286 research outputs found

    Adaptive motor control in crayfish

    Get PDF
    International audienceThis article reviews the principles that rule the organization of motor commands that have been described over the past ®ve decades in cray®sh. The adaptation of motor behaviors requires the integration of sensory cues into the motor command. The respective roles of central neural networks and sensory feedback are presented in the order of increasing complexity. The simplest circuits described are those involved in the control of a single joint during posture (negative feedback±resistance re¯ex) and movement (modulation of sensory feedback and reversal of the re¯ex into an assistance re¯ex). More complex integration is required to solve problems of coordination of joint movements in a pluri-segmental appendage, and coordination of dierent limbs and dierent motor systems. In addition, beyond the question of mechanical ®tting, the motor command must be appropriate to the behavioral context. Therefore, sensory information is used also to select adequate motor programs. A last aspect of adaptability concerns the possibility of neural networks to change their properties either temporarily (such on-line modulation exerted, for example, by presynaptic mechanisms) or more permanently (such as plastic changes that modify the synaptic ecacy). Finally, the question of how``automatic'' local component networks are controlled by descending pathways, in order to achieve behaviors, is discussed.

    Neural Mechanisms of Reflex Reversal in Coxo-Basipodite Depressor Motor Neurons of the Crayfish

    Get PDF
    International audienceNeural mechanisms of reflex reversal in coxo-basipodite depressor motor neurons of the crayfish. J. Neurophysiol. 77: 1963–1978, 1997. The in vitro preparation of the fifth thoracic ganglion of the crayfish was used to investigate the mechanisms underlying the reflex reversal in a sensory-motor pathway. Sensory afferent neurons from the coxo-basipodite chordotonal organ (CBCO), which senses vertical movements of the limb, connect monosynaptically with basal limb motor neurons (MNs). In tonically active preparation, stretching the CBCO (corresponding to downward movements of the leg) stimulates the levator MNs, whereas releasing the CBCO activates the depressor (Dep) MNs. These reflexes, opposed to the imposed movement, are termed resistance reflexes. By contrast, during fictive locomotion, the reflexes are reversed and termed assistance reflexes. Intracellular recordings from all 12 Dep MNs were performed in single experiments. It allowed us to characterize three types of Dep MNs according to their response to CBCO imposed step-and-ramp movements: 8 of the 12 Dep MNs are resistance MNs that are depolarized during release of the CBCO and are connected monosynaptically to release-sensitive CBCO neurons; 1 Dep MN is an assistance MN that is depolarized during stretching of the CBCO and is connected monosynaptically to exclusively velocity-coding stretch-sensitive CBCO neurons; in our experimental conditions, 3 Dep MNs do not display any response to CBCO stimulation. Assistance reflex interneurons (ARINs), involved in polysynaptic assistance reflexes recorded from depressor MNs, are presented. During low-velocity (0.05 mm/s) stretching ramps imposed on the CBCO, ARINs display compound excitatory postsynaptic potentials (EPSPs), whereas during high-velocity (0.25 mm/s) ramps, they display a mixed excitatory and inhibitory response. Whereas a single MN generally receives monosynaptic EPSPs from three to six CBCO neurons, ARINs receive monosynaptic EPSPs from up to eight velocity-coding stretch-sensitive CBCO neurons. In addition, ARINs receive disynaptic inhibitory phasic inputs from stretch-sensitive CBCO afferents. Injection of a depolarizing current pulse into ARINs elicits a fast transient voltage-dependent depolarization. Its time to peak decreases, and its peak amplitude increases with increasing current intensity. ARINs likely are to be connected directly to Dep MNs. The synaptic delay between these nonspiking ARINs and Dep MNs is short (<2 ms) and constant. The postsynaptic EPSP amplitude increases with increasing current pulse intensity injected into ARIN. The dual sensory control (excitatory and inhibitory) makes it likely that ARIN represents a key element in reflex reversal control

    Active Motor Neurons Potentiate Their Own Sensory Inputs via Glutamate-Induced Long-Term Potentiation

    Get PDF
    International audienceAdaptive motor control is based mainly on the processing and integration of proprioceptive feedback information. In crayfish walking leg, many of these operations are performed directly by the motor neurons (MNs), which are connected monosynapti-cally by sensory afferents (CBTs) originating from a chordotonal organ that encodes vertical limb movements. An in vitro preparation of the crayfish CNS was used to investigate a new control mechanism exerted directly by motor neurons on the sensory inputs themselves. Paired intracellular recordings demonstrated that, in the absence of any presynaptic sensory firing, the spiking activity of a leg MN is able long-lastingly to enhance the efficacy of the CBT-MN synapses. Moreover, this effect is specific to the activated MN because no changes were induced at the afferent synapses of a neighboring silent MN. We report evidence that long-term potentiation (LTP) of the monosynaptic EPSP involves a retrograde system of glutamate transmission from the postsynaptic MN, which induces the activation of a metabotropic glutamate receptor located presynaptically on the CBTs. We demonstrate that LTP at crayfish sensory-motor synapses results exclusively from the long-lasting enhancement of release of acetylcholine from presynaptic sensory af-ferent terminals, without inducing any modifications in postsyn-aptic MN properties. Our data indicate that this positive feedback control represents a functional mechanism that may play a key role in the auto-organization of sensory-motor networks

    Direct glutamate-mediated presynaptic inhibition of sensory afferents by the postsynaptic motor neurons

    Get PDF
    International audienceAn in vitro preparation of the crayfish central nervous system was used to study a negative feedback control exerted by the glutamatergic motor neurons (MNs) on to their presynaptic cholinergic sensory afferents. This negative control consists in small amplitude, slowly developing depolarizations of the primary afferents (sdPADs) strictly timed with MN bursts. They were not blocked by picrotoxin, but were sensitive to glutamate non-N-methyl-D-aspartate (NMDA) antagonists. Intracellular recordings were performed within thin branches of sensory terminals while electrical antidromic stimulation were applied to the motor nerves, or while glutamate (the MN neurotransmitter) was pressure-applied close to the recording site. Electrical motor nerve stimulations and glutamate pressure application had similar effects on to sensory terminals issued from the coxo-basipodite chordotonal organ (CBTs): like sdPADs, both stimulation-induced depolarizations were picrotoxin-resistant and were dramatically reduced by non-NMDA antagonist bath application. These results indicate that sdPADs are likely directly produced by MNs during locomotor activity. A functional scheme is proposed

    Alteration of size perception: serotonin has opposite effects on the aggressiveness of crayfish confronting either a smaller or a larger rival

    Get PDF
    International audienceWe injected serotonin (5-HT) into adult male crayfish before pairing them with size-matched non-injected competitors, and observed dyadic agonistic interactions. Paradoxically, 5-HT elicited opposite behavioral responses if the injected animal was opposed by a smaller or larger rival: the level of aggressiveness of the injected crayfish was higher when facing a larger rival but lower when facing a smaller rival. Our results indicate that the effects of 5-HT on aggressiveness are dependent on the perception of the relative size difference of the opponent. In both cases, however, 5-HT significantly delayed the decision to retreat. We conclude that 5-HT does not primarily act on aggressiveness but rather on the brain centers that integrate risk assessment and/or decision making, which then modulate the aggressive response. Our findings support a reinterpretation of the role of 5-HT in crustacean agonistic behavior that may be of interest for studies of other animals

    Whistler oscillitons revisited: the role of charge neutrality?

    No full text
    International audienceWhen studying transverse modes propagating parallel to a static magnetic field, an apparent contradiction arises between the weakly nonlinear results obtained from the derivative nonlinear Schrödinger equation, predicting envelope solitons (where the amplitude is stationary in the wave frame, but the phase is not), and recent results for whistler oscillitons, indicating that really stationary structures of large amplitude are possible. Revisiting this problem in the fluid dynamic approach, care has been taken not to introduce charge neutrality from the outset, because this not only neglects electric stresses compared to magnetic stresses, which is reasonable, but could also imply from Poisson's equation a vanishing of the wave electric field. Nevertheless, the fixed points of the remaining equations are the same, whether charge neutrality is assumed from the outset or not, so that the solitary wave solutions at not too large amplitudes will be very similar. This is borne out by numerical simulations of the solutions under the two hypotheses, showing that the lack of correspondence with the DNLS envelope solitons indicates the limitations of the reductive perturbation approach, and is not a consequence of assuming charge neutrality

    Neural Circuit Reconfiguration by Social Status

    Get PDF
    The social rank of an animal is distinguished by its behavior relative to others in its community. Although social-status-dependent differences in behavior must arise because of differences in neural function, status-dependent differences in the underlying neural circuitry have only begun to be described. We report that dominant and subordinate crayfish differ in their behavioral orienting response to an unexpected unilateral touch, and that these differences correlate with functional differences in local neural circuits that mediate the responses. The behavioral differences correlate with simultaneously recorded differences in leg depressor muscle EMGs and with differences in the responses of depressor motor neurons recorded in reduced, in vitro preparations from the same animals. The responses of local serotonergic interneurons to unilateral stimuli displayed the same status-dependent differences as the depressor motor neurons. These results indicate that the circuits and their intrinsic serotonergic modulatory components are configured differently according to social status, and that these differences do not depend on a continuous descending signal from higher centers

    Estimating the Burden of Medically Attended Norovirus Gastroenteritis: Modeling Linked Primary Care and Hospitalization Datasets.

    Get PDF
    Background: Norovirus is the leading cause of community-acquired and nosocomial acute gastroenteritis. Routine testing for norovirus is seldom undertaken, and diagnosis is mainly based on presenting symptoms. This makes understanding the burden of medically attended norovirus-attributable gastroenteritis (MA-NGE) and targeting care and prevention strategies challenging. Methods: We used linked population-based healthcare datasets (Clinical Practice Research Datalink General Practice OnLine Database linked with Hospital Episode Statistics Admitted Patient Care) to model the incidence of MA-NGE associated with primary care consultations or hospitalizations according to age groups in England in the period July 2007-June 2013. Results: Mean annual incidence rates of MA-NGE were 4.9/1000 person-years and 0.7/1000 person-years for episodes involving primary care or hospitalizations, respectively. Incidence rates were highest in children aged 65 years (1.7/1000 person-years). Conclusions: In this particular study, the burden of MA-NGE estimated from healthcare datasets was higher than previously estimated in small cohort studies in England. Routinely collected primary care and hospitalization datasets are useful resources to estimate and monitor the burden of MA-NGE in a population over time

    Comparison of genetic association strategies in the presence of rare alleles

    Get PDF
    In the quest for the missing heritability of most complex diseases, rare variants have received increased attention. Advances in large-scale sequencing have led to a shift from the common disease/common variant hypothesis to the common disease/rare variant hypothesis or have at least reopened the debate about the relevance and importance of rare variants for gene discoveries. The investigation of modeling and testing approaches to identify significant disease/rare variant associations is in full motion. New methods to better deal with parameter estimation instabilities, convergence problems, or multiple testing corrections in the presence of rare variants or effect modifiers of rare variants are in their infancy. Using a recently developed semiparametric strategy to detect causal variants, we investigate the performance of the model-based multifactor dimensionality reduction (MB-MDR) technique in terms of power and family-wise error rate (FWER) control in the presence of rare variants, using population-based and family-based data (FAM-MDR). We compare family-based results obtained from MB-MDR analyses to screening findings from a quantitative trait Pedigree-based association test (PBAT). Population-based data were further examined using penalized regression models. We restrict attention to all available single-nucleotide polymorphisms on chromosome 4 and consider Q1 as the outcome of interest. The considered family-based methods identified marker C4S4935 in the VEGFC gene with estimated power not exceeding 0.35 (FAM-MDR), when FWER was kept under control. The considered population-based methods gave rise to highly inflated FWERs (up to 90% for PBAT screening)
    corecore