HE-LHC, which may represent a good candidate future facility for a final test of TeV-scale new physics
Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants: An ENIGMA resource to support clinical variant classification
The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1,395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; and 248 classifications were new or considerably altered relative to ClinVar submissions. Classifications were compared with information not yet included in the likelihood model, and evidence strengths aligned to those recommended for ACMG/AMP classification codes. Altered mRNA splicing or function relative to known nonpathogenic variant controls were moderately to strongly predictive of variant pathogenicity. Variant absence in population datasets provided supporting evidence for variant pathogenicity. These findings have direct relevance for BRCA1 and BRCA2 variant evaluation, and justify the need for gene-specific calibration of evidence types used for variant classification
- âŠ