175 research outputs found

    Tunable coupling of qubits: nonadiabatic corrections

    Get PDF
    We analyze the coupling of qubits mediated by a tunable and fast element beyond the adiabatic approximation. The nonadiabatic corrections are important and even dominant in parts of the relevant parameter range. As an example, we consider the tunable capacitive coupling between two charge qubits mediated by a gated Josephson junction, as suggested by Averin and Bruder. The nonadiabatic, inductive contribution persists when the capacitive coupling is tuned to zero. On the other hand, the total coupling can be turned off (in the rotating wave approximation) if the qubits are operated at symmetry points.Comment: 7 pages, 2 figures, accepted in Europhysics Letter

    Three distinct developmental pathways for adaptive and two IFN-γ-producing γδ T subsets in adult thymus

    Get PDF
    Mouse γδ T cells have diverse functional subsets, but how these subsets are programmed during their development is still unclear. Here the authors show that three surface markers, CD117, CD200 and CD371, refine the development of γδ T cells in the thymus into three pathways programming distinct γδ T cell subsets

    Gestational Age and Birth Weight in Relation to School Performance of 10-Year-Old Children: A Follow-up Study of Children Born after 32 Completed Weeks

    Get PDF
    ABSTRACT BACKGROUND. Children born extremely premature (Ͻ28 weeks) or with a very low birth weight (Ͻ1500 g) have a poorer school performance than children born at term with a normal birth weight. Much less is known about children of higher gestational ages and birth weights. We studied gestational age after 32 completed weeks and birth weight in relation to the child's school performance at the age of 10 years

    Longitudinal radiomics of cone-beam CT images from non-small cell lung cancer patients : evaluation of the added prognostic value for overall survival and locoregional recurrence

    Get PDF
    Background and purpose: The prognostic value of radiomics for non-small cell lung cancer (NSCLC) patients has been investigated for images acquired prior to treatment, but no prognostic model has been developed that includes the change of radiomic features during treatment. Therefore, the aim of this study was to investigate the potential added prognostic value of a longitudinal radiomics approach using cone-beam computed tomography (CBCT) for NSCLC patients. Materials and methods: This retrospective study includes a training dataset of 141 stage I-IV NSCLC patients and three external validation datasets of 94, 61 and 41 patients, all treated with curative intended (chemo) radiotherapy. The change of radiomic features extracted from CBCT images was summarized as the slope of a linear regression. The CBCT slope-features and CT-extracted features were used as input for a Cox proportional hazards model. Moreover, prognostic performance of clinical parameters was investigated for overall survival and locoregional recurrence. Model performances were assessed using the Kaplan-Meier curves and c-index. Results: The radiomics model contained only CT-derived features and reached a c-index of 0.63 for overall survival and could be validated on the first validation dataset. No model for locoregional recurrence could be developed that validated on the validation datasets. The clinical parameters model could not be validated for either overall survival or locoregional recurrence. Conclusion: In this study we could not confirm our hypothesis that longitudinal CBCT-extracted radiomic features contribute to improved prognostic information. Moreover, performance of baseline radiomic features or clinical parameters was poor, probably affected by heterogeneity within and between datasets

    An open-source nnU-net algorithm for automatic segmentation of MRI scans in the male pelvis for adaptive radiotherapy

    Get PDF
    BackgroundAdaptive MRI-guided radiotherapy (MRIgRT) requires accurate and efficient segmentation of organs and targets on MRI scans. Manual segmentation is time-consuming and variable, while deformable image registration (DIR)-based contour propagation may not account for large anatomical changes. Therefore, we developed and evaluated an automatic segmentation method using the nnU-net framework.MethodsThe network was trained on 38 patients (76 scans) with localized prostate cancer and tested on 30 patients (60 scans) with localized prostate, metastatic prostate, or bladder cancer treated at a 1.5 T MRI-linac at our institution. The performance of the network was compared with the current clinical workflow based on DIR. The segmentation accuracy was evaluated using the Dice similarity coefficient (DSC), mean surface distance (MSD), and Hausdorff distance (HD) metrics.ResultsThe trained network successfully segmented all 600 structures in the test set. High similarity was obtained for most structures, with 90% of the contours having a DSC above 0.9 and 86% having an MSD below 1 mm. The largest discrepancies were found in the sigmoid and colon structures. Stratified analysis on cancer type showed that the best performance was seen in the same type of patients that the model was trained on (localized prostate). Especially in patients with bladder cancer, the performance was lower for the bladder and the surrounding organs. A complete automatic delineation workflow took approximately 1 minute. Compared with contour transfer based on the clinically used DIR algorithm, the nnU-net performed statistically better across all organs, with the most significant gain in using the nnU-net seen for organs subject to more considerable volumetric changes due to variation in the filling of the rectum, bladder, bowel, and sigmoid.ConclusionWe successfully trained and tested a network for automatically segmenting organs and targets for MRIgRT in the male pelvis region. Good test results were seen for the trained nnU-net, with test results outperforming the current clinical practice using DIR-based contour propagation at the 1.5 T MRI-linac. The trained network is sufficiently fast and accurate for clinical use in an online setting for MRIgRT. The model is provided as open-source

    Magnetic order in orbital models of the iron pnictides

    Full text link
    We examine the appearance of the experimentally-observed stripe spin-density-wave magnetic order in five different orbital models of the iron pnictide parent compounds. A restricted mean-field ansatz is used to determine the magnetic phase diagram of each model. Using the random phase approximation, we then check this phase diagram by evaluating the static spin susceptibility in the paramagnetic state close to the mean-field phase boundaries. The momenta for which the susceptibility is peaked indicate in an unbiased way the actual ordering vector of the nearby mean-field state. The dominant orbitally resolved contributions to the spin susceptibility are also examined to determine the origin of the magnetic instability. We find that the observed stripe magnetic order is possible in four of the models, but it is extremely sensitive to the degree of the nesting between the electron and hole Fermi pockets. In the more realistic five-orbital models, this order competes with a strong-coupling incommensurate state which appears to be controlled by details of the electronic structure below the Fermi energy. We conclude by discussing the implications of our work for the origin of the magnetic order in the pnictides.Comment: 19 pages, 19 figures; published version, typos corrected, references adde

    Increased Production of IL-17A-Producing γδ T Cells in the Thymus of Filaggrin-Deficient Mice

    Get PDF
    Mutations in the filaggrin gene (Flg) are associated with increased systemic levels of Th17 cells and increased IL-17A production following antigen exposure in both humans and mice. In addition to Th17 cells, γδ T cells can produce IL-17A. The differentiation of γδ T cells to either IFNγ or IL-17A-producing (γδT17) cells is mainly determined in the thymus. Interestingly, it has been reported that filaggrin is expressed in the Hassall bodies in the human thymic medulla. However, whether filaggrin affects γδ T cell development is not known. Here, we show that filaggrin-deficient flaky tail (ft/ft) mice have an increased number of γδT17 cells in the spleen, epidermis, and thymus compared to wild-type (WT) mice. We demonstrate that filaggrin is expressed in the mouse thymic medulla and that blocking the egress of cells from the thymus results in accumulation of Vγ2+ γδT17 cells in the thymus of adult ft/ft mice. Finally, we find increased T cell receptor expression levels on γδ T cells and increased levels of IL-6 and IL-23 in the thymus of ft/ft mice. These findings demonstrate that filaggrin is expressed in the mouse thymic medulla and that production of Vγ2+ γδT17 cells is dysregulated in filaggrin-deficient ft/ft mice
    corecore