191 research outputs found

    Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites

    Get PDF
    BACKGROUND: The apicomplexan parasite Plasmodium falciparum causes the most severe form of malaria in humans. After invasion into erythrocytes, asexual parasite stages drastically alter their host cell and export remodeling and virulence proteins. Previously, we have reported identification and functional analysis of a short motif necessary for export of proteins out of the parasite and into the red blood cell. RESULTS: We have developed software for the prediction of exported proteins in the genus Plasmodium, and identified exported proteins conserved between malaria parasites infecting rodents and the two major causes of human malaria, P. falciparum and P. vivax. This conserved 'exportome' is confined to a few subtelomeric chromosomal regions in P. falciparum and the synteny of these and surrounding regions is conserved in P. vivax. We have identified a novel gene family PHIST (for Plasmodium helical interspersed subtelomeric family) that shares a unique domain with 72 paralogs in P. falciparum and 39 in P. vivax; however, there is only one member in each of the three species studied from the P. berghei lineage. CONCLUSION: These data suggest radiation of genes encoding remodeling and virulence factors from a small number of loci in a common Plasmodium ancestor, and imply a closer phylogenetic relationship between the P. vivax and P. falciparum lineages than previously believed. The presence of a conserved 'exportome' in the genus Plasmodium has important implications for our understanding of both common mechanisms and species-specific differences in host-parasite interactions, and may be crucial in developing novel antimalarial drugs to this infectious disease

    A Systems-Based Analysis of Plasmodium vivax Lifecycle Transcription from Human to Mosquito

    Get PDF
    Most of the 250 million malaria cases outside of Africa are caused by the parasite Plasmodium vivax. Although drugs can be used to treat P. vivax malaria, drug resistance is spreading and there is no available vaccine. Because this species cannot be readily grown in the laboratory there are added challenges to understanding the function of the many hypothetical genes in the genome. We isolated transcriptional messages from parasites growing in human blood and in mosquitoes, labeled the messages and measured how their levels for different parasite growth conditions. The data for 5,419 parasite genes shows extensive changes as the parasite moves between human and mosquito and reveals highly expressed genes whose proteins might represent new therapeutic targets for experimental vaccines. We discover sets of genes that are likely to play a role in the earliest stages of hepatocyte infection. We find intriguing differences in the expression patterns of different blood stage parasites that may be related to host-response status

    A Method for Amplicon Deep Sequencing of Drug Resistance Genes in Plasmodium falciparum Clinical Isolates from India.

    Get PDF
    A major challenge to global malaria control and elimination is early detection and containment of emerging drug resistance. Next-generation sequencing (NGS) methods provide the resolution, scalability, and sensitivity required for high-throughput surveillance of molecular markers of drug resistance. We have developed an amplicon sequencing method on the Ion Torrent PGM platform for targeted resequencing of a panel of six Plasmodium falciparum genes implicated in resistance to first-line antimalarial therapy, including artemisinin combination therapy, chloroquine, and sulfadoxine-pyrimethamine. The protocol was optimized using 12 geographically diverse P. falciparum reference strains and successfully applied to multiplexed sequencing of 16 clinical isolates from India. The sequencing results from the reference strains showed 100% concordance with previously reported drug resistance-associated mutations. Single-nucleotide polymorphisms (SNPs) in clinical isolates revealed a number of known resistance-associated mutations and other nonsynonymous mutations that have not been implicated in drug resistance. SNP positions containing multiple allelic variants were used to identify three clinical samples containing mixed genotypes indicative of multiclonal infections. The amplicon sequencing protocol has been designed for the benchtop Ion Torrent PGM platform and can be operated with minimal bioinformatics infrastructure, making it ideal for use in countries that are endemic for the disease to facilitate routine large-scale surveillance of the emergence of drug resistance and to ensure continued success of the malaria treatment policy

    The impact of hypoglycaemia on quality of life among adults with type 1 diabetes:Results from “YourSAY: Hypoglycaemia”

    Get PDF
    Aims Research on hypoglycaemia and quality of life (QoL) has focused mostly on severe hypoglycaemia and psychological outcomes, with less known about other aspects of hypoglycaemia (e.g., self-treated episodes) and impacts on other QoL domains (e.g., relationships). Therefore, we examined the impact of all aspects of hypoglycaemia on QoL in adults with type 1 diabetes (T1DM). Methods Participants completed an online survey, including assessment of hypoglycaemia-specific QoL (using the 12-item Hypoglycaemia Impact Profile). Mann-Whitney U tests examined differences in hypoglycaemia-specific QoL by hypoglycaemia frequency, severity, and awareness. Hierarchical linear regression examined associations with QoL. Results Participants were 1028 adults with T1DM (M ± SD age: 47 ± 15 years; diabetes duration: 27 ± 16 years). Severe and self-treated hypoglycaemia and impaired awareness negatively impacted on overall QoL and several QoL domains, including leisure activities, physical health, ability to keep fit/be active, sleep, emotional well-being, spontaneity, independence, work/studies, and dietary freedom. Diabetes distress was most strongly associated with hypoglycaemia-specific QoL, followed by generic emotional well-being, fear of hypoglycaemia, and confidence in managing hypoglycaemia. Hypoglycaemia frequency and awareness were no longer significantly associated with QoL once psychological factors were considered. Conclusions Hypoglycaemia negatively impacts on several QoL domains. Psychological factors supersede the effect of hypoglycaemia frequency and awareness in accounting for this negative impact

    Advances in Basic and Translational Research as Part of the Center for the Study of Complex Malaria in India.

    Get PDF
    The Center for the Study of Complex Malaria in India (CSCMi) is one of 10 International Centers of Excellence in Malaria Research funded by the National Institutes of Health since 2010. The Center combines innovative research with capacity building and technology transfer to undertake studies with clinical and translational impact that will move malaria control in India toward the ultimate goal of malaria elimination/eradication. A key element of each research site in the four states of India (Tamil Nadu, Gujarat, Odisha, and Meghalaya) has been undertaking community- and clinic-based epidemiology projects to characterize the burden of malaria in the region. Demographic and clinical data and samples collected during these studies have been used in downstream projects on, for example, the widespread use of mosquito repellants, the population genomics of Plasmodium vivax, and the serological responses to P. vivax and Plasmodium falciparum antigens that reflect past or present exposure. A focus has been studying the pathogenesis of severe malaria caused by P. falciparum through magnetic resonance imaging of cerebral malaria patients. Here we provide a snapshot of some of the basic and applied research the CSCMi has undertaken over the past 12 years and indicate the further research and/or clinical and translational impact these studies have had

    Clinical and epidemiological characterization of severe Plasmodium vivax malaria in Gujarat, India.

    Get PDF
    The mounting evidence supporting the capacity of Plasmodium vivax to cause severe disease has prompted the need for a better characterization of the resulting clinical complications. India is making progress with reducing malaria, but epidemics of severe vivax malaria in Gujarat, one of the main contributors to the vivax malaria burden in the country, have been reported recently and may be the result of a decrease in transmission and immune development. Over a period of one year, we enrolled severe malaria patients admitted at the Civil Hospital in Ahmedabad, the largest city in Gujarat, to investigate the morbidity of severe vivax malaria compared to severe falciparum malaria. Patients were submitted to standard thorough clinical and laboratory investigations and only PCR-confirmed infections were selected for the present study. Severevivax malaria (30 patients) was more frequent than severe falciparum malaria (8 patients) in our setting, and it predominantly affected adults (median age 32 years, interquartile range 22.5 years). This suggests a potential age shift in anti-malarial immunity, likely to result from the recent decrease in transmission across India. The clinical presentation of severe vivax patients was in line with previous reports, with jaundice as the most common complication. Our findings further support the need for epidemiological studies combining clinical characterization of severe vivax malaria and serological evaluation of exposure markers to monitor the impact of elimination programmes

    Genetic Indicators of Drug Resistance in the Highly Repetitive Genome of Trichomonas vaginalis

    Get PDF
    Trichomonas vaginalis, the most common nonviral sexually transmitted parasite, causes ∼283 million trichomoniasis infections annually and is associated with pregnancy complications and increased risk of HIV-1 acquisition. The antimicrobial drug metronidazole is used for treatment, but in a fraction of clinical cases, the parasites can become resistant to this drug. We undertook sequencing of multiple clinical isolates and lab derived lines to identify genetic markers and mechanisms of metronidazole resistance. Reduced representation genome sequencing of ∼100 T. vaginalis clinical isolates identified 3,923 SNP markers and presence of a bipartite population structure. Linkage disequilibrium was found to decay rapidly, suggesting genome-wide recombination and the feasibility of genetic association studies in the parasite. We identified 72 SNPs associated with metronidazole resistance, and a comparison of SNPs within several lab-derived resistant lines revealed an overlap with the clinically resistant isolates. We identified SNPs in genes for which no function has yet been assigned, as well as in functionally-characterized genes relevant to drug resistance (e.g., pyruvate:ferredoxin oxidoreductase). Transcription profiles of resistant strains showed common changes in genes involved in drug activation (e.g., flavin reductase), accumulation (e.g., multidrug resistance pump), and detoxification (e.g., nitroreductase). Finally, we identified convergent genetic changes in lab-derived resistant lines of Tritrichomonas foetus, a distantly related species that causes venereal disease in cattle. Shared genetic changes within and between T. vaginalis and Tr. foetus parasites suggest conservation of the pathways through which adaptation has occurred. These findings extend our knowledge of drug resistance in the parasite, providing a panel of markers that can be used as a diagnostic tool

    A Plasmodium Whole-Genome Synteny Map: Indels and Synteny Breakpoints as Foci for Species-Specific Genes

    Get PDF
    Whole-genome comparisons are highly informative regarding genome evolution and can reveal the conservation of genome organization and gene content, gene regulatory elements, and presence of species-specific genes. Initial comparative genome analyses of the human malaria parasite Plasmodium falciparum and rodent malaria parasites (RMPs) revealed a core set of 4,500 Plasmodium orthologs located in the highly syntenic central regions of the chromosomes that sharply defined the boundaries of the variable subtelomeric regions. We used composite RMP contigs, based on partial DNA sequences of three RMPs, to generate a whole-genome synteny map of P. falciparum and the RMPs. The core regions of the 14 chromosomes of P. falciparum and the RMPs are organized in 36 synteny blocks, representing groups of genes that have been stably inherited since these malaria species diverged, but whose relative organization has altered as a result of a predicted minimum of 15 recombination events. P. falciparum-specific genes and gene families are found in the variable subtelomeric regions (575 genes), at synteny breakpoints (42 genes), and as intrasyntenic indels (126 genes). Of the 168 non-subtelomeric P. falciparum genes, including two newly discovered gene families, 68% are predicted to be exported to the surface of the blood stage parasite or infected erythrocyte. Chromosomal rearrangements are implicated in the generation and dispersal of P. falciparum-specific gene families, including one encoding receptor-associated protein kinases. The data show that both synteny breakpoints and intrasyntenic indels can be foci for species-specific genes with a predicted role in host-parasite interactions and suggest that, besides rearrangements in the subtelomeric regions, chromosomal rearrangements may also be involved in the generation of species-specific gene families. A majority of these genes are expressed in blood stages, suggesting that the vertebrate host exerts a greater selective pressure than the mosquito vector, resulting in the acquisition of diversity
    corecore