6,845 research outputs found

    Players\u27 Pools: A Potential Drain

    Full text link
    Indian casino operators have been seeking ways to operate Nevada style table games within existing laws. Under the 1988 Indian Gaming Regulatory Act, those casinos that do not have compacts with their states are permitted to operate only Class II gaming operations. In order to enable such casinos to operate table card games which are not backed by the casino, players\u27 pools have evolved in which gaming wins are backed by the players themselves. The operation of players\u27 pool gaming has been subject to a number of uncertainties, and it does expose the casinos to some unusual risks. Indian casinos need to be cognizant of these risks and must control their players\u27 pool operations to avoid potential losses and to maintain the integrity of their operations

    Reduced Joule heating in nanowires

    Full text link
    The temperature distribution in nanowires due to Joule heating is studied analytically using a continuum model and a Green's function approach. We show that the temperatures reached in nanowires can be much lower than that predicted by bulk models of Joule heating, due to heat loss at the nanowire surface that is important at nanoscopic dimensions, even when the thermal conductivity of the environment is relatively low. In addition, we find that the maximum temperature in the nanowire scales weakly with length, in contrast to the bulk system. A simple criterion is presented to assess the importance of these effects. The results have implications for the experimental measurements of nanowire thermal properties, for thermoelectric applications, and for controlling thermal effects in nanowire electronic devices.Comment: 4 pages, 3 figures. To appear in Applied Physics Letter

    A kinetic Ising model study of dynamical correlations in confined fluids: Emergence of both fast and slow time scales

    Full text link
    Experiments and computer simulation studies have revealed existence of rich dynamics in the orientational relaxation of molecules in confined systems such as water in reverse micelles, cyclodextrin cavities and nano-tubes. Here we introduce a novel finite length one dimensional Ising model to investigate the propagation and the annihilation of dynamical correlations in finite systems and to understand the intriguing shortening of the orientational relaxation time that has been reported for small sized reverse micelles. In our finite sized model, the two spins at the two end cells are oriented in the opposite directions, to mimic the effects of surface that in real system fixes water orientation in the opposite directions. This produces opposite polarizations to propagate inside from the surface and to produce bulk-like condition at the centre. This model can be solved analytically for short chains. For long chains we solve the model numerically with Glauber spin flip dynamics (and also with Metropolis single-spin flip Monte Carlo algorithm). We show that model nicely reproduces many of the features observed in experiments. Due to the destructive interference among correlations that propagate from the surface to the core, one of the rotational relaxation time components decays faster than the bulk. In general, the relaxation of spins is non-exponential due to the interplay between various interactions. In the limit of strong coupling between the spins or in the limit of low temperature, the nature of relaxation of the spins undergoes a qualitative change with the emergence of a homogeneous dynamics where decay is predominantly exponential, again in agreement with experiments.Comment: 27 pages, 8 figure

    Detecting and quantifying the contribution made by aircraft emissions to ambient concentrations of nitrogen oxides in the vicinity of a large international airport

    Get PDF
    Plans to build a third runway at London Heathrow Airport (LHR) have been held back because of concerns that the development would lead to annual mean concentrations of nitrogen dioxide (NO2) in excess of EU Directives, which must be met by 2010. The dominant effect of other sources of NOX close to the airport, primarily from road traffic, makes it difficult to detect and quantify the contribution made by the airport to local NOX and NO2 concentrations. This work presents approaches that aim to detect and quantify the airport contribution to NOX at a network of seven measurement sites close to the airport. Two principal approaches are used. First, a graphical technique using bivariate polar plots that develops the idea of a pollution rose is used to help discriminate between different source types. The sampling uncertainties associated with the technique have been calculated through a randomised re-sampling approach. Second, the unique pattern of aircraft activity at LHR enables data filtering techniques to be used to statistically verify the presence of aircraft sources. It is shown that aircraft NOX sources can be detected to at least 2.7 km from the airport, despite that the airport contribution is very small at that distance. Using these approaches, estimates have been made of the airport contribution to long-term mean concentrations of NOX and NO2. At the airport boundary we estimate that approximately 28 % (34 μg m-3) of the annual mean NOX is due to airport operations. At background locations 2-3 km downwind of the airport we estimate that the upper limit of the airport contribution to be less than 15 % (< 10 μg m-3). This work also provides approaches that would help validate and refine dispersion modelling studies used for airport assessments

    Narrow-escape times for diffusion in microdomains with a particle-surface affinity: Mean-field results

    Full text link
    We analyze the mean time t_{app} that a randomly moving particle spends in a bounded domain (sphere) before it escapes through a small window in the domain's boundary. A particle is assumed to diffuse freely in the bulk until it approaches the surface of the domain where it becomes weakly adsorbed, and then wanders diffusively along the boundary for a random time until it desorbs back to the bulk, and etc. Using a mean-field approximation, we define t_{app} analytically as a function of the bulk and surface diffusion coefficients, the mean time it spends in the bulk between two consecutive arrivals to the surface and the mean time it wanders on the surface within a single round of the surface diffusion.Comment: 8 pages, 1 figure, submitted to JC

    Universality of Quantum Entropy for Extreme Black Holes

    Get PDF
    We consider the extremal limit of a black hole geometry of the Reissner-Nordstrom type and compute the quantum corrections to its entropy. Universally, the limiting geometry is the direct product of two 2-dimensional spaces and is characterized by just a few parameters. We argue that the quantum corrections to the entropy of such extremal black holes due to a massless scalar field have a universal behavior. We obtain explicitly the form of the quantum entropy in this extremal limit as function of the parameters of the limiting geometry. We generalize these results to black holes with toroidal or higher genus horizon topologies. In general, the extreme quantum entropy is completely determined by the spectral geometry of the horizon and in the ultra-extreme case it is just a determinant of the 2-dimensional Laplacian. As a byproduct of our considerations we obtain expressions for the quantum entropy of black holes which are not of the Reissner-Nordstrom type: the extreme dilaton and extreme Kerr-Newman black holes. In both cases the classical Bekenstein-Hawking entropy is modified by logarithmic corrections.Comment: 18 pages, latex, no figures, minor changes, to appear in Nucl. Phys.

    Entropies of Scalar Fields on Three Dimensional Black Holes

    Get PDF
    Thermodynamics of scalar fields is investigated in three dimensional black hole backgrounds in two approaches. One is mode expansion and direct computation of the partition sum, and the other is the Euclidean path integral approach. We obtain a number of exact results, for example, mode functions, Hartle-Hawking Green functions on the black holes, Green functions on a cone geometry, free energies and entropies. They constitute reliable bases for the thermodynamics of scalar fields. It is shown that thermodynamic quantities largely depend upon the approach to calculate them, boundary conditions for the scalar fields and regularization method. We find that, in general, the entropies are not proportional to the area of the horizon and that their divergent parts are not necessarily due to the existence of the horizon.Comment: 35 pages, Latex, 1 figure, postscript file attached at the en

    Cylindrical-wave diffraction by a rational wedge

    Get PDF
    In this paper, new expressions for the field produced by the diffraction of a cylindrical wave by a wedge, whose angle can be expressed as a rational multiple of π are given. The solutions are expressed in terms of source terms and real integrals that represent the diffracted field. The general result obtained includes as special cases, Macdonald's solution for diffraction by a half plane, a solution for Carslaw's problem of diffraction by a wedge of open angle 2π\3, and a new representation for the solution of the problem of diffraction by a mixed soft-hard half plane

    Modelling trends in OH radical concentrations using generalized additive models

    Get PDF
    During the TORCH campaign a zero dimensional box model based on the Master Chemical Mechanism was used to model concentrations of OH radicals. The model provided a close overall fit to measured concentrations but with some significant deviations. In this research, an approach was established for applying Generalized Additive Models (GAM) to atmospheric concentration data. Two GAM models were fitted to OH radical concentrations using TORCH data, the first using measured OH data and the second using MCM model results. GAM models with five smooth functions provided a close fit to the data with 78% of the deviance explained for measured OH and 83% for modelled OH. The GAM model for measured OH produced substantially better predictions of OH concentrations than the original MCM model results. The diurnal profile of OH concentration was reproduced and the predicted mean diurnal OH concentration was only 0.2% less than the measured concentration compared to 16.3% over-estimation by the MCM model. Photolysis reactions were identified as most important in explaining concentrations of OH. The GAM models combined both primary and secondary pollutants and also anthropogenic and biogenic species to explain changes in OH concentrations. Differences identified in the dependencies of modelled and measured OH concentrations, particularly for aromatic and biogenic species, may help to understand why the MCM model predictions sometimes disagree with measurements of atmospheric species

    Single-Species Three-Particle Reactions in One Dimension

    Full text link
    Renormalization group calculations for fluctuation-dominated reaction-diffusion systems are generally in agreement with simulations and exact solutions. However, simulations of the single-species reactions 3A->(0,A,2A) at their upper critical dimension d_c=1 have found asymptotic densities argued to be inconsistent with renormalization group predictions. We show that this discrepancy is resolved by inclusion of the leading corrections to scaling, which we derive explicitly and show to be universal, a property not shared by the A+A->(0,A) reactions. Finally, we demonstrate that two previous Smoluchowski approaches to this problem reduce, with various corrections, to a single theory which yields, surprisingly, the same asymptotic density as the renormalization group.Comment: 8 pages, 5 figs, minor correction
    corecore