604 research outputs found

    Editorial Disease of Adrenal Glands

    Get PDF
    International audienceThe adrenal gland has been historically an object of interest and scientific curiosity. This is also due to its very heterogeneous structure, number of hormones, complex neural innervation, and multiple and different physiological functions. The adrenal gland also entails an outstanding example of paracrine interactions occurring between histogenetically different tissues as the cortex and the medulla. This special issue is a great opportunity for the reader to learn the latest and emerging findings on the pathophysiol-ogy, diagnosis, and treatment of the adrenal glands disorders. The issue provides a variety of excellent articles covering a broad and contemporary spectrum of aspects of the diseases of the adrenal gland. Of particular interest and novelty is the interplay between hormones of the adrenal glands and other organs, such as the adipose tissue, the endothelium, the bone, and even the brain. In addition to the well-established effects on lipid and glucose metabolism, the hormones of the adrenal glands display a fascinating cross talk with the adipose tissue [1– 3]. The interaction between the adrenals and adipokines is extensively discussed by A. Y. Kargi and G. Iacobellis in a comprehensive and updated review paper. The potential of the fat depot surrounding the adrenal tumors to act like a brown adipose tissue (BAT) is a rapidly emerging topic that will certainly deserve further attention and investigation [4]. Interestingly the authors provided a theoretical basis for potential future pharmacological interventions aimed at adrenal hormone targets in the adipose tissue. Primary aldosteronism is the most common endocrine cause of arterial hypertension. It can cause excess damage to the organs that are target of hypertension and higher cardiometabolic risk [5]. This contention was supported by previous experimental data obtained by Karl Weber's group in rats infused with aldosterone, which exhibited hypercalciuria and raised parathyroid hormone (PTH) levels [6], and, more importantly, by findings in patients with aldosterone-producing adenoma who also showed elevated serum PTH levels that were then normalized by adrenalectomy [7]. The effect of the adrenal hormones on bone metabolism in patients with primary aldosteronism is nicely addressed by L. Petramala et al. The authors sought to test the hypothesis that hyperaldosteronism may influence mineral homeostasis through higher urinary calcium excretion leading eventually to secondary hyperparathyroidism. Of further interest, G. Mazzocchi et al. showed that PTH stimulates aldosterone secretion in a concentration-dependent manner [8], a finding that was complemented by the demonstration of the miner-alocorticoid receptor in the human parathyroid cells [9]. It is well established that a substantial amount of sodium is bound to proteoglycans of bone, connective tissue, and cartilage and that the osmotic force created by the high sodium concentration maintains the high water content in the latter tissue, allowing it to withstand high pressures during exercise [10]. In this special issue P. Alonso et al. further expand on the relationships between the adrenal gland and the skeleton by showing a reduction in the bone mineral densit

    Cushing’s disease

    Get PDF
    Cushing’s disease, or pituitary ACTH dependent Cushing’s syndrome, is a rare disease responsible for increased morbidity and mortality. Signs and symptoms of hypercortisolism are usually non specific: obesity, signs of protein wasting, increased blood pressure, variable levels of hirsutism. Diagnosis is frequently difficult, and requires a strict algorithm. First-line treatment is based on transsphenoidal surgery, which cures 80% of ACTH-secreting microadenomas. The rate of remission is lower in macroadenomas. Other therapeutic modalities including anticortisolic drugs, radiation techniques or bilateral adrenalectomy will thus be necessary to avoid long-term risks (metabolic syndrome, osteoporosis, cardiovascular disease) of hypercortisolism. This review summarizes potential pathophysiological mechanisms, diagnostic approaches, and therapies

    Mifepristone in the treatment of the ectopic adrenocorticotropic hormone syndrome

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146488/1/cen13818_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146488/2/cen13818.pd

    Treatment Options in Cushing’s Disease

    Get PDF
    Endogenous Cushing’s syndrome is a grave disease that requires a multidisciplinary and individualized treatment approach for each patient. Approximately 80% of all patients harbour a corticotroph pituitary adenoma (Cushing’s disease) with excessive secretion of adrenocorticotropin-hormone (ACTH) and, consecutively, cortisol. The goals of treatment include normalization of hormone excess, long-term disease control and the reversal of comorbidities caused by the underlying pathology. The treatment of choice is neurosurgical tumour removal of the pituitary adenoma. Second-line treatments include medical therapy, bilateral adrenalectomy and radiation therapy. Drug treatment modalities target at the hypothalamic/pituitary level, the adrenal gland and at the glucocorticoid receptor level and are commonly used in patients in whom surgery has failed. Bilateral adrenalectomy is the second-line treatment for persistent hypercortisolism that offers immediate control of hypercortisolism. However, this treatment option requires a careful individualized evaluation, since it has the disadvantage of permanent hypoadrenalism which requires lifelong glucocorticoid and mineralocorticoid replacement therapy and bears the risk of developing Nelson’s syndrome. Although there are some very promising medical therapy options it clearly remains a second-line treatment option. However, there are numerous circumstances where medical management of CD is indicated. Medical therapy is frequently used in cases with severe hypercortisolism before surgery in order to control the metabolic effects and help reduce the anestesiological risk. Additionally, it can help to bridge the time gap until radiotherapy takes effect. The aim of this review is to analyze and present current treatment options in Cushing’s disease

    Identifying the Deleterious Effect of Rare LHX4 Allelic Variants, a Challenging Issue

    No full text
    International audienceLHX4 is a LIM homeodomain transcription factor involved in the early steps of pituitary ontogenesis. To date, 8 heterozygous LHX4 mutations have been reported as responsible of combined pituitary hormone deficiency (CPHD) in Humans. We identified 4 new LHX4 heterozygous allelic variants in patients with congenital hypopituitarism: W204X, delK242, N271S and Q346R. Our objective was to determine the role of LHX4 variants in patients' phenotypes. Heterologous HEK293T cells were transfected with plasmids encoding for wild-type or mutant LHX4. Protein expression was analysed by Western Blot, and DNA binding by electro-mobility shift assay experiments. Target promoters of LHX4 were cotransfected with wild type or mutant LHX4 to test the transactivating abilities of each variant. Our results show that the W204X mutation was associated with early GH and TSH deficiencies and later onset ACTH deficiency. It led to a truncated protein unable to bind to alpha-Gsu promoter binding consensus sequence. W204X was not able to activate target promoters in vitro. Cotransfection experiments did not favour a dominant negative effect. In contrast, all other mutants were able to bind the promoters and led to an activation similar as that observed with wild type LHX4, suggesting that they were likely polymorphisms. To conclude, our study underlines the need for functional in vitro studies to ascertain the role of rare allelic variants of LHX4 in disease phenotypes. It supports the causative role of the W204X mutation in CPHD and adds up childhood onset ACTH deficiency to the clinical spectrum of the various phenotypes related to LHX4 mutations

    Risk profile of the RET A883F germline mutation: an international collaborative study

    Get PDF
    Context: The A883F germline mutation of the REarranged during Transfection proto-oncogene causes multiple endocrine neoplasia 2B. In the revised American Thyroid Association (ATA) guidelines for the management of medullary thyroid carcinoma (MTC) the A883F mutation has been reclassified from the highest to high risk level, although no well-defined risk profile for this mutation exists. Objective: To create a risk profile for the A883F mutation for appropriate classification in the ATA risk levels. Design: Retrospective analysis. Setting: International collaboration. Patients: Included were 13 A883F carriers. Intervention: The intervention was thyroidectomy. Main Outcome Measures: Earliest age of MTC, regional lymph node metastases, distant metastases, age-related penetrance of MTC and pheochromocytoma (PHEO), overall and disease-specific survival and biochemical cure rate. Results: One and three carriers were diagnosed at age 7-9 years (median 7.5) with a normal thyroid and C-cell hyperplasia, respectively. Nine carriers had MTC diagnosed at age 10-39 years (median 19). The earliest age of MTC, regional lymph node and distant metastasis were 10, 20, 20 years, respectively. Fifty percent penetrance of MTC and PHEO was achieved by age 19 and 34 years, respectively. Five- and 10-year survival (both overall and disease-specific) were 88% and 88%, respectively. Biochemical cure for MTC at latest follow-up was achieved in 63% (5/8 carriers) with pertinent data. Conclusions: MTC of A883F carriers seems to have a more indolent natural course compared to that of M918T carriers. Our results support the classification of the A883F mutation in the ATA high risk level

    Rosiglitazone as an option for patients with acromegaly: a case series

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>In the patient with acromegaly, pituitary surgery is the therapeutic standard. Despite undergoing surgery, a significant number of patients with acromegaly continue to have uncontrolled growth hormone secretion. These patients require other treatments such as external irradiation and/or drug therapy.</p> <p>Case presentation</p> <p>We present the clinical and laboratory responses to six months of treatment with rosiglitazone in four cases. In all four cases, the patients had persistent growth hormone overproduction despite previous surgical treatment and other conventional therapy. Case 1 is a 57-year-old Caucasian woman, case 2 is a 51-year-old Hispanic man, case 3 is a 32-year-old Hispanic woman, and case 4 is a 36-year-old Hispanic man. In three of these patients, basal and nadir growth hormone and insulin-like growth factor 1 levels were significantly decreased (<it>P </it>< 0.05 and <it>P </it>< 0.01, respectively).</p> <p>Conclusion</p> <p>Rosiglitazone could be a treatment option in select patients with acromegaly.</p

    Systemic therapy of Cushing’s syndrome

    Get PDF
    Cushing’s disease (CD) in a stricter sense derives from pathologic adrenocorticotropic hormone (ACTH) secretion usually triggered by micro- or macroadenoma of the pituitary gland. It is, thus, a form of secondary hypercortisolism. In contrast, Cushing’s syndrome (CS) describes the complexity of clinical consequences triggered by excessive cortisol blood levels over extended periods of time irrespective of their origin. CS is a rare disease according to the European orphan regulation affecting not more than 5/10,000 persons in Europe. CD most commonly affects adults aged 20–50 years with a marked female preponderance (1:5 ratio of male vs. female). Patient presentation and clinical symptoms substantially vary depending on duration and plasma levels of cortisol. In 80% of cases CS is ACTH-dependent and in 20% of cases it is ACTH-independent, respectively. Endogenous CS usually is a result of a pituitary tumor. Clinical manifestation of CS, apart from corticotropin-releasing hormone (CRH-), ACTH-, and cortisol-producing (malign and benign) tumors may also be by exogenous glucocorticoid intake. Diagnosis of hypercortisolism (irrespective of its origin) comprises the following: Complete blood count including serum electrolytes, blood sugar etc., urinary free cortisol (UFC) from 24 h-urine sampling and circadian profile of plasma cortisol, plasma ACTH, dehydroepiandrosterone, testosterone itself, and urine steroid profile, Low-Dose-Dexamethasone-Test, High-Dose-Dexamethasone-Test, after endocrine diagnostic tests: magnetic resonance imaging (MRI), ultra-sound, computer tomography (CT) and other localization diagnostics. First-line therapy is trans-sphenoidal surgery (TSS) of the pituitary adenoma (in case of ACTH-producing tumors). In patients not amenable for surgery radiotherapy remains an option. Pharmacological therapy applies when these two options are not amenable or refused. In cases when pharmacological therapy becomes necessary, Pasireotide should be used in first-line in CD. CS patients are at an overall 4-fold higher mortality rate than age- and gender-matched subjects in the general population. The following article describes the most prominent substances used for clinical management of CS and gives a systematic overview of safety profiles, pharmacokinetic (PK)-parameters, and regulatory framework
    corecore