79 research outputs found

    Commercial air transport hazard warning and avoidance system. Volume 1 - Summary Final report

    Get PDF
    Operational requirements for commercial air transport hazard warning and avoidance syste

    Commercial air transport hazard warning and avoidance system. Volume 2 - Requirements studies Final report

    Get PDF
    Operational requirements and cost effectiveness of commercial air transport hazard warning and avoidance syste

    Subclinical thyroid dysfunction and cognitive decline in old age

    Get PDF
    <p>Background: Subclinical thyroid dysfunction has been implicated as a risk factor for cognitive decline in old age, but results are inconsistent. We investigated the association between subclinical thyroid dysfunction and cognitive decline in the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER).</p> <p>Methods: Prospective longitudinal study of men and women aged 70–82 years with pre-existing vascular disease or more than one risk factor to develop this condition (N = 5,154). Participants taking antithyroid medications, thyroid hormone supplementation and/or amiodarone were excluded. Thyroid function was measured at baseline: subclinical hyper- and hypothyroidism were defined as thyroid stimulating hormones (TSH) <0.45 mU/L or >4.50 mU/L respectively, with normal levels of free thyroxine (FT4). Cognitive performance was tested at baseline and at four subsequent time points during a mean follow-up of 3 years, using five neuropsychological performance tests.</p> <p>Results: Subclinical hyperthyroidism and hypothyroidism were found in 65 and 161 participants, respectively. We found no consistent association of subclinical hyper- or hypothyroidism with altered cognitive performance compared to euthyroid participants on the individual cognitive tests. Similarly, there was no association with rate of cognitive decline during follow-up.</p> <p>Conclusion: We found no consistent evidence that subclinical hyper- or hypothyroidism contribute to cognitive impairment or decline in old age. Although our data are not in support of treatment of subclinical thyroid dysfunction to prevent cognitive dysfunction in later life, only large randomized controlled trials can provide definitive evidence.</p&gt

    Subclinical thyroid dysfunction and cognitive decline in old age

    Get PDF
    <p>Background: Subclinical thyroid dysfunction has been implicated as a risk factor for cognitive decline in old age, but results are inconsistent. We investigated the association between subclinical thyroid dysfunction and cognitive decline in the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER).</p> <p>Methods: Prospective longitudinal study of men and women aged 70–82 years with pre-existing vascular disease or more than one risk factor to develop this condition (N = 5,154). Participants taking antithyroid medications, thyroid hormone supplementation and/or amiodarone were excluded. Thyroid function was measured at baseline: subclinical hyper- and hypothyroidism were defined as thyroid stimulating hormones (TSH) <0.45 mU/L or >4.50 mU/L respectively, with normal levels of free thyroxine (FT4). Cognitive performance was tested at baseline and at four subsequent time points during a mean follow-up of 3 years, using five neuropsychological performance tests.</p> <p>Results: Subclinical hyperthyroidism and hypothyroidism were found in 65 and 161 participants, respectively. We found no consistent association of subclinical hyper- or hypothyroidism with altered cognitive performance compared to euthyroid participants on the individual cognitive tests. Similarly, there was no association with rate of cognitive decline during follow-up.</p> <p>Conclusion: We found no consistent evidence that subclinical hyper- or hypothyroidism contribute to cognitive impairment or decline in old age. Although our data are not in support of treatment of subclinical thyroid dysfunction to prevent cognitive dysfunction in later life, only large randomized controlled trials can provide definitive evidence.</p&gt

    A High Red Blood Cell Distribution Width Predicts Failure of Arteriovenous Fistula

    Get PDF
    In hemodialysis patients, a native arteriovenous fistula (AVF) is the preferred form of permanent vascular access. Despite recent improvements, vascular access dysfunction remains an important cause of morbidity in these patients. In this prospective observational cohort study, we evaluated potential risk factors for native AVF dysfunction. We included 68 patients with chronic renal disease stage 5 eligible for AVF construction at the Department of General and Vascular Surgery, Central Clinical Hospital Ministry of Internal Affairs, Warsaw, Poland. Patient characteristics and biochemical parameters associated with increased risk for AVF failure were identified using Cox proportional hazards models. Vessel biopsies were analyzed for inflammatory cells and potential associations with biochemical parameters. In multivariable analysis, independent predictors of AVF dysfunction were the number of white blood cells (hazard ratio [HR] 1.67; 95% confidence interval [CI] 1.24 to 2.25; p<0.001), monocyte number (HR 0.02; 95% CI 0.00 to 0.21; p = 0.001), and red blood cell distribution width (RDW) (HR 1.44; 95% CI 1.17 to 1.78; p<0.001). RDW was the only significant factor in receiver operating characteristic curve analysis (area under the curve 0.644; CI 0.51 to 0.76; p = 0.046). RDW>16.2% was associated with a significantly reduced AVF patency frequency 24 months after surgery. Immunohistochemical analysis revealed CD45-positive cells in the artery/vein of 39% of patients and CD68-positive cells in 37%. Patients with CD68-positive cells in the vessels had significantly higher white blood cell count. We conclude that RDW, a readily available laboratory value, is a novel prognostic marker for AVF failure. Further studies are warranted to establish the mechanistic link between high RDW and AVF failure

    Testosterone Deficiency Accelerates Neuronal and Vascular Aging of SAMP8 Mice: Protective Role of eNOS and SIRT1

    Get PDF
    Oxidative stress and atherosclerosis-related vascular disorders are risk factors for cognitive decline with aging. In a small clinical study in men, testosterone improved cognitive function; however, it is unknown how testosterone ameliorates the pathogenesis of cognitive decline with aging. Here, we investigated whether the cognitive decline in senescence-accelerated mouse prone 8 (SAMP8), which exhibits cognitive impairment and hypogonadism, could be reversed by testosterone, and the mechanism by which testosterone inhibits cognitive decline. We found that treatment with testosterone ameliorated cognitive function and inhibited senescence of hippocampal vascular endothelial cells of SAMP8. Notably, SAMP8 showed enhancement of oxidative stress in the hippocampus. We observed that an NAD+-dependent deacetylase, SIRT1, played an important role in the protective effect of testosterone against oxidative stress-induced endothelial senescence. Testosterone increased eNOS activity and subsequently induced SIRT1 expression. SIRT1 inhibited endothelial senescence via up-regulation of eNOS. Finally, we showed, using co-culture system, that senescent endothelial cells promoted neuronal senescence through humoral factors. Our results suggest a critical role of testosterone and SIRT1 in the prevention of vascular and neuronal aging

    Nocturnal Hypoxia and Loss of Kidney Function

    Get PDF
    Background: Although obstructive sleep apnea (OSA) is more common in patients with kidney disease, whether nocturnal hypoxia affects kidney function is unknown. Methods: We studied all adult subjects referred for diagnostic testing of sleep apnea between July 2005 and December 31 2007 who had serial measurement of their kidney function. Nocturnal hypoxia was defined as oxygen saturation (SaO2) below 90 % for 1212 % of the nocturnal monitoring time. The primary outcome, accelerated loss of kidney function, was defined as a decline in estimated glomerular filtration rate (eGFR) 4 ml/min/1.73 m2 per year. Results: 858 participants were included and followed for a mean study period of 2.1 years. Overall 374 (44%) had nocturnal hypoxia, and 49 (5.7%) had accelerated loss of kidney function. Compared to controls without hypoxia, patients with nocturnal hypoxia had a significant increase in the adjusted risk of accelerated kidney function loss (odds ratio (OR) 2.89, 95 % confidence interval [CI] 1.25, 6.67). Conclusion: Nocturnal hypoxia was independently associated with an increased risk of accelerated kidney function loss. Further studies are required to determine whether treatment and correction of nocturnal hypoxia reduces loss of kidney function

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore