49 research outputs found

    Análisis y modelado de la fenomenología ondulatoria asociada al diseño de barreras acústicas basadas en conjuntos de dispersores aislados. Homologación de dispositivos

    Full text link
    Una de las soluciones para el control del ruido ambiental en la fase de transmisión viene dada por la utilización de barreras acústicas. En los últimos años, la posibilidad de manipular el sonido a través de estructuras periódicas motivó la idea de utilizar estos medios como una alternativa a las barreras acústicas clásicas. Estos sistemas presentan una propiedad interesante que permite su uso como barreras acústicas: la existencia de rangos de frecuencias en las que el sonido no se transmite a través de la estructura, debido a la difracción Bragg, es decir, a un proceso de dispersión múltiple relacionado con la periodicidad del sistema. Sin embargo, debido a las características de este fenómeno de interferencias, su uso exclusivo no es suficiente para garantizar la existencia de altas atenuaciones sonoras en amplios rangos de frecuencia. Dos han sido las líneas de investigación clásicas seguidas en la literatura para aumentar la capacidad de atenuación de estos sistemas: (i) introducir nuevos mecanismos de control de la transmisión acústica en los dispersores y (ii) introducir nuevos ordenamientos de dispersores para maximizar la difracción Bragg. En este trabajo se muestra la realización y caracterización acústica de dos prototipos de barrera acústica basados en sistemas de dispersores según las dos líneas de investigación expuestas, una en la que se han añadido los mecanismos de absorción y resonancia a los centros dispersores, y otra que además añade ordenamientos fractales. El objetivo de ambos prototipos es su uso como dispositivo real de reducción de ruido de tráfico. Ambas barreras han sido analizadas, patentadas y homologadas para su puesta en el mercado. Por otro lado se presenta un modelo teórico de diseño por superposición de pantallas basadas en sistemas periódicos que analiza por separado cada uno de los fenómenos involucrados en la propagación acústica a través de la barrera, siguiendo el principio de tuneado. Este principio considera que cada fenómeno acústico actúa de forma independiente sin afectar a los otros. El modelo de superposición propuesto, desarrollado mediante el método de elementos finitos, constituye un modelo integral ya que permite, de una manera muy sencilla, transformar un modelo en tres dimensiones en la suma de dos modelos bidimensionales, reduciendo de esta manera el coste computacional. Asimismo, permite elegir qué fenómenos acústicos se quieren considerar en el diseño de estas pantallas, añadiendo una importante carga tecnológica y de diseño al campo de las pantallas acústicas.Castiñeira Ibáñez, S. (2015). Análisis y modelado de la fenomenología ondulatoria asociada al diseño de barreras acústicas basadas en conjuntos de dispersores aislados. Homologación de dispositivos [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48533TESI

    Numerical simulation and laboratory measurements on an open tunable acoustic barrier

    Full text link
    [EN] A new open, thin and low frequency acoustic barrier is presented. These barriers, based on arrays of isolated pickets produce high acoustic attenuation in a selective range of frequencies related to their geometry and distribution. These open barriers are acoustically competitive with traditional ones, which are based on con-tinuous and rigid materials. To show its versatility to in attenuating di¿erent selected ranges of frequencies, a compact numerical model is presented. Di¿erent cases are analysed and compared with experimental results. The accuracy of the experimental re-sults compared to the simulated ones allow us to use the compact model to design these barriers in order to reduce both industrial and tra¿c noise on demand and to introduce them into the noise control market.This work was financially supported by the Spanish Ministry of Science and Innovation through project MAT2010-16879.Rubio Michavila, C.; Castiñeira Ibáñez, S.; Uris Martínez, A.; Belmar Ibáñez, F.; Candelas Valiente, P. (2018). Numerical simulation and laboratory measurements on an open tunable acoustic barrier. Applied Acoustics. 141:144-150. https://doi.org/10.1016/j.apacoust.2018.07.002S14415014

    Interferences in Locally Resonant Sonic Metamaterials Formed from Helmholtz Resonators

    Full text link
    [EN] The emergence of materials artificially designed to control the transmission of waves, generally called metamaterials, has been a hot topic in the field of acoustics for several years. The design of these metamaterials is usually carried out by overlapping different wave control mechanisms. An example of this trend is the so-called Locally Resonant Sonic Materials, being one of them the Phononic Crystals with a local resonant structure. These metamaterials are formed by sets of isolated resonators in such a way that the control of the waves is carried out by resonances and by the existence of Bragg bandgaps, which appear due to the ordered distribution of the resonators. Their use is based on the creation of resonance peaks to form additional nontransmission bands mainly in the low frequency regime, usually below the first Bragg frequency. The coupling of both gaps has been made in some cases, but it is not always so. In this work, using a periodic structure formed by Helmholtz resonators, we report the existence of interferences between the resonances and the Bragg bandgaps when they are working in nearby frequency ranges, so that they prevent the coupling of both gaps. We explain their physical principles and present possible solutions to mitigate them. To this end, we have developed numerical models based on the finite element method, and the results have been verified by means of accurate experimental results obtained under controlled conditions. Published under license by AIP Publishing.M.P.P.T. is grateful for the support of pre-doctoral Grant by the "Ministerio de Economia y Competitividad" of Spain through reference No. DI-15-08100.Peiró-Torres, MDP.; Castiñeira Ibáñez, S.; Redondo, J.; Sánchez Pérez, JV. (2019). Interferences in Locally Resonant Sonic Metamaterials Formed from Helmholtz Resonators. Applied Physics Letters. 114(17):1-4. https://doi.org/10.1063/1.5092375S1411417Fok, L., Ambati, M., & Zhang, X. (2008). Acoustic Metamaterials. MRS Bulletin, 33(10), 931-934. doi:10.1557/mrs2008.202Christensen, J., Romero-García, V., Picó, R., Cebrecos, A., de Abajo, F. J. G., Mortensen, N. A., … Sánchez-Morcillo, V. J. (2014). Extraordinary absorption of sound in porous lamella-crystals. Scientific Reports, 4(1). doi:10.1038/srep04674Liang, Z., Willatzen, M., Li, J., & Christensen, J. (2012). Tunable acoustic double negativity metamaterial. Scientific Reports, 2(1). doi:10.1038/srep00859Mei, J., Ma, G., Yang, M., Yang, Z., Wen, W., & Sheng, P. (2012). Dark acoustic metamaterials as super absorbers for low-frequency sound. Nature Communications, 3(1). doi:10.1038/ncomms1758Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G., & Kim, C. K. (2010). Composite Acoustic Medium with Simultaneously Negative Density and Modulus. Physical Review Letters, 104(5). doi:10.1103/physrevlett.104.054301Fleury, R., Sounas, D. L., Sieck, C. F., Haberman, M. R., & Alù, A. (2014). Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator. Science, 343(6170), 516-519. doi:10.1126/science.1246957Cheng, Y., Xu, J. Y., & Liu, X. J. (2008). One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus. Physical Review B, 77(4). doi:10.1103/physrevb.77.045134Cheng, Y., Yang, F., Xu, J. Y., & Liu, X. J. (2008). A multilayer structured acoustic cloak with homogeneous isotropic materials. Applied Physics Letters, 92(15), 151913. doi:10.1063/1.2903500Sanchis, L., García-Chocano, V. M., Llopis-Pontiveros, R., Climente, A., Martínez-Pastor, J., Cervera, F., & Sánchez-Dehesa, J. (2013). Three-Dimensional Axisymmetric Cloak Based on the Cancellation of Acoustic Scattering from a Sphere. Physical Review Letters, 110(12). doi:10.1103/physrevlett.110.124301Farhat, M., Chen, P.-Y., Bağcı, H., Enoch, S., Guenneau, S., & Alù, A. (2014). Platonic Scattering Cancellation for Bending Waves in a Thin Plate. Scientific Reports, 4(1). doi:10.1038/srep04644Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., & Zhang, X. (2006). Ultrasonic metamaterials with negative modulus. Nature Materials, 5(6), 452-456. doi:10.1038/nmat1644Shen, C., Xu, J., Fang, N. X., & Jing, Y. (2014). Anisotropic Complementary Acoustic Metamaterial for Canceling out Aberrating Layers. Physical Review X, 4(4). doi:10.1103/physrevx.4.041033Li, Y., Liang, B., Zou, X., & Cheng, J. (2013). Extraordinary acoustic transmission through ultrathin acoustic metamaterials by coiling up space. Applied Physics Letters, 103(6), 063509. doi:10.1063/1.4817925Tang, K., Qiu, C., Lu, J., Ke, M., & Liu, Z. (2015). Focusing and directional beaming effects of airborne sound through a planar lens with zigzag slits. Journal of Applied Physics, 117(2), 024503. doi:10.1063/1.4905910Cai, X., Guo, Q., Hu, G., & Yang, J. (2014). Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators. Applied Physics Letters, 105(12), 121901. doi:10.1063/1.4895617Leroy, V., Strybulevych, A., Lanoy, M., Lemoult, F., Tourin, A., & Page, J. H. (2015). Superabsorption of acoustic waves with bubble metascreens. Physical Review B, 91(2). doi:10.1103/physrevb.91.020301Hu, X., Chan, C. T., & Zi, J. (2005). Two-dimensional sonic crystals with Helmholtz resonators. Physical Review E, 71(5). doi:10.1103/physreve.71.055601Karimi, M., Croaker, P., & Kessissoglou, N. (2017). Acoustic scattering for 3D multi-directional periodic structures using the boundary element method. The Journal of the Acoustical Society of America, 141(1), 313-323. doi:10.1121/1.4973908Yang, X. W., Lee, J. S., & Kim, Y. Y. (2016). Effective mass density based topology optimization of locally resonant acoustic metamaterials for bandgap maximization. Journal of Sound and Vibration, 383, 89-107. doi:10.1016/j.jsv.2016.07.022Chen, Y., & Wang, L. (2014). Periodic co-continuous acoustic metamaterials with overlapping locally resonant and Bragg band gaps. Applied Physics Letters, 105(19), 191907. doi:10.1063/1.4902129Theocharis, G., Richoux, O., García, V. R., Merkel, A., & Tournat, V. (2014). Limits of slow sound propagation and transparency in lossy, locally resonant periodic structures. New Journal of Physics, 16(9), 093017. doi:10.1088/1367-2630/16/9/093017Lardeau, A., Groby, J.-P., & Romero-García, V. (2016). Broadband Transmission Loss Using the Overlap of Resonances in 3D Sonic Crystals. Crystals, 6(5), 51. doi:10.3390/cryst6050051Liu, Z., Zhang, X., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T., & Sheng, P. (2000). Locally Resonant Sonic Materials. Science, 289(5485), 1734-1736. doi:10.1126/science.289.5485.1734Park, C. M., & Lee, S. H. (2013). Propagation of acoustic waves in a metamaterial with a refractive index of near zero. Applied Physics Letters, 102(24), 241906. doi:10.1063/1.4811742Wang, T.-T., Wang, Y.-F., Wang, Y.-S., & Laude, V. (2018). Evanescent-wave tuning of a locally resonant sonic crystal. Applied Physics Letters, 113(23), 231901. doi:10.1063/1.5066058Yuan, B., Humphrey, V. F., Wen, J., & Wen, X. (2013). On the coupling of resonance and Bragg scattering effects in three-dimensional locally resonant sonic materials. Ultrasonics, 53(7), 1332-1343. doi:10.1016/j.ultras.2013.03.019Montiel, F., Chung, H., Karimi, M., & Kessissoglou, N. (2017). An analytical and numerical investigation of acoustic attenuation by a finite sonic crystal. Wave Motion, 70, 135-151. doi:10.1016/j.wavemoti.2016.12.002Sigalas, M. M., Economou, E. N., & Kafesaki, M. (1994). Spectral gaps for electromagnetic and scalar waves: Possible explanation for certain differences. Physical Review B, 50(5), 3393-3396. doi:10.1103/physrevb.50.3393Economou, E. N., & Sigalas, M. M. (1993). Classical wave propagation in periodic structures: Cermet versus network topology. Physical Review B, 48(18), 13434-13438. doi:10.1103/physrevb.48.13434Berenger, J.-P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2), 185-200. doi:10.1006/jcph.1994.115

    Pinhole Zone Plate Lens for Ultrasound Focusing

    Full text link
    [EN] The focusing capabilities of a pinhole zone plate lens are presented and compared with those of a conventional Fresnel zone plate lens. The focusing properties are examined both experimentally and numerically. The results confirm that a pinhole zone plate lens can be an alternative to a Fresnel lens. A smooth filtering effect is created in pinhole zone plate lenses, giving rise to a reduction of the side lobes around the principal focus associated with the conventional Fresnel zone plate lens. The manufacturing technique of the pinhole zone plate lens allows the designing and constructing of lenses for different focal lengths quickly and economically and without the need to drill new plates.This work has been supported by Spanish MINECO (TEC2015-70939-R)Rubio Michavila, C.; Fuster Escuder, JM.; Castiñeira Ibáñez, S.; Uris Martínez, A.; Belmar Ibáñez, F.; Candelas Valiente, P. (2017). Pinhole Zone Plate Lens for Ultrasound Focusing. Sensors. 17(1690):1-7. https://doi.org/10.3390/s17071690S1717169

    Analysis of Fresnel Zone Plates Focusing Dependence on Operating Frequency

    Full text link
    [EN] The focusing properties of Fresnel Zone Plates (FZPs) against frequency are analyzed in this work. It is shown that the FZP focal length depends almost linearly on the operating frequency. Focal depth and focal distortion are also considered, establishing a limit on the frequency span at which the operating frequency can be shifted. An underwater FZP ultrasound focusing system is demonstrated, and experimental results agree with the theoretical analysis and simulations.Spanish MINECO (TEC2015-70939-R) supported this work.Fuster Escuder, JM.; Candelas Valiente, P.; Castiñeira Ibáñez, S.; Pérez López, S.; Rubio Michavila, C. (2017). Analysis of Fresnel Zone Plates Focusing Dependence on Operating Frequency. Sensors. 17(12):2809-1-2809-10. https://doi.org/10.3390/s17122809S2809-12809-10171

    Open Acoustic Barriers: A New Attenuation Mechanism

    Get PDF
    One of the main environmental problems of the industrialised countries is the noise, which can be defined as an unwanted or unpleasant outdoor sound generated by transport, industry and human activities in general. When it is not possible to reduce the emission of noise acting on the source, the reduction of noise levels in its transmission phase using acoustic screens (AS) seems appropriate; such screens are in common use to reduce noise levels and have been extensively studied since the middle of the 20th century. Over the last decades, various acoustic screen designs have been investigated to increase the screening effect. The research carried out focuses on both the reduction of diffraction at the top edge of the screen by varying the shape at the top or adding absorptive materials to the noise screen, but all these screens are basically formed by a continuum rigid material with a superficial density high enough, to reduce transmission of noise through the screen, in accordance with the mass law. At the end of the nineties, another type of screen based on arrangements of isolated scatterers embedded in air, emerged. Among other interesting properties, these screens provide new mechanisms to control the noise based on the Bragg law. First, a Sonic Crystal Acoustic Screen (SCAS) was presented, where the scatterers are arranged following crystalline patterns. After that, a new prototype of AS based on sonic crystals appears, which increases the attenuation capabilities using arrangements based on fractal geometries. The screens designed in this way have been referred to as Fractal-based Sonic Crystal Acoustic Screens (FSCAS) in this chapter. In both the cases, the mechanism that prevents the transmission of noise, and therefore increases the noise attenuation, is the destructive Bragg interference due to a multiple scattering process. Finally, a new concept of AS based on a periodic arrangement of scatterers, with a slit dimension between them that is smaller than the wavelength is introduced. This latest screen is called Subwavelength Slit Acoustic Screen (SSAS) which presents a Wood anomaly and Fabry-Perot resonances, being the destructive interferences among the scattered waves, responsible for the attenuation capabilities of these screens. This new kind of AS (SCAS, FSCAS and SSAS) presents interesting properties and can be considered as a real alternative to the classical AS, which are formed by a continuum rigid material. The aim of this chapter is to present these open AS, and it is organised as follows. In Section 1, an introduction about classic acoustic screens is presented. Numerical models and experimental set-up for the screens are introduced in Section 2. Then, in Section 3 the transmission properties of Sonic Crystals are explained, and the research advances in this field related to the design of a screen based on the new mechanism of noise control are highlighted. The definition and development of the Fractal-based Sonic Crystal Acoustic Screen are shown subsequently. The Subwavelength Slit Acoustic Screen is developed in Section 4. Finally, in Section 5 the main results and conclusions of the work are presented

    Sustainable development goals and their implementation in Physics

    Full text link
    [EN] Sustainable Development Goals (SDGs) currently represent a challenge for the future and are already being implemented in different working areas. That is why, from the moment a student starts university education, professors must take the lead to include them in the different subjects offered in the curricula of the different Degrees. Physics is a subject that represents a fundamental basis in many engineering degrees studies. On the one hand, the importance of this subject for the future of students is well known. However, this fundamental nature means that it is perceived by the students as a subject with no connection with the degree they aspire to achieve. Additionally, the heterogeneous level of training of the students, especially in the first courses, is a limitation. This makes it difficult to relate the content of the subject with the everyday phenomena and favours the lack of interest in them. One way to motivate students and use the active and constructive teaching methodology is to introduce SDGs within the subject, given the high sensitivity of current generations on Planet Earth. The introduction of these new training tools is not easy because the teaching of the fundamental bases requires most of the available time. This work aims to bring Physics closer to society through SDGs. For this purpose, a challenge is incorporated into the subject¿s curriculum for each thematic block that students must overcome. In this way, two important training actions are combined, efficient teaching is carried out, and the students become aware of SDGs, which are necessary for their future work. PoliformaT, the e-learning platform implemented in the Universitat Politècnica de València, facilitates the use of these new teaching methodologies that combine traditional on-site laboratory tasks with other learning assignments carried out autonomously online by students.The authors would like to thank the educational innovation group Multidisciplinary Teaching Innovation Methodology (Teach- Inn) (GIE-64) from Universidad de Las Palmas de Gran Canaria.Castiñeira Ibáñez, S.; Tarrazó-Serrano, D.; Gasque Albalate, M.; Rubio Michavila, C.; Uris Martínez, A. (2022). Sustainable development goals and their implementation in Physics. IATED. 9378-9383. https://doi.org/10.21125/edulearn.2022.22639378938

    Tunable depth of focus of acoustical pupil masked Soret Zone Plate

    Full text link
    [EN] In acoustical lenses both resolution and depth of focus are determined by diffraction and the smaller the lens aperture the worse the resolution and the greater the depth of focus. Diffraction-limited resolution has a Soret Zone Plate, but a long depth of focus has an axicon. Nevertheless, these are two different devices each of which requires its own independent design. In this paper, we have shown that the transition from focusing to a diffraction limited spot to a quasi-diffraction free beam can be realized in the same focusing device without changing its topology. It has been shown that using a classical planar Soret Zone Plate lens made of a concentric array of circular aperiodical rings with an amplitude pupil mask placed closely to the surface of lens allows to form a quasi-Bessel beams under specific conditions, part of a diffracted wave collimates, producing an elongated focus. Experiments are performed in water tanks in order to verify the simulation results. Experimental verification shown that the depth of focus of a pupil-masked Soret Zone Plate increases 1.63 times and resolution increases 1.2 times (with minimal beam waist about of 0.67 of wavelength and depth of focus about 5.72 of wavelength). By dynamically controlling the size of the amplitude pupil mask, it is possible to quickly control the depth of focus of an acoustic lens.This work has been supported by Spanish MINECO (TEC2015-70939-R) and was partially supported by Tomsk Polytechnic University Competitiveness Enhancement Program.Castiñeira Ibáñez, S.; Tarrazó-Serrano, D.; Minin, OV.; Rubio Michavila, C.; Minin, IV. (2019). Tunable depth of focus of acoustical pupil masked Soret Zone Plate. Sensors and Actuators A Physical. 286:183-187. https://doi.org/10.1016/j.sna.2018.11.053S18318728

    MRI Compatible Planar Material Acoustic Lenses

    Full text link
    [EN] Zone plate lenses are used in many areas of physics where planar geometry is advantageous in comparison with conventional curved lenses. There are several types of zone plate lenses, such as the well-known Fresnel zone plates (FZPs) or the more recent fractal and Fibonacci zone plates. The selection of the lens material plays a very important role in beam modulation control. This work presents a comparison between FZPs made from different materials in the ultrasonic range in order to use them as magnetic resonance imaging (MRI) compatible materials. Three different MRI compatible polymers are considered: Acrylonitrile butadiene styrene (ABS), polymethyl methacrylate (PMMA) and polylactic acid (PLA). Numerical simulations based on finite elements method (FEM) and experimental results are shown. The focusing capabilities of brass lenses and polymer zone plate lenses are compared.This research was funded by spanish Ministerio de Economía y Competitividad (MINECO) TEC2015-70939-R.Tarrazó-Serrano, D.; Castiñeira Ibáñez, S.; Sánchez Aparisi, E.; Uris Martínez, A.; Rubio Michavila, C. (2018). MRI Compatible Planar Material Acoustic Lenses. Applied Sciences (Basel). 8(12):2634-1-2634-9. doi:10.3390/app8122634S2634-12634-981

    Bifocal Ultrasound Focusing Using Bi-Fresnel Zone Plate Lenses

    Full text link
    [EN] In this work, we present a bifocal Fresnel zone plate (BiFZP) capable of generating focusing profiles with two different foci. The performance of the BiFZP is demonstrated in the ultrasound domain, with a very good agreement between the experimental measurements and the finite element method (FEM) simulations. This lens becomes an appealing alternative to other dual-focusing lenses,in which the foci location can only be set at a limited range of positions, such as M-bonacci zone plates. Moreover, the variation of the operating frequency has also been analyzed, providing an additional dynamic control parameter in this type of lenses.This work was supported by the Spanish MICINN RTI2018-100792-B-I00 project. S.P.-L. acknowledges financial support from the Universitat Politècnica de València grant program PAID-01-18. D.T.-S. acknowledges financial support from the MICINN BES-2016-07713 project.Pérez-López, S.; Fuster Escuder, JM.; Candelas Valiente, P.; Tarrazó-Serrano, D.; Castiñeira Ibáñez, S.; Rubio Michavila, C. (2020). Bifocal Ultrasound Focusing Using Bi-Fresnel Zone Plate Lenses. Sensors. 20:1-9. https://doi.org/10.3390/s20030705S1920Fink, M. (1992). Time reversal of ultrasonic fields. I. Basic principles. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 39(5), 555-566. doi:10.1109/58.156174Fink, M., Cassereau, D., Derode, A., Prada, C., Roux, P., Tanter, M., … Wu, F. (2000). Time-reversed acoustics. Reports on Progress in Physics, 63(12), 1933-1995. doi:10.1088/0034-4885/63/12/202Jing, Y., Meral, F. C., & Clement, G. T. (2012). Time-reversal transcranial ultrasound beam focusing using a k-space method. Physics in Medicine and Biology, 57(4), 901-917. doi:10.1088/0031-9155/57/4/901Robertson, J. L. B., Cox, B. T., Jaros, J., & Treeby, B. E. (2017). Accurate simulation of transcranial ultrasound propagation for ultrasonic neuromodulation and stimulation. The Journal of the Acoustical Society of America, 141(3), 1726-1738. doi:10.1121/1.4976339Li, Y., Liang, B., Tao, X., Zhu, X., Zou, X., & Cheng, J. (2012). Acoustic focusing by coiling up space. Applied Physics Letters, 101(23), 233508. doi:10.1063/1.4769984Xie, Y., Wang, W., Chen, H., Konneker, A., Popa, B.-I., & Cummer, S. A. (2014). Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nature Communications, 5(1). doi:10.1038/ncomms6553Assouar, B., Liang, B., Wu, Y., Li, Y., Cheng, J.-C., & Jing, Y. (2018). Acoustic metasurfaces. Nature Reviews Materials, 3(12), 460-472. doi:10.1038/s41578-018-0061-4Chen, J., Xiao, J., Lisevych, D., Shakouri, A., & Fan, Z. (2018). Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens. Nature Communications, 9(1). doi:10.1038/s41467-018-07315-6Lalonde, R. J., Worthington, A., & Hunt, J. W. (1993). Field conjugate acoustic lenses for ultrasound hyperthermia. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 40(5), 592-602. doi:10.1109/58.238113Melde, K., Mark, A. G., Qiu, T., & Fischer, P. (2016). Holograms for acoustics. Nature, 537(7621), 518-522. doi:10.1038/nature19755Jiménez-Gambín, S., Jiménez, N., Benlloch, J. M., & Camarena, F. (2019). Holograms to Focus Arbitrary Ultrasonic Fields through the Skull. Physical Review Applied, 12(1). doi:10.1103/physrevapplied.12.014016Brown, M. D. (2019). Phase and amplitude modulation with acoustic holograms. Applied Physics Letters, 115(5), 053701. doi:10.1063/1.5110673Kirz, J. (1974). Phase zone plates for x rays and the extreme uv. Journal of the Optical Society of America, 64(3), 301. doi:10.1364/josa.64.000301Jefimovs, K., Bunk, O., Pfeiffer, F., Grolimund, D., van der Veen, J. F., & David, C. (2007). Fabrication of Fresnel zone plates for hard X-rays. Microelectronic Engineering, 84(5-8), 1467-1470. doi:10.1016/j.mee.2007.01.112Srisungsitthisunti, P., Ersoy, O. K., & Xu, X. (2007). Laser direct writing of volume modified Fresnel zone plates. Journal of the Optical Society of America B, 24(9), 2090. doi:10.1364/josab.24.002090Rodrigues Ribeiro, R. S., Dahal, P., Guerreiro, A., Jorge, P. A. S., & Viegas, J. (2017). Fabrication of Fresnel plates on optical fibres by FIB milling for optical trapping, manipulation and detection of single cells. Scientific Reports, 7(1). doi:10.1038/s41598-017-04490-2Kim, H., Kim, J., An, H., Lee, Y., Lee, G., Na, J., … Jeong, Y. (2017). Metallic Fresnel zone plate implemented on an optical fiber facet for super-variable focusing of light. Optics Express, 25(24), 30290. doi:10.1364/oe.25.030290Hristov, H. D., & Herben, M. H. A. J. (1995). Millimeter-wave Fresnel-zone plate lens and antenna. IEEE Transactions on Microwave Theory and Techniques, 43(12), 2779-2785. doi:10.1109/22.475635Hristov, H. D., & Rodriguez, J. M. (2012). Design Equation for Multidielectric Fresnel Zone Plate Lens. IEEE Microwave and Wireless Components Letters, 22(11), 574-576. doi:10.1109/lmwc.2012.2224099Farnow, S. A., & Auld, B. A. (1975). An Acoustic Phase Plate Imaging Device. Acoustical Holography, 259-273. doi:10.1007/978-1-4615-8216-8_14Sleva, M. Z., Hunt, W. D., & Briggs, R. D. (1994). Focusing performance of epoxy‐ and air‐backed polyvinylidene fluoride Fresnel zone plates. The Journal of the Acoustical Society of America, 96(3), 1627-1633. doi:10.1121/1.410242Calvo, D. C., Thangawng, A. L., Nicholas, M., & Layman, C. N. (2015). Thin Fresnel zone plate lenses for focusing underwater sound. Applied Physics Letters, 107(1), 014103. doi:10.1063/1.4926607Kim, J., Kim, H., Lee, G.-Y., Kim, J., Lee, B., & Jeong, Y. (2018). Numerical and Experimental Study on Multi-Focal Metallic Fresnel Zone Plates Designed by the Phase Selection Rule via Virtual Point Sources. Applied Sciences, 8(3), 449. doi:10.3390/app8030449Saavedra, G., Furlan, W. D., & Monsoriu, J. A. (2003). Fractal zone plates. Optics Letters, 28(12), 971. doi:10.1364/ol.28.000971Furlan, W. D., Saavedra, G., & Monsoriu, J. A. (2007). White-light imaging with fractal zone plates. Optics Letters, 32(15), 2109. doi:10.1364/ol.32.002109Monsoriu, J. A., Calatayud, A., Remon, L., Furlan, W. D., Saavedra, G., & Andres, P. (2013). Bifocal Fibonacci Diffractive Lenses. IEEE Photonics Journal, 5(3), 3400106-3400106. doi:10.1109/jphot.2013.2248707Machado, F., Ferrando, V., Furlan, W. D., & Monsoriu, J. A. (2017). Diffractive m-bonacci lenses. Optics Express, 25(7), 8267. doi:10.1364/oe.25.008267Fuster, J., Pérez-López, S., Candelas, P., & Rubio, C. (2018). Design of Binary-Sequence Zone Plates in High Wavelength Domains. Sensors, 18(8), 2604. doi:10.3390/s18082604Pérez-López, S., Fuster, J. M., Candelas, P., & Rubio, C. (2019). Fractal lenses based on Cantor binary sequences for ultrasound focusing applications. Ultrasonics, 99, 105967. doi:10.1016/j.ultras.2019.105967Pérez-López, S., Fuster, J. M., & Candelas, P. (2019). M-Bonacci Zone Plates for Ultrasound Focusing. Sensors, 19(19), 4313. doi:10.3390/s19194313Castiñeira-Ibáñez, S., Tarrazó-Serrano, D., Minin, O. V., Rubio, C., & Minin, I. V. (2019). Tunable depth of focus of acoustical pupil masked Soret Zone Plate. Sensors and Actuators A: Physical, 286, 183-187. doi:10.1016/j.sna.2018.11.053Pérez-López, S., Fuster, J. M., Candelas, P., Rubio, C., & Belmar, F. (2018). On the use of phase correction rings on Fresnel zone plates with ultrasound piston emitters. Applied Physics Letters, 112(26), 264102. doi:10.1063/1.5036712Fuster, J., Candelas, P., Castiñeira-Ibáñez, S., Pérez-López, S., & Rubio, C. (2017). Analysis of Fresnel Zone Plates Focusing Dependence on Operating Frequency. Sensors, 17(12), 2809. doi:10.3390/s1712280
    corecore