778 research outputs found
Unified Models of Molecular Emission from Class 0 Protostellar Outflow Sources
Low mass star-forming regions are more complex than the simple spherically
symmetric approximation that is often assumed. We apply a more realistic
infall/outflow physical model to molecular/continuum observations of three late
Class 0 protostellar sources with the aims of (a) proving the applicability of
a single physical model for all three sources, and (b) deriving physical
parameters for the molecular gas component in each of the sources.
We have observed several molecular species in multiple rotational
transitions. The observed line profiles were modelled in the context of a
dynamical model which incorporates infall and bipolar outflows, using a three
dimensional radiative transfer code. This results in constraints on the
physical parameters and chemical abundances in each source.
Self-consistent fits to each source are obtained. We constrain the
characteristics of the molecular gas in the envelopes as well as in the
molecular outflows. We find that the molecular gas abundances in the infalling
envelope are reduced, presumably due to freeze-out, whilst the abundances in
the molecular outflows are enhanced, presumably due to dynamical activity.
Despite the fact that the line profiles show significant source-to-source
variation, which primarily derives from variations in the outflow viewing
angle, the physical parameters of the gas are found to be similar in each core.Comment: MNRAS 12 pages, 16 figure
Analogue Quantum Simulation: A Philosophical Prospectus
This paper provides the first systematic philosophical analysis of an increasingly important part of modern scientific practice: analogue quantum simulation. We introduce the distinction between `simulation' and `emulation' as applied in the context of two case studies. Based upon this distinction, and building upon ideas from the recent philosophical literature on scientific understanding, we provide a normative framework to isolate and support the goals of scientists undertaking analogue quantum simulation and emulation. We expect our framework to be useful to both working scientists and philosophers of science interested in cutting-edge scientific practice
Observations and radiative transfer modelling of a massive dense cold core in G333
Cold massive cores are one of the earliest manifestations of high mass star
formation. Following the detection of SiO emission from G333.125-0.562, a cold
massive core, further investigations of the physics, chemistry and dynamics of
this object has been carried out. Mopra and NANTEN2 molecular line profile
observations, Australia Telescope Compact Array (ATCA) line and continuum
emission maps, and Spitzer 24 and 70 \mum images were obtained. These new data
further constrain the properties of this prime example of the very early stages
of high mass star formation. A model for the source was constructed and
compared directly with the molecular line data using a 3D molecular line
transfer code - MOLLIE. The ATCA data reveal that G333.125-0.562 is composed of
two sources. One of the sources is responsible for the previously detected
molecular outflow and is detected in the Spitzer 24 and 70 \mum band data.
Turbulent velocity widths are lower than other more active regions of G333
which reflects the younger evolutionary stage and/or lower mass of this core.
The molecular line modelling requires abundances of the CO isotopes that
strongly imply heavy depletion due to freeze-out of this species onto dust
grains. The principal cloud is cold, moderately turbulent and possesses an
outflow which indicates the presence of a central driving source. The secondary
source could be an even less evolved object as no apparent associations with
continuum emissions at (far-)infrared wavelengths.Comment: 10 pages, accepted to MNRA
Analogue Quantum Simulation: A Philosophical Prospectus
This paper provides the first systematic philosophical analysis of an increasingly important part of modern scientific practice: analogue quantum simulation. We introduce the distinction between `simulation' and `emulation' as applied in the context of two case studies. Based upon this distinction, and building upon ideas from the recent philosophical literature on scientific understanding, we provide a normative framework to isolate and support the goals of scientists undertaking analogue quantum simulation and emulation. We expect our framework to be useful to both working scientists and philosophers of science interested in cutting-edge scientific practice
- …