194 research outputs found

    Running wheel activity in the white rat as a function of activity restriction and food deprivation

    Full text link
    Thesis (Ph.D.)--Boston UniversityThe current study was conducted to determine whether restriction acts as a drive when suitable controls for the hunger drive are provided. The employment of hunger drive provided a systematic comparison between the two drives, activity and hunger, as well as answering the question of of whether Hill's findings of increases in running following restriction was produced by restriction alone or confounded by mild hunger states, together with restriction. In summary, the present study examined the following sets of relationships: (1) the effects of length of restriction on running activity; (2) the effects of level of food deprivation on running activity; (3) the effectsof length of restriction on running activity as a function of levels of food deprivation; (4) the interrelationships of the two drive variables when individual differences in running behavior are considered. [TRUNCATED

    Equation-of-state insensitive relations after GW170817

    Get PDF
    The thermodynamic relation between pressure and density (i.e., the equation of state) of cold supranuclear matter is critical in describing neutron stars, yet it remains one of the largest uncertainties in nuclear physics. The extraction of tidal deformabilities from the gravitational waves emitted in the coalescence of neutron star binaries, such as GW170817, is a promising tool to probe this thermodynamic relation. Equation-of-state insensitive relations between symmetric and antisymmetric combinations of individual tidal deformabilities, the so-called “binary Love relations”, have proven important to infer the radius of neutron stars, and thus constrain the equation of state, from such gravitational waves. A similar set of relations between the moment of inertia, the tidal deformability, the quadrupole moment, and the compactness of neutron stars, the so-called “I-Love-Q” and “C-Love” relations, allow for future tests of General Relativity in the extreme gravity regime. But even the most insensitive of such relations still presents some degree of equation-of-state variability that could introduce systematic uncertainties in parameter extraction and in model selection. We here reduce this variability by more than 50% by imposing a prior on the allowed set of equations of state, derived from the posteriors generated from the analysis of GW170817. The resulting increase in insensitivity reduces systematic uncertainties in the extraction of the tidal deformability from future gravitational wave observations, although statistical uncertainties currently dominate the error budget, and will continue to do so until the era of Voyager-class detectors

    Open-Loop Flight Testing of COBALT GN&C Technologies for Precise Soft Landing

    Get PDF
    A terrestrial, open-loop (OL) flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) platform was conducted onboard the Masten Xodiac suborbital rocket testbed, with support through the NASA Advanced Exploration Systems (AES), Game Changing Development (GCD), and Flight Opportunities (FO) Programs. The COBALT platform integrates NASA Guidance, Navigation and Control (GN&C) sensing technologies for autonomous, precise soft landing, including the Navigation Doppler Lidar (NDL) velocity and range sensor and the Lander Vision System (LVS) Terrain Relative Navigation (TRN) system. A specialized navigation filter running onboard COBALT fuzes the NDL and LVS data in real time to produce a precise navigation solution that is independent of the Global Positioning System (GPS) and suitable for future, autonomous planetary landing systems. The OL campaign tested COBALT as a passive payload, with COBALT data collection and filter execution, but with the Xodiac vehicle Guidance and Control (G&C) loops closed on a Masten GPS-based navigation solution. The OL test was performed as a risk reduction activity in preparation for an upcoming 2017 closed-loop (CL) flight campaign in which Xodiac G&C will act on the COBALT navigation solution and the GPS-based navigation will serve only as a backup monitor

    COBALT CoOperative Blending of Autonomous Landing Technology

    Get PDF
    COBALT is a terrestrial test platform for development and maturation of GN&C (Guidance, Navigation and Control) technologies for PL&HA (Precision Landing and Hazard Avoidance). The project is developing a third generation, Langley Navigation Doppler Lidar (NDL) for ultra-precise velocity and range measurements, which will be integrated and tested with the JPL Lander Vision System (LVS) for Terrain Relative Navigation (TRN) position estimates. These technologies together provide navigation that enables controlled precision landing. The COBALT hardware will be integrated in 2017 into the GN&C subsystem of the Xodiac rocket-propulsive Vertical Test Bed (VTB) developed by Masten Space Systems (MSS), and two terrestrial flight campaigns will be conducted: one open-loop (i.e., passive) and one closed-loop (i.e., active)

    A comparison of guiding techniques for out-of-view objects in full-coverage displays

    Get PDF
    Full-coverage displays can place visual content anywhere on the interior surfaces of a room (e.g., a weather display near the coat stand). In these settings, digital artefacts can be located behind the user and out of their field of view - meaning that it can be difficult to notify the user when these artefacts need attention. Although much research has been carried out on notification, little is known about how best to direct people to the necessary location in room environments. We designed five diverse attention-guiding techniques for full-coverage display rooms, and evaluated them in a study where participants completed search tasks guided by the different techniques. Our study provides new results about notification in full-coverage displays: we showed benefits of persistent visualisations that could be followed all the way to the target and that indicate distance-to-target. Our findings provide useful information for improving the usability of interactive full-coverage environments.PostprintPostprin

    COBALT: A GN&C Payload for Testing ALHAT Capabilities in Closed-Loop Terrestrial Rocket Flights

    Get PDF
    The COBALT (CoOperative Blending of Autonomous Landing Technology) payload is being developed within NASA as a risk reduction activity to mature, integrate and test ALHAT (Autonomous precision Landing and Hazard Avoidance Technology) systems targeted for infusion into near-term robotic and future human space flight missions. The initial COBALT payload instantiation is integrating the third-generation ALHAT Navigation Doppler Lidar (NDL) sensor, for ultra high-precision velocity plus range measurements, with the passive-optical Lander Vision System (LVS) that provides Terrain Relative Navigation (TRN) global-position estimates. The COBALT payload will be integrated onboard a rocket-propulsive terrestrial testbed and will provide precise navigation estimates and guidance planning during two flight test campaigns in 2017 (one open-loop and closed- loop). The NDL is targeting performance capabilities desired for future Mars and Moon Entry, Descent and Landing (EDL). The LVS is already baselined for TRN on the Mars 2020 robotic lander mission. The COBALT platform will provide NASA with a new risk-reduction capability to test integrated EDL Guidance, Navigation and Control (GN&C) components in closed-loop flight demonstrations prior to the actual mission EDL

    Equation-of-state insensitive relations after GW170817

    Get PDF
    The thermodynamic relation between pressure and density (i.e., the equation of state) of cold supranuclear matter is critical in describing neutron stars, yet it remains one of the largest uncertainties in nuclear physics. The extraction of tidal deformabilities from the gravitational waves emitted in the coalescence of neutron star binaries, such as GW170817, is a promising tool to probe this thermodynamic relation. Equation-of-state insensitive relations between symmetric and antisymmetric combinations of individual tidal deformabilities, the so-called “binary Love relations”, have proven important to infer the radius of neutron stars, and thus constrain the equation of state, from such gravitational waves. A similar set of relations between the moment of inertia, the tidal deformability, the quadrupole moment, and the compactness of neutron stars, the so-called “I-Love-Q” and “C-Love” relations, allow for future tests of General Relativity in the extreme gravity regime. But even the most insensitive of such relations still presents some degree of equation-of-state variability that could introduce systematic uncertainties in parameter extraction and in model selection. We here reduce this variability by more than 50% by imposing a prior on the allowed set of equations of state, derived from the posteriors generated from the analysis of GW170817. The resulting increase in insensitivity reduces systematic uncertainties in the extraction of the tidal deformability from future gravitational wave observations, although statistical uncertainties currently dominate the error budget, and will continue to do so until the era of Voyager-class detectors
    • …
    corecore