254 research outputs found

    Tracking Triploid Mortalities Of Eastern Oysters Crassostrea virginica In The Virginia Portion Of The Chesapeake Bay

    Get PDF
    Since 2012, aquacultured eastern oysters Crassostrea virginica have been reported by oyster farmers to display mortality approaching 30%, and in some cases 85%, in areas of the lower Chesapeake Bay, VA. Based on accounts from industry, this mortality has typically affected 1-y-old oysters between May and early July, and has tended to occur in triploid oysters, which represent the vast bulk of production in the area. During this period, samples submitted for pathology have not revealed the presence of major pathogens as a cause. In 2015, to gain deeper insight into this mortality and determine whether specific sites, ploidy condition, or genetic lines were affected, oyster seed commercially produced in early 2014 were obtained from four lines, one diploid (2N DEBY) and three triploid (3N DEBY, 3N hANA, and 3N Northern). These lines were deployed in July 2014 at aquaculture farms at five Chesapeake Bay locations: Locklies Creek and Milford Haven on the western shore, and Pungoteague Creek, Nassawadox Creek, and Cherrystone Creek on the Eastern Shore. During this study, mortality was observed to peak in June at most sites, reaching a mean mortality across all tested lines of 17.0% and a cumulative mortality for the study period of 32.0% at Nassawadox Creek, the site most severely affected by mortality that followed the expected early summer mortality pattern. Interval mortality at all sites decreased to under 5% after June, but cumulative levels for the study period reached from 8.8% to 18.6% even at the sites least affected by mortality. This represents a high level of mortality given the documented absence of material involvement by major oyster pathogens such as Hapolosporidium nelsoni and Perkinsus marinus. Infiltration of gill tissues by hemocytes, observed in up to 33% of individuals at Nassawadox Creek coincident with the increase in mortality, was the only pathology observed. Harmful algal blooms were not associated with the mortality, nor were abnormal temperatures or salinities. There was no clear relationship of mortality to oyster genetic heritage, although there was variability in susceptibility among oyster lines and interactions between lines and specific sites. At some locations and in comparison with diploids, triploid oysters appeared to be more susceptible to mortality. Mortality in triploids was coincident with the timing of peak gametogenic development in diploids. Given the lack of involvement by major pathogens and the possible association of mortality with oyster gametogenesis, future work should seek to better understand the suite of environmental stressors potentially impacting cultured oysters in these systems and their interactions with the physiology and energetics of these animals

    Detection of toxins and harmful algal bloom cells in shellfish hatcheries and efforts toward removal

    Get PDF
    As the start of the supply chain for the aquaculture industry, hatcheries are a crucial component in the success of oyster and northern quahog (hard clam) aquaculture on the East Coast of the US. Intermittent failures in hatchery production slow industry growth and reduce profits. To begin investigations into the possible role of algal toxins in hatchery production failure, post-treatment hatchery water from one research and four commercial hatcheries in lower Chesapeake Bay, USA, was sampled for (1) toxin presence and (2) harmful algal bloom (HAB) cell enumeration. Overall, seven toxin classes, likely produced by six different HAB species, were detected in post- treatment hatchery water, despite a lack of visually identifiable HAB cells within the facility. Toxins detected include pectenotoxin-2, goniodomin A, karlotoxin-1 and karlotoxin-3, okadaic acid and dinophysistoxin-1, azaspiracid-1 and azaspiracid-2, brevetoxin-2, and microcystin-LR. In a second, more targeted study, two batches of source water were followed and sampled at each step of a water-treatment process in the VIMS Aquaculture Genetics and Breeding Technology Center research hatchery in Gloucester Point, Virginia, USA. Two treatment steps showed particular promise for decreasing the concentrations of the three toxins detected in the source water, 24-h circulation through sand filters and activated charcoal filtration. Toxin concentrations of pectenotoxin-2, 3.53 ± 0.56 pg m

    Investigating the Host-Range of the Rust Fungus Puccinia psidii sensu lato across Tribes of the Family Myrtaceae Present in Australia

    Get PDF
    The exotic rust fungus Puccinia psidii sensu lato was first detected in Australia in April 2010. This study aimed to determine the host-range potential of this accession of the rust by testing its pathogenicity on plants of 122 taxa, representative of the 15 tribes of the subfamily Myrtoideae in the family Myrtaceae. Each taxon was tested in two separate trials (unless indicated otherwise) that comprised up to five replicates per taxon and six replicates of a positive control (Syzygium jambos). No visible symptoms were observed on the following four taxa in either trial: Eucalyptus grandis×camaldulensis, E. moluccana, Lophostemon confertus and Sannantha angusta. Only small chlorotic or necrotic flecks without any uredinia (rust fruiting bodies) were observed on inoculated leaves of seven other taxa (Acca sellowiana, Corymbia calophylla ‘Rosea’, Lophostemon suaveolens, Psidium cattleyanum, P. guajava ‘Hawaiian’ and ‘Indian’, Syzygium unipunctatum). Fully-developed uredinia were observed on all replicates across both trials of 28 taxa from 8 tribes belonging to the following 17 genera: Agonis, Austromyrtus, Beaufortia, Callistemon, Calothamnus, Chamelaucium, Darwinia, Eucalyptus, Gossia, Kunzea, Leptospermum, Melaleuca, Metrosideros, Syzygium, Thryptomene, Tristania, Verticordia. In contrast, the remaining 83 taxa inoculated, including the majority of Corymbia and Eucalyptus species, developed a broad range of symptoms, often across the full spectrum, from fully-developed uredinia to no visible symptoms. These results were encouraging as they indicate that some levels of genetic resistance to the rust possibly exist in these taxa. Overall, our results indicated no apparent association between the presence or absence of disease symptoms and the phylogenetic relatedness of taxa. It is most likely that the majority of the thousands of Myrtaceae species found in Australia have the potential to become infected to some degree by the rust, although this wide host range may not be fully realized in the field

    Measurement of the running of the QED coupling in small-angle Bhabha scattering at LEP

    Full text link
    Using the OPAL detector at LEP, the running of the effective QED coupling alpha(t) is measured for space-like momentum transfer from the angular distribution of small-angle Bhabha scattering. In an almost ideal QED framework, with very favourable experimental conditions, we obtain: Delta alpha(-6.07GeV^2) - Delta alpha(-1.81GeV^2) = (440 pm 58 pm 43 pm 30) X 10^-5, where the first error is statistical, the second is the experimental systematic and the third is the theoretical uncertainty. This agrees with current evaluations of alpha(t).The null hypothesis that alpha remains constant within the above interval of -t is excluded with a significance above 5sigma. Similarly, our results are inconsistent at the level of 3sigma with the hypothesis that only leptonic loops contribute to the running. This is currently the most significant direct measurment where the running alpha(t) is probed differentially within the measured t range.Comment: 43 pages, 12 figures, Submitted to Euro. Phys. J.

    A Measurement of Rb using a Double Tagging Method

    Get PDF
    The fraction of Z to bbbar events in hadronic Z decays has been measured by the OPAL experiment using the data collected at LEP between 1992 and 1995. The Z to bbbar decays were tagged using displaced secondary vertices, and high momentum electrons and muons. Systematic uncertainties were reduced by measuring the b-tagging efficiency using a double tagging technique. Efficiency correlations between opposite hemispheres of an event are small, and are well understood through comparisons between real and simulated data samples. A value of Rb = 0.2178 +- 0.0011 +- 0.0013 was obtained, where the first error is statistical and the second systematic. The uncertainty on Rc, the fraction of Z to ccbar events in hadronic Z decays, is not included in the errors. The dependence on Rc is Delta(Rb)/Rb = -0.056*Delta(Rc)/Rc where Delta(Rc) is the deviation of Rc from the value 0.172 predicted by the Standard Model. The result for Rb agrees with the value of 0.2155 +- 0.0003 predicted by the Standard Model.Comment: 42 pages, LaTeX, 14 eps figures included, submitted to European Physical Journal

    Measurement of the B+ and B-0 lifetimes and search for CP(T) violation using reconstructed secondary vertices

    Get PDF
    The lifetimes of the B+ and B-0 mesons, and their ratio, have been measured in the OPAL experiment using 2.4 million hadronic Z(0) decays recorded at LEP. Z(0) --> b (b) over bar decays were tagged using displaced secondary vertices and high momentum electrons and muons. The lifetimes were then measured using well-reconstructed charged and neutral secondary vertices selected in this tagged data sample. The results aretau(B+) = 1.643 +/- 0.037 +/- 0.025 pstau(Bo) = 1.523 +/- 0.057 +/- 0.053 pstau(B+)/tau(Bo) = 1.079 +/- 0.064 +/- 0.041,where in each case the first error is statistical and the second systematic.A larger data sample of 3.1 million hadronic Z(o) decays has been used to search for CP and CPT violating effects by comparison of inclusive b and (b) over bar hadron decays, No evidence fur such effects is seen. The CP violation parameter Re(epsilon(B)) is measured to be Re(epsilon(B)) = 0.001 +/- 0.014 +/- 0.003and the fractional difference between b and (b) over bar hadron lifetimes is measured to(Delta tau/tau)(b) = tau(b hadron) - tau((b) over bar hadron)/tau(average) = -0.001 +/- 0.012 +/- 0.008

    Search for the standard model Higgs boson at LEP

    Get PDF

    Manipulation of Signaling Thresholds in “Engineered Stem Cell Niches” Identifies Design Criteria for Pluripotent Stem Cell Screens

    Get PDF
    In vivo, stem cell fate is regulated by local microenvironmental parameters. Governing parameters in this stem cell niche include soluble factors, extra-cellular matrix, and cell-cell interactions. The complexity of this in vivo niche limits analyses into how individual niche parameters regulate stem cell fate. Herein we use mouse embryonic stem cells (mESC) and micro-contact printing (µCP) to investigate how niche size controls endogenous signaling thresholds. µCP is used to restrict colony diameter, separation, and degree of clustering. We show, for the first time, spatial control over the activation of the Janus kinase/signal transducer and activator of transcription pathway (Jak-Stat). The functional consequences of this niche-size-dependent signaling control are confirmed by demonstrating that direct and indirect transcriptional targets of Stat3, including members of the Jak-Stat pathway and pluripotency-associated genes, are regulated by colony size. Modeling results and empirical observations demonstrate that colonies less than 100 µm in diameter are too small to maximize endogenous Stat3 activation and that colonies separated by more than 400 µm can be considered independent from each other. These results define parameter boundaries for the use of ESCs in screening studies, demonstrate the importance of context in stem cell responsiveness to exogenous cues, and suggest that niche size is an important parameter in stem cell fate control

    Insights into Eyestalk Ablation Mechanism to Induce Ovarian Maturation in the Black Tiger Shrimp

    Get PDF
    Eyestalk ablation is commonly practiced in crustacean to induce ovarian maturation in captivity. The molecular mechanism of the ablation has not been well understood, preventing a search for alternative measures to induce ovarian maturation in aquaculture. This is the first study to employ cDNA microarray to examine effects of eyestalk ablation at the transcriptomic level and pathway mapping analysis to identify potentially affected biological pathways in the black tiger shrimp (Penaeus monodon). Microarray analysis comparing between gene expression levels of ovaries from eyestalk-intact and eyestalk-ablated brooders revealed 682 differentially expressed transcripts. Based on Hierarchical clustering of gene expression patterns, Gene Ontology annotation, and relevant functions of these differentially expressed genes, several gene groups were further examined by pathway mapping analysis. Reverse-transcriptase quantitative PCR analysis for some representative transcripts confirmed microarray data. Known reproductive genes involved in vitellogenesis were dramatically increased during the ablation. Besides these transcripts expected to be induced by the ablation, transcripts whose functions involved in electron transfer mechanism, immune responses and calcium signal transduction were significantly altered following the ablation. Pathway mapping analysis revealed that the activation of gonadotropin-releasing hormone signaling, calcium signaling, and progesterone-mediated oocyte maturation pathways were putatively crucial to ovarian maturation induced by the ablation. These findings shed light on several possible molecular mechanisms of the eyestalk ablation effect and allow more focused investigation for an ultimate goal of finding alternative methods to replace the undesirable practice of the eyestalk ablation in the future
    corecore