1,838 research outputs found

    Attempts to detect retrotransposition and de novo deletion of Alus and other dispersed repeats at specific loci in the human genome

    Get PDF
    Dispersed repeat elements contribute to genome instability by de novo insertion and unequal recombination between repeats. To study the dynamics of these processes, we have developed single DNA molecule approaches to detect de novo insertions at a single locus and Alu-mediated deletions at two different loci in human genomic DNA. Validation experiments showed these approaches could detect insertions and deletions at frequencies below 10(-6) per cell. However, bulk analysis of germline (sperm) and somatic DNA showed no evidence for genuine mutant molecules, placing an upper limit of insertion and deletion rates of 2 x 10(-7) and 3 x 10(-7), respectively, in the individuals tested. Such re-arrangements at these loci therefore occur at a rate lower than that detectable by the most sensitive methods currently available

    Effects of acute exercise on cutaneous thermal sensation

    Get PDF
    The aim of this study was to assess the effect of exercise intensity on thermal sensory function of active and inactive limbs. In a randomised and counterbalanced manner 13 healthy young male participants (25±6 yr, 1.8±0.1 m, 77±6 kg) conducted; 1) 30 minutes low (50% heart rate maximum, HRmax; LOW) intensity, 2) 30 minutes high (80% HRmax; HIGH) intensity cycling exercise and 3) 30 minutes seated rest (CONTROL). Before, immediately and 1-hour after each intervention thermal sensory function of the non-dominant dorsal forearm and posterior calf were examined by increasing local skin temperature (1°C/s) to assess perceptual heat sensitivity and pain thresholds. Relative to pre-exercise, forearm heat sensitivity thresholds were increased immediately and 1-hr after HIGH but there were no changes after LOW exercise or during CONTROL (main effect of trial; P=0.017). Relative to pre-exercise, calf heat sensitivity thresholds were not changed after LOW or HIGH exercise or during CONTROL (main effect of trial; P=0.629). There were no changes in calf (main effect of trial; P=0.528) or forearm (main effect of trial; P=0.088) heat pain thresholds after exercise in either LOW or HIGH or CONTROL. These results suggest that cutaneous thermal sensitivity function of an inactive limb is only reduced after higher intensity exercise but is not changed in a previously active limb after exercise. Exercise does not affect heat pain sensitivity in either active or inactive limbs

    Impact of handgrip exercise intensity on brachial artery flow-mediated dilation.

    Get PDF
    PURPOSE: Previous studies that have examined the impact of exercise intensity on conduit artery endothelial function have involved large muscle group exercise which induces local and systemic effects. The aim of this study was to examine flow-mediated dilation (FMD) before and after incremental intensities of handgrip exercise (HE), to assess the role of local factors such as blood flow and shear rate on post-exercise brachial artery function. METHODS: Eleven healthy men attended the laboratory on three occasions. Subjects undertook 30 min of handgrip exercise at three intensities (5, 10 or 15 % MVC). Brachial artery FMD, shear and blood flow patterns were examined before, immediately after and 60 min post exercise. RESULTS: Handgrip exercise increased mean and antegrade shear rate (SR) and blood flow (BF) and reduced retrograde SR and BF (all P < 0.01). Exercise intensity was associated with a dose-dependent increase in both mean and antegrade BF and SR (interaction, P < 0.01). Post-hoc tests revealed that, whilst handgrip exercise did not immediately induce post-exercise changes, FMD was significantly higher 60 min post-exercise following the highest exercise intensity (5.9 ± 2.8-10.4 ± 5.8 %, P = 0.01). CONCLUSIONS: Handgrip exercise leads to intensity-and time-dependent changes in conduit artery function, possibly mediated by local increases in shear, with improvement in function evident at 1 h post-exercise when performed at a higher intensity

    Brachial and Cerebrovascular Functions Are Enhanced in Postmenopausal Women after Ingestion of Chocolate with a High Concentration of Cocoa.

    Get PDF
    Background: Cocoa contains polyphenols that are thought to be beneficial for vascular health.Objective: We assessed the impact of chocolate containing distinct concentrations of cocoa on cerebrovascular function and cognition.Methods: Using a counterbalanced within-subject design, we compared the acute impact of consumption of energy-matched chocolate containing 80%, 35%, and 0% single-origin cacao on vascular endothelial function, cognition, and cerebrovascular function in 12 healthy postmenopausal women (mean ± SD age: 57.3 ± 5.3 y). Participants attended a familiarization session, followed by 3 experimental trials, each separated by 1 wk. Outcome measures included cerebral blood flow velocity (CBFv) responses, recorded before and during completion of a computerized cognitive assessment battery (CogState); brachial artery flow-mediated dilation (FMD); and hemodynamic responses (heart rate and blood pressure).Results: When CBFv data before and after chocolate intake were compared between conditions through the use of 2-factor ANOVA, an interaction effect (P = 0.003) and main effects for chocolate (P = 0.043) and time (P = 0.001) were evident. Post hoc analysis revealed that both milk chocolate (MC; 35% cocoa; P = 0.02) and dark chocolate (DC; 80% cocoa; P = 0.003) induced significantly lower cerebral blood flow responses during the cognitive tasks, after normalizing for changes in arterial pressure. DC consumption also increased brachial FMD compared with the baseline value before chocolate consumption (P = 0.002), whereas MC and white chocolate (0% cocoa) caused no change (P-interaction between conditions = 0.034).Conclusions: Consumption of chocolate containing high concentrations of cocoa enhanced vascular endothelial function, which was reflected by improvements in FMD. Cognitive function outcomes did not differ between conditions; however, cerebral blood flow responses during these cognitive tasks were lower in those consuming MC and DC. These findings suggest that chocolate containing high concentrations of cocoa may modify the relation between cerebral metabolism and blood flow responses in postmenopausal women. This trial was registered at www.ANZCTR.orgau as ACTRN12616000990426

    Developmental transitions in body color in chacma baboon infants: Implications to estimate age and developmental pace

    Get PDF
    OBJECTIVES: In many primates, one of the most noticeable morphological developmental traits is the transition from natal fur and skin color to adult coloration. Studying the chronology and average age at such color transitions can be an easy and noninvasive method to (a) estimate the age of infants whose dates of birth were not observed, and (b) detect interindividual differences in the pace of development for infants with known birth dates. MATERIALS AND METHODS: Using a combination of photographs and field observations from 73 infant chacma baboons (Papio ursinus) of known ages, we (a) scored the skin color of six different body parts from pink to gray, as well as the color of the fur from black to gray; (b) validated our method of age estimation using photographic and field observations on an independent subset of 22 infants with known date of birth; and (c) investigated ecological, social, and individual determinants of age-related variation in skin and fur color. RESULTS: Our results show that transitions in skin color can be used to age infant chacma baboons less than 7 months old with accuracy (median number of days between actual and estimated age = 10, range = 0-86). We also reveal that food availability during the mother's pregnancy, but not during lactation, affects infant color-for-age and therefore acts as a predictor of developmental pace. DISCUSSION: This study highlights the potential of monitoring within- and between-infant variation in color to estimate age when age is unknown, and developmental pace when age is known

    Evidence for Shear Stress-Mediated Dilation of the Internal Carotid Artery in Humans.

    Get PDF
    Increases in arterial carbon dioxide tension (hypercapnia) elicit potent vasodilation of cerebral arterioles. Recent studies have also reported vasodilation of the internal carotid artery during hypercapnia, but the mechanism(s) mediating this extracranial vasoreactivity are unknown. Hypercapnia increases carotid shear stress, a known stimulus to vasodilation in other conduit arteries. To explore the hypothesis that shear stress contributes to hypercapnic internal carotid dilation in humans, temporal changes in internal and common carotid shear rate and diameter, along with changes in middle cerebral artery velocity, were simultaneously assessed in 18 subjects at rest and during hypercapnia (6% carbon dioxide). Middle cerebral artery velocity increased significantly (69±10-103±17 cm/s; P<0.01) along with shear in both the internal (316±52-518±105 1/s; P<0.01) and common (188±40-275±61 1/s; P<0.01) carotids. Diameter also increased (P<0.01) in both carotid arteries (internal: +6.3±2.9%; common: +5.8±3.0%). Following hypercapnia onset, there was a significant delay between the onset of internal carotid shear (22±12 seconds) and diameter change (85±51 seconds). This time course is associated with shear-mediated dilation of larger conduit arteries in humans. There was a strong association between change in shear and diameter of the internal carotid (r=0.68; P<0.01). These data indicate, for the first time in humans, that shear stress is an important stimulus for hypercapnic vasodilation of the internal carotid artery. The combination of a hypercapnic stimulus and continuous noninvasive, high-resolution assessment of internal carotid shear and dilation may provide novel insights into the function and health of the clinically important extracranial arteries in humans

    Intussusception of the appendix secondary to endometriosis: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Intussusception of the appendix is an extremely rare condition that ranges from partial invagination of the appendix to involvement of the entire colon. Endometriosis is an exceptionally rare cause of appendiceal intussusception and only very few cases have been reported in the literature to date.</p> <p>Case presentation</p> <p>A 40 year-old woman presented to clinic with a long history of lower abdominal pain, loose motions and painful, heavy periods. Subsequent colonoscopy revealed submucosal endometriotic nodules in the sigmoid as well as a polyp thought to be arising from the appendix, which had inverted itself. She was referred to a colorectal surgeon because the polyp could not be removed endoscopically despite several attempts. At laparotomy, the appendix had intussuscepted but it was possible to reduce it and therefore a simple appendicectomy was carried out. On histology, there were widespread endometrial deposits within the wall of the appendix and this was thought to be the basis for the intussusception.</p> <p>Conclusion</p> <p>Histological evidence of the lead point is of crucial importance in cases of appendiceal intussusception, in order to exclude an underlying neoplastic process. Consequently, surgical resection is necessary either through an open or a laparoscopic approach. Gastrointestinal endometriosis should be considered as a cause of appendiceal intussusception in post-menarchal women with episodic symptoms and proven disease.</p

    Reproducibility of four frequently used local heating protocols to assess cutaneous microvascular function.

    Get PDF
    BACKGROUND: Skin microvascular responses to local heating are frequently used to assess microvascular function. Several local heating protocols have been developed, all varying slightly in execution. The aim of this study was to determine the inter-day reproducibility of the four most commonly used local heating protocols in healthy young subjects. METHODS: Fifteen, healthy males (28±5yrs, BMI 25±2kg/m(2)) attended two experimental trials 2-7days apart. During each trial, baseline and maximal thermally stimulated forearm skin responses were examined simultaneously at four sites on the dominant forearm using laser Doppler flowmetry (LDF). The following heating protocols were adopted: 1. Rapid 39°C (0.5°C/5s), 2. Rapid 42°C (0.5°C/5s) 3. Gradual 42°C (0.5°C/2min 30s) and 4. Slow 42°C (0.5°C/5min). The coefficient of variation (CV) was calculated for absolute flux, cutaneous vascular conductance (CVC; flux/mean arterial pressure, MAP) and CVC expressed as a percentage of maximal CVC at 44°C (%CVCmax) at three different time points; baseline (33°C), plateau (39/42°C) and maximal (44°C). RESULTS: Reproducibility of baseline flux, CVC and %CVCmax was 17-29% across all protocols. During the plateau, Rapid, Gradual and Slow 42°C demonstrated a reproducibility of 13-18% for flux and CVC and 5-11% for %CVCmax. However, Rapid 39°C demonstrated a lower reproducibility for flux, CVC and %CVCmax (all 21%). Reproducibility at 44°C was 12-15% for flux and CVC across all protocols. CONCLUSION: This is the first study examining inter-day reproducibility across four local heating protocols. The good-to-moderate reproducibility of the Rapid, Gradual and Slow 42°C protocols support their (simultaneous) use to assess microvascular function. Using Rapid 39°C may require a greater number of subjects to detect differences within subjects

    Differential impact of water immersion on arterial blood flow and shear stress in the carotid and brachial arteries of humans.

    Get PDF
    Arterial shear stress is a potent stimulus to vascular adaptation in humans. Typically, increases in retrograde shear have been found to acutely impair vascular function while increases in antegrade shear enhance function. We hypothesized that blood flow and shear stress through the brachial and carotid arteries would change in a similar manner in response to water immersion, an intervention which modifies hemodynamics. Nine healthy young male subjects were recruited to undergo controlled water immersion in a standing upright position to the level of the right atrium in 30°C water. Diameters were continuously and simultaneously recorded in the brachial and common carotid arteries along with mean arterial pressure (MAP), cardiac output (CO), and heart rate before, during, and after 10 min of immersion. MAP and CO increased during water immersion (baseline vs. 8-10 min; 80 ± 9 vs. 91 ± 12 mmHg; and 4.8 ± 0.7 vs. 5.1 ± 0.6 L/min, P < 0.01 and P < 0.05, respectively). We observed a differential regulation of flow and shear stress patterns in the brachial and carotid arteries in response to water immersion; brachial conductance decreased markedly in response to immersion (1.25 ± 0.56 vs. 0.57 ± 0.30 mL.min/mmHg, P < 0.05), whereas it was unaltered in the carotid artery (5.82 ± 2.14 vs. 5.60 ± 1.59). Our findings indicate that adaptations to systemic stimuli and arterial adaptation may be vessel bed specific in humans, highlighting the need to assess multiple vascular sites in future studies
    • …
    corecore