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Abstract 

The aim of this work has been to use linkage analysis to determine the 

chromosomal location of genes involved in chioroquine resistance in the rodent 

malaria parasite Plasmodium chabaudi. Chioroquine resistance in the human malaria 

parasite P. falciparum has become a major problem in most areas where P. falciparum 

is prevalent. Attempts to uncover the mechanism responsible for the resistance have 

been complicated by the lack of P. falciparum isogenic mutants, and the difficulties of 

performing genetic crosses in vitro. P. chabaudi is an ideal laboratory model for P. 

falciparum because the complete life-cycle is possible under laboratory conditions. 

Initially a cross was made between two P. chabaudi clones, one a chioroquine-

resistant mutant, selected for reduced susceptibility to chioroquine at a low level, and 

the other a genetically distinct chioroquine-sensitive clone. Gametocytes of a mixture 

of both clones were fed to Anopheles stephensi mosquitoes to allow cross-fertilisation 

between the clones to take place. The infected mosquitoes were allowed to feed on an 

uninfected mouse, and the progeny of the cross collected from the mouse blood. 

Individual clones were made from these progeny by a dilution method. 

The P. chabaudi genome was found to contain 14 chromosomes. A genetic map of 

each chromosome was made using DNA markers. Most of the markers were known 

genes from other species of Plasmodium. Other markers were developed by the 

RAPD-PCR (random amplified polymorphic DNA-polymerase chain reaction) 

technique, the first time this method had been developed for use with Plasmodium 

parasites. In total, more than 100 markers were mapped to individual P. chabaudi 

chromosomes. Two important markers were cloned from P. chabaudi DNA using 

PCR. (i) the P. chabaudi homologue (pcmdrl) of the multiple drug resistance gene of 

P. falciparum (pfmdrl); this has been implicated in the mechanism of chioroquine 

resistance in P. falciparum. (ii) a possible homologue of the P. falciparum marker 

pS590.7, which has been claimed to be linked to a chioroquine resistance locus in P. 

falciparum. 

Thirteen genetically distinct clones from the cross were phenotyped for their 

susceptibility to chioroquine. Eight were found to be resistant and five sensitive. 

These clones were analysed for their inheritance of 46 polymorphic markers. This 

revealed that neither pcmdrl nor the putative pS590.7 homologue were linked to 

chioroquine resistance in this cross. Twelve of the thirteen progeny, however, 

appeared to show an association with chioroquine susceptibility, consistent with the 

presence of a chloroquine resistance locus on chromosome 11. Statistical analysis 
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revealed that, depending upon the method of calculation, the linkage was significant 

with a probability of 0.05 > Pr > 0.024. 
The work submitted here represents the first in-depth genetic analysis of a P. 

chabaudi cross and identifies a locus which may be involved in the genetic mechanism 

of chioroquine resistance. 
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1. Introduction 

1.1 Aim of this project 
The aim of this project has been to identify genes which may be involved in the 

mechanism of chioroquine resistance in the malaria parasite of rodents, Plasinodium 

chabaudi. The initial stage of the work has been to make a genetic map of the P. 

chabaudi genome, the first to have been produced for this parasite. Polymorphic 

markers from this map have subsequently been used in linkage analysis of the progeny 

of a cross between chioroquine-resistant and chioroquine-sensitive parasites, to 

determine the chromosomal location of the gene(s) determining resistance. 

1.2 Introduction to the malaria parasite 

Many species of malaria parasite have been described which infect a variety of 

vertebrate hosts, including reptiles, birds and mammals (Garnham, 1966). All are 

members of parasitic protozoa within the family Plasmodiidae, which is charactensed 

by stages of asexual multiplication in the host cells, and sexual reproduction and 

transmission through species of mosquito vectors of the family Culicidae. 

Four species of malaria parasite infect man: three species, P. malariae, P. vivax and 

P. ovale cause illness, but are rarely fatal. The fourth, P. falciparum, is the most 

common in tropical and sub-tropical areas and produces the most severe illness which 

may prove fatal, due to a condition known as cerebral malaria. This is characterised 

by rapid deterioration of the patient into coma, and immediate chemotherapeutic 

treatment is necessary to prevent death. It is estimated that 300 million people are 

infected with P.falciparum at any one time, and that 0.5-1.2 million deaths occur from 
infection with falciparum malaria each year in Africa (W.H.O., 1993) 

It is not possible to maintain the complete life-cycle of P. falciparum in vitro. 

Consequently other species of Plasmodium which can be grown under laboratory 

conditions are important as laboratory models of human malaria. Examples of such 

species are P. gallinaceum which infects chickens, P. cynomolgi which infects 

monkeys, and species of rodent malaria which can be grown in laboratory mice. Four 

species of rodent malaria are available, P. chabaudi, P. berghei, P. vinckei and P. 

yoelii; the work in this study has been carried out using P. chabaudi. This parasite has 

many characteristics in common with P. falciparum; for example both species of 

parasite produce infections which are synchronous with a preference for mature red 

blood cells, and both species produce gametes late in an infection (Walliker, 1983). 
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1.3. Origin and life-cycle of P. chabaudi 

P. chabaudi was first isolated from thicket rats, Tharnnomys rutilans, in the Central 

African Republic by Landau (1965). The life-cycle and infection pattern of the parasite 

have been described by Landau and Killick-Kendrick (1966), Wery (1968), Landau et 

at. (1970), Landau and Boulard (1978), Landau and Chabaud (1994). The parasite 

was temporarily reclassified as a subspecies of P. vinckei (P. vinckei chabaudi) by 

Bafort (1968), but then reinstated as a species (P. chabaudi) following later studies on 

the parasite's enzyme forms and morphology (Carter and Walliker, 1975). There are 

two subspecies, P. chabaudi chabaudi which is found in the Central African Republic, 

and P. chabaudi adami which is found in Brazzaville, The Congo (Carter and 

Walliker, 1976). 

P. chabaudi has a typical mammalian malaria parasite life-cycle, as shown in 

Figure 1. The cycle starts when an infected female Anopheles mosquito takes a 

blood meal from a mammalian host. Sporozoites, inoculated from the salivaiy glands 

of the mosquito into the host, are carried to the liver where they invade liver 

parenchyma cells. The sporozoites undergo asexual development into exoerythrocytic 

schizonts, a process which takes a minimum of 52-53 hours. Each schizont contains 

18,000 -20,000 merozoites, and these are released into the blood upon rupture of the 

schizonts. The free merozoites invade mature erythrocytes as ring forms. These grow 

to form intraerythrocytic trophozoites, and then nuclear division occurs to produce 

schizonts. Each schizont contains 4-8 merozoites which are released upon rupture of 

the infected erythocyte. Merozoites invade further red blood cells and the cycle is 

repeated. Each cycle takes 24 hours and the development of schizonts is synchronous, 

depending upon the circadian rhythm of the host. Some merozoites may develop into 

macro- or micro-gametocytes following invasion of a red blood cell. These are the 

sexual forms of the parasite, which do not develop further unless ingested by a female 

mosquito during a blood meal. 

Development of gametocytes within the mosquito midgut occurs as follows: the 

macro-gametocyte transforms into the female gamete, and the micro-gametocyte 

undergoes exflagellation, releasing male gametes. Fertilisation occurs between male 

and female gametes, producing a zygote which develops as a motile ookinete. This 

penetrates the midgut wall of the mosquito and develops as an oocyst on its outer 

surface. After 8-10 days the mature oocysts rupture, releasing several thousand 

sporozoites into the haemocoele. These migrate to the salivary glands where they are 

injected into a new mammalian host the next time that the mosquito takes a blood meal. 
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1.4 Genetics of Plasmodium 
The malaria parasite has three genomes (i) a large nuclear genome, which contains 

up to 7,500 genes (Reddy, 1995); (ii) a linear 6 kb (kilobase) mitochondrial genome, 

which contains genes necessary for an electron transport system (for a review see 

Wilson et al. (1991)); and (iii) a circular 35 kb organellar genome, which contains 

several ribosomal RNA, transfer RNA and DNA-dependent RNA polymerase genes 

(Wilson et al., 1991). It is likely that the products of some of the extranuclear genes 

are sites of action for several antibiotics and 8-aminoquinolines (e.g. Strath et al., 

1993; Vaidya et al., 1993), and mutations in these genes may ultimately be shown to 

produce resistance to these drugs. Genes involved in chloroquine resistance are most 

likely to be nuclear-encoded for reasons stated later; the rest of this chapter is limited to 

a discussion of this genome. 

1.4.1 Genome size and base composition 
Estimates of the size of the malaria parasite nuclear genome vary within a range of 

2-4 x 107  bp (base pairs) per haploid genome. The different estimates are probably 

due to the method of determination used by different workers; for example Dore et al. 

(1980) produced a value of 2 x 107  bp per haploid P. berghei genome using 

reassociation kinetics, whereas Wellems etal. (1987) produced a value of 2.5-3 x iO 

bp per haploid P. falciparum genome by measurement of chromosomal DNA 

mobilities during electrophoresis. This DNA content is comparable to that of yeast and 

is 5-6 times more than that of the bacterium Escherichia co/i. 

Plasmodium genomes are very rich in the nucleotide bases A + T. Estimates of the 

base composition of P. falciparum include 18% G + C by McCutchan et al. (1984), 

and 17-19% G + C by Pollack et al. (1982). The P. chabaudi genome has been 

estimated as 18% G + C (McCutchan et al., 1984). One of the consequences of such a 

high A + T content is that the codon bias is remarkably skewed (Hyde and Sims, 

1987; Saul and Battistutta, 1988), and this can produce problems when using 

heterologous probes from more G + C-rich genomes (Hyde et al., 1989). Moreover, 

it may be responsible for the instability of parasite DNA fragments in E. co/i, which 

has prevented the cloning of large segments of P. falciparum DNA (Weber, 1988). 

1.4.2 Karyotype and karyotypic rearrangements 
The chromosomes of malaria parasites cannot be seen by conventional light 

microscopy, as they do not condense during mitosis. This is unexpected because 

histone proteins and nucleosomes are present in the parasite nucleus (Wunderlich et 

al., 1980; Creedon et al., 1992; Cary et al., 1994). However, electron microscopy 

on 
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has identified 14 pairs of kinetochores, the regions of chromosomes to which spindle 

microtubules attach during division, in serial sections of P. falciparum mitotic spindles 

(Sinden and Strong, 1978; Prensier and Slomianny, 1986). This suggested that the 

genome of P. falciparum consists of 14 chromosomes. Confirmation of this has come 

with the advent of pulsed-field gradient gel electrophoresis (PFGE) (Cane and Olson, 

1984; Schwartz and Cantor, 1984), which has enabled the visualisation of all 14 P. 

falciparum chromosomes on agarose gels (Kemp etal., 1987; Wellems etal., 1987). 

The karyotype of the four rodent malanias has been studied in depth, although the 

exact chromosome number has been difficult to ascertain due to problems in separating 

all the chromosomes by PFGE. Langsley etal. (1987) reported separating 11 P. 

chabaudi chromosomes but considered it likely that the organism contained 14. 

Sharkey etal. (1988) were able to separate 10 P. chabaudi bands, but concluded that 

it was not possible to determine the exact number of chromosomes, because each DNA 

band could represent more than one chromosome. Finally, Sheppard et al. (1989b) 
reported that P. chabaudi, P. vinckei and P. berghei appeared to contain 14 

chromosomes, although this was speculative considering the quality of the pulsed-field 

gels (PFGs) at the time the work was carried out. 

Malaria parasite chromosomes are structurally similar to those of lower eukaiyotes. 

Each chromosome is compartmentalised into a conserved, transcribed, central domain 

and polymorphic, transcriptionally silent, chromosome ends (Lanzer et al., 1994). 
Individual chromosome ends consist of telomeric repeat sequences (Vernick and 

McCutchan, 1988; Ponzi et al., 1985) and subtelomeric repeat regions. The 

subtelomeric regions have conserved and polymorphic features. In P. berghei, a 
series of 2.3 kb repeats lie proximal to the telomere, but not every chromosome 

hybridises to these repeats and the pattern of hybridisation varies in different isolates 

(Dore et al., 1990). The subtelomeric regions of P. falciparum chromosomes contain 

complex repeat sequences adjacent to a series of tandemly repeated 21 bp repeat 

sequences, the so-called 'rep20' repeats (Oquendo etal., 1986). 
Genetic linkage maps of several Plasmodium chromosomes have been constructed 

by probing Southern blots of separated chromosomes with known gene probes. The 

linear order of the genes has also been determined by long-range restriction mapping, 

involving digestion of individual chromosomes with rare-cutting restriction enzymes 

(Sinnis and Wellems, 1988; Ponzi et al., 1990; Triglia et al., 1992). Recent advances 
in cloning large fragments of DNA into the yeast Saccharomyces cerevisiae have also 
enabled the construction of yeast artificial chromosome (YAC) libraries containing the 

complete P. falciparum genome (Triglia and Kemp, 1991), and the arrangement of 
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such YACS into overlapping clones representing complete chromosomes (Lanzer et 

al., 1993). 

Chromosomes of P. falciparum show considerable size variation among parasite 

isolates taken directly from patients' blood (Corcoran et al., 1986; Langsley et al., 

1988), and following asexual mitotic division in culture (Wellems et al., 1988). 

Chromosomes of P. berghei have been shown to change size following serial passage 

through mice (Janse et al., 1989). The size polymorphisms may arise as a result of 

various processes, such as (a) unequal crossing-over between homologous 

chromosomes during meiosis (Corcoran et al., 1988; Sinnis and Wellems, 1988); (b) 

deletion and insertion of repeat sequences such as rep20 (Patarapotikul and Langsley, 

1988) and the 2.3 kb repeats of P. berghei (Ponzi et al., 1990); (c) gene amplification 

(Foote et al., 1989; Triglia et al., 1991); and (d) the addition of telomeric DNA 

sequences (Pologe and Ravetch, 1988). 

Most of these large scale rearrangements affect only the subtelomeric, 

transcriptionally silent, regions of chromosomes, rather than the internal gene-rich 

domains (Lanzer et al., 1993). However, chromosome translocations resulting in 

exchange of genes between non-homologous chromosomes have been reported (Janse 

et al., 1992), as well as duplication and translocation of coding sequences, resulting in 

the creation of parasites with 15 chromosomes instead of 14 (Cowman and Lew, 

1989; van Dijk et al., 1994). It is not clear whether these types of rearrangements play 

a significant role in changes in the location and linkage of genes on chromosomes of 

parasites in natural populations (although see Janse et al. (1994) and Chapter 6). 

1.4.3 Ploidv, mitosis and meiosis 
The malaria parasite is haploid throughout the vertebrate host stages. Studies on the 

inheritance of isoenzyme markers in P. chabaudi (Walliker et al., 1975) and in P. 

falciparum (Walliker et al., 1987) showed that the erythocytic stages were haploid. 

Subsequent studies on the inheritance of exoerythrocytic stage antigens (Szarfman et 

al., 1988) demonstrated exoerythrocytic haploidy. 

The parasite undergoes mitotic division during erythrocytic and exoerythrocytic 

schizogony, sporogony and microgametogenesis. Evidence for this comes from 

studies by Janse et al. (1986) who showed that P. berghei sporozoites, ring forms, 

young trophozoites and mature microgametes possess a similar quantity of DNA, 

assumed to be the haploid amount. Also, DNA has been localised to mitotic spindles 

in the nuclei of sporulating P. falciparum oocysts (Vanderberg, 1967). It has been 

calculated that each mitotic division takes 6 to 8 hours (Sinden and Strong, 1978). 
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The only diploid phase in the parasite life-cycle is the zygote (ookinete) in the 

mosquito stomach. In electron microscope studies of P. berghei ookinetes, meiotic 

division was detected within 3 hours of fertilisation (Sinden and Hartley, 1985), and 

synthesis of 4 times the haploid DNA quantity has been found to occur at this time, 

consistent with duplication of the diploid chromosome set at the first stage of meiosis 

(Janse et al., 1986). Moreover, the presence of synaptonemal complexes has been 

demonstrated (Sinden and Hartley, 1985), which are characteristic of meiotically 

dividing cells and appear to be necessaiy for crossing-over to occur. 

1.4.4 Genetic markers 
Genetic studies depend upon the availability of characters which are polymorphic. 

Several types of marker which exhibit such variation have been exploited for use in 

genetic studies in Plasrnodium :- 

Protein variants 

Many enzymes and other proteins detectable by electrophoretic methods, show 

variant forms which are distinguished by their size and/or charge (for reviews see 

Kemp et at., 1987a; Beale and Walliker, 1988). Electrophoretic forms of enzymes 

have proved to be particularly useful genetic markers, because they are usually the 

products of single genes and because they are stable during blood passage and 

mosquito transmission. Enzyme variation has been much studied in species of rodent 

malaria (Carter, 1970; Carter and Walliker, 1975; Carter, 1978), primate malaria 

(Carter and Voller, 1973) and P. falciparum (Carter and McGregor, 1973; Carter and 

Voller, 1975; Sanderson etal., 1981; Thaithong etal., 1981). 

Antigens 

Plasmodium antigens are known to possess variant forms among organisms of a 

given population (so-called 'antigenic diversity'). Antigenic diversity in P. falciparum 

has been demonstrated by McBride et a! (1982) using monoclonal antibodies and 

immunofluorescence techniques, and in P. yoelii by crossed immunoelectrophoresis 

(Panton et al., 1984). Several genetic studies involving the use of variant antigens as 

markers have been carried out with P. falciparum (e.g. Walliker et al., 1987; Ranford-

Cartwright et al., 1993). The only studies on the inheritance of blood stage antigens in 

rodent malaria species are a cross between clones of P. yoe!ii, which differed in the 

variant forms of a single antigen (Panton etal., 1984), and a study of inheritance of a 

merozoite surface antigen in P. chabaudi by McLean etal. (1982). 
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Drug susceptibility 

Drug resistance can be caused by a number of mechanisms, non-genetic as well as 

genetic (Beale, 1980). Resistance due to non-genetic mechanisms is usually unstable, 

whereas mechanisms involving the spontaneous mutation of genes generally result in a 

stable, heritable genotype (see Section 1.5). It is possible to select lines of malaria 

parasites with decreased susceptibility to certain drugs, by one of two ways: (i) a 

single high dose treatment which eliminates most of the parasites, and only resistant 

mutants survive (the 'single-step' method); or (ii) continuous low dose treatments 

which cover many passages and may gradually increase in concentration (the 'multi-

step' method). Laboratory mutants obtained by both these methods have been 

exploited in genetic studies of P. gallinaceum (Greenberg and Trembley, 1954a) and 

the rodent malarias (Walliker et at., 1971; Walliker et at., 1973; Walliker et al., 1975). 

Drug-resistant P. falciparum clones isolated from the field have also been used in 

genetic crossing experiments (Walliker et al., 1987; Wellems et al., 1990). 

DNA markers 

Recent progress in molecular genetic techniques has produced numerous 

Plasmodium DNA markers which can be used in genetic studies. These are of various 

types: 

Plasmodium gene markers. Over 230 Plasmodium genes have been cloned and 

many mapped to specific chromosomes by PFGE (see Triglia et at., 1992; Reddy, 

1995). Moreover, DNA sequencing has enabled variants (alleles) of specific genes to 

be identified. 

RFLP markers. Probing Southern blots of restricted parasite DNA with known 

Plasmodium genes or anonymous DNA fragments has enabled the identification of 

restriction fragment length polymorphisms (RFLPs) of loci between different parasite 

clones (Botstein et al., 1980). RFLPs are the result of changes in genomic DNA, such 

as the substition, insertion or deletion of DNA sequences. They have been extensively 

used in the analysis of a P. falciparum cross by Walker-Jonah et al. (1992). 

The size polymorphisms of homologous chromosomes in different cloned lines 

(Section 1.4.2), although not precise DNA markers, have also been used as genetic 

markers in Plasmodium crosses (Sharkey et al., 1988; Sinms and Wellems, 1988). 

1.4.5 Genetic crossing experiments 
(i) Methods used, and evidence of recombination 

Crosses between malaria parasites can be carried out under laboratory conditions. 

An outhne of the method used is shown in Figure 2. Mosquitoes are allowed to feed 
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on a mixture of gametocytes of two cloned parasite lines differing in a number of 

genetic markers. This enables cross-fertilisation to occur between gametes of each 

clone in the mosquito stomach, resulting in the production of hybrid zygotes. Self -

fertilisation events are also expected between gametes of the same clone, resulting in 

production of parental-type zygotes. Assuming that each clone produces equal 

numbers of gametes, and that fertilisation is random, equal numbers of hybrid 

(heterozygous) and parental-type (homozygous) zygotes should be produced. The 

zygotes immediately undergo meiosis, all the haploid products of each zygote being 

retained in each resulting oocyst. Evidence that random mating does occur has been 

obtained by Ranford-Cartwnght et al. (1993), who showed that the numbers of 

homozygous and heterozygous oocysts obtained in crosses between P. falciparum 

clones were in accordance with Hardy-Weinberg expectations (discussed in further 

detail in Section iv). 

Figure 2. The procedure used in making a cross between mammalian malaria 

parasites. 
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Important genetic mechanisms occur during meiosis of the zygotes. Each 

chromatid of a pair of homologous chromosomes segregates at random into the 

progeny. Such independent assortment of chromosomes is one way in which 

recombinant parasites can be produced. Furthermore, crossing-over events may occur 

at this stage between non-sister chromatids of a pair of homologous chromosomes. 

Crossing-over between linked genes (i.e. genes found on the same chromosome) 

which usually segregate together is thus a second mechanism by which recombinant 

parasites are produced. Hence the term 'recombinant' is used here to refer to a parasite 

with novel combinations of parent genes, produced either through independent 

assortment of unlinked genes, or through crossing-over between linked genes. 

Recovery of the products of the cross is achieved by allowing the parasites to 

develop into sporozoites, which are then used to infect a new host. The resultant 

blood forms can be cloned, and examined for the inheritance of the original 

polymorphic markers. 

Genetic crosses have been made between malaria parasites that infect birds, rodents 

and humans. Greenberg and Trembley (1954b) were the first to attempt to cross lines 

of Plasmodium, using two lines of P. gallinaceum differing in their response to 

pyrimethamine and in their ability to produce exoerythrocytic schizonts (described in 

Walliker, 1983). Initially they were disappointed as no evidence of recombination was 

found, but later experiments reported success (Greenberg and Trembley, 1954a). 

However, one of the genetic markers, the development of exoerythrocytic schizonts, 

was known to be unstable. 

In the early 1970s, Walliker et al. (1971; 1973) demonstrated conclusively genetic 

recombination in rodent malaria parasites by crossing two lines of P. yoelii which 

differed in their response to treatment with the antimalarial drug pyrimethamine, and in 

the forms of the isoenzyme glucose phosphate isomerase (GPI). The segregation and 

re-assortment of the isoenzyme forms and drug susceptibilities were in agreement with 

typical Mendelian inheritance of unlinked markers. 

The first cross between two clones of P. chabaudi was made in 1975 (Walliker et 

al., 1975). Both clones differed by the forms of two isoenzyme markers, 6-

phosphogluconate dehydrogenase (6PGD) and lactate dehydogenase (LDH), and in 

their susceptibility to pyrimethamine. Analysis of this cross enabled recombination 

between two enzyme markers to be demonstrated for the first time, and showed that 

the drug resistance character segregated independently of either enzyme marker. 

Moreover, the experiments showed that recombination and segregation of the parental 

enzyme forms had occurred before the emergence of parasites into the blood, proving 

that the blood forms were haploid. 
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Recombination due to chromosome re-assortment 

Although the first genetic crosses detected recombinant parasite forms, they did not 

distinguish between recombinant parasites formed due to chromosome re-assortment 

and those formed due to crossing-over events; this was because the chromosomal 

locations of the genes studied were not known. Sharkey et al. (1988) were able to 

demonstrate independent assortment of chromosomes in the recombinant progeny of a 

cross between P. chabaudi clones AS and CB. These clones show polymorphism in 

the size of their chromosomes; in clone AS, chromosome 4 is larger than in clone CB, 

while chromosome 5 is smaller. Of six recombinant clones analysed by PFGE, three 

possessed karyotypes identical to parental clone AS, two possessed karyotypes 

identical to parental clone CB, and one had chromosome 4 characteristic of clone CB 

and chromosome 5 characteristic of clone AS. 

Recombination due to crossing-over events 
Crossing-over between homologous chromosomes has been demonstrated by 

analysis of the progeny of two P. falciparum crosses. These are the only crosses to 

have been made using human malaria parasites. Walliker et al. (1987) performed the 

first crossing experiment, using the P. falciparum clones HB3 (from Honduras) and 

3D7 (probably from Africa, see Collins et al., 1986). Crossing-over between 

homologous chromosomes was shown to account for the appearance of chromosomes 

among the progeny which were of a different size from those of the parents (Sinnis 

and Wellems, 1988). For example, chromosome 4 was 1280 kb in clone HB3 and 

1490 kb in clone 3137, but one progeny clone XP5 possessed a 1400 kb chromosome 

4. Long-range restriction mapping showed that the XP5 chromosome 4 contained 

restriction sites characteristic of one end of the HB3 chromosome and of one end of 

the 3D7 chromosome. It was concluded that a crossing-over event must have occurred 

in the central region of the parent chromosomes, and most probably during meiosis of 

a HB313D7 heterozygote (Sinnis and Wellems, 1988). 

The presence of 'hot-spots' of recombination in the chromosomes of malaria 

parasites was first proposed by Vernick et al.(1988), who investigated the inheritance 

of a telomeric sequence among the progeny of the HB3/3D7 cross. The sequence was 

racliolabelled and hybndised to Southern blots of restricted DNA of the progeny 

clones. Novel non-parental sized fragments were shown to hybridise to the sequence, 

some of which were found to be located at internal chromosome sites, as well as at 

subtelomeric locations. It was proposed that such sites were genetically unstable at 

meiosis, and could represent 'hot-spots' of recombination. 
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Wellems et al. (1990) performed a second P. falciparum cross using the clones 

HB3 and Dd2 (from Indochina). Through analysis of the inheritance of more than 80 

RFLP markers among 16 recombinant progeny clones, it was possible to show that 

each progeny clone pOssessed at least one chromosome which was the result of a 

crossing-over event between linked loci (Walker-Jonah et al., 1992). 

Crossing-over within a single locus has also recently been shown to occur by Kerr 

et al. (1994). Allele-specific PCR (polymerase chain reaction) primers were used to 

demonstrate the presence of a novel form of the merozoite surface protein (MSP- 1) 

gene, within the uncloned progeny of the P. falciparum HB3/3D7 cross. The area in 

which the recombination event had occurred between the two parental clones was 

narrowed down to a 250 bp section of this gene. 

(iv) Frequency of recombination 

Genetic crossing work using P. falciparum has also enabled studies on the 

frequency of recombinant forms among progeny of crosses to be undertaken. Some 

of the crossing experiments outlined above produced recombinant progeny at a greater 

frequency than expected. 50% of the progeny of a cross are expected to derive from 

seif-fertilisation events. However, in the HB3/3D7 P. falciparum cross, only 3 of 22 

progeny clones tested for 10 markers had the parental-type characteristics (Walliker et 

al., 1987), and in the HB3IDd2 P. falcipaum cross, none of the 76 progeny clones 

tested for the inheritance of 30 RFLP markers exhibited parental combinations of 

markers (Wellems et al., 1990). 

Work by Ranford-Cartwright et al. (1993) has involved making crosses between 

P. falciparum clones HB3 and 3137, and typing individual oocysts for homo- or 

heterozygosity of two polymorphic genes. The results showed no evidence for cross-

fertilisation being favoured over seif-fertilisation in these laboratory crosses. 

Moreover, the work produced direct evidence of cross-fertilisation between genetically 

distinct parasites in the mosquito vector. The high numbers of recombinants found in 

the two P. falciparum crosses are therefore thought to be due to selection within the 

vertebrate host or during in vitro culturing of asexual blood forms. 

Similar fmdings on typing P. chabaudi oocysts in laboratory crosses have been 

obtained by L. Groves (Division of Biological Sciences, Edinburgh University; 

personal communication). 

1.5 Drug resistance 

Drug resistance is a common problem associated with infectious organisms. Beale 

(1980) has proposed a number of different mechanisms, genetic and non-genetic, 
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which could account for changes in the ability of such organisms to grow in the 

presence of drugs. The non-genetic mechanisms included (a) physiological 

adaptations of the organism to particular drugs; and (b) expression of latent 

chromosomal genes caused by alterations in environmental factors. The genetic 

mechanisms included (a) spontaneous mutation of nuclear or extra-nuclear genes and 

their selection under the influence of drug pressure; (b) gene mutation induced by 

mutagenic drugs; and (c) resistance associated with extrachromosomal factors such as 

plasmids, viruses or transposons. 

Many of these mechanisms have been shown to operate in bacteria (for a review see 

Neu, 1992) and some parasitic protozoa (reviewed in Saklatvala, 1993). The most 

important as regards drug resistance in Plasmodium is probably spontaneous gene 

mutation and the selection of mutants from mixed parasite populations. Physiological 

adaptation has been shown to occur in some laboratory selected lines (see Section 
1.6.4), but these are less important because of their temporary and unstable nature. 

The involvement of extrachromosomal elements, such as plasmids, in transfer of 

resistance has never been demonstrated. 

1.5.1 Antimalarial drugs and the spread of drug resistance 
There are 10 main groups of antimalarial drugs in use (Table 1). Examples of 

each group are given under their international non-proprietary names. All of these 

drugs are primarily active against the blood forms of the parasite. Primaquine and 

other 8-aminoquinolines are the only drugs effective against exo-erythrocytic stages. 

The first cases of drug resistance shown by P. falciparum parasites were reported 

as early as 1910 against the antimalarial quinine (noted by Foote and Cowman, 1994), 

but it was not until the end of the 1950s that drug resistance was found to be a major 

problem. This necessitated a precise definition of drug resistance, in order that 

monitoring the spread of resistance could be standardised. The World Health 

Organisation (W.H.O.) defines drug resistance as "the ability of a parasite strain to 

multiply or to survive in the presence of concentrations of a drug that normally destroy 

parasites of the same species or prevent their multiplication" (W.H.O., 1963). This is 

not to be confused with an absence or inadequacy of drug action, which is caused by 

host factors such as impaired drug absorption, and which may complicate the 

recognition of resistance. 

There have been several reported incidents of failed chemotherapy in patients with 

P. ovale, P. rnalariae and P. vivax infections, discussed by Peters (1987). Reports of 

chioroquine-resistant P. vivax in Papua New Guinea and the Solomon Islands by 

Rieckmann etal. (1989) and Whitby etal. (1989) respectively, as cited by 
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Table 1. Ten main groups of antimalarial drug in use. 

- Generic Chemical Group J 	Example 

1 antifolicdrugs pyrimethamine,proguanil 

2 suipha drugs a) suiphones e.g. dapsone 

b)suiphonamidese.g.suiphadoxine 

3 cinchona alkaloids quinine 

4 4-aminoquinolines chioroquine,amodiaquine 

5 8-aminoquinolines primaquine 

6 1 	4-quinoline methanols mefloquine 

7 9-phenanthrenemethanols halofantrine 

8 sesquiterpene lactones a) artemisinin 

b)artemisininderivatives e.g.artemether 

9 antibiotics tetracycline,chioramphenicol 

10 drug combinations pyrimethamine + sulphadoxine ('Fansidar') 

pyrimethamine + sulphadoxine + mefloquine 

('Fansimef) 

Wernsdorfer (1994), and latterly in Irian Jaya (Baird et al., 1991) are disconcerting, 

but so far they appear to be confined to Western Indonesia. However, it is drug 

resistance in P. falciparum which is of much greater importance, because of its higher 

rate of incidence and the significant mortality associated with cerebral malaria caused 

by this species. 

P. falciparum isolates resistant to almost eveiy antimalarial drug and combination of 

drugs are now known to exist (Peters, 1987). Parasites exhibiting resistance to more 

than one drug are proving a serious problem in some areas, particularly the 

Thai/Cambodia and Thai/Myanmar borders (Thaithong and Beale, 1992). However, 

such multidrug resistant parasites have not become as prevalent as was once expected 

(Peters, 1987). Cross-resistance to different drugs may be due to the shared chemical 

structure of the compounds. Thus resistance to chioroquine has been noted to produce 

reduced sensitivity to amodiaquine, which is in the same chemical class (Wemsdorfer, 

1994). Other examples of cross-resistance between less closely related drugs include 

mefloquine resistance which has been associated with reduced susceptibility to 

halofantrine (Basco and Le Bras, 1992; Rojas-Rivero et al., 1992), and quinine 

resistance which has been correlated with resistance to mefloquine (Suebsaeng etal., 

1986; Brasseur etal., 1991; Brasseur etal., 1992a; Brasseur et al., 1992b). 
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Outbreaks of drug resistance in the field are identified by failed programmes of 

chemotherapy in vivo. The levels of resistance are classified as three types according 

to the initial clearance of parasites from the blood and their later recrudescence 

(W.H.O., 1973):- 

RI- after initial clearance, parasites reappear after seven or more days despite 

continuing treatment. 

Ru- the number of parasites is reduced initially, but rises again after seven or 

more days. 

Ru- the drug has little effect on parasite numbers. 

Resistance can be monitored in vitro also, through the examination of cultures 

exposed to serial drug dilutions over a set time period, for example, the W.H.O 

microtest (W.H.O., 1979). Drug susceptibilities can be presented in a number of 

ways, the most common being: (a) MIC values: minimum inhibitory concentration of 

the drug at which all, or almost all, parasites are killed; or (b) IC50190199 values: the 

drug concentration at which 50/90/99% of the parasites die, obtained through 

monitoring the drug-induced inhibition of [ 3H]-hypoxanthine uptake by the parasite 

(Desjardins et al., 1979). 

The relationship between in vitro and in vivo drug tests is not straightforward 

because of the interaction between host immunity, host nutrition, drug metabolism and 

parasite development. These factors may contrive to produce a 'resistant' outcome 

from an in vitro test which does not match the clinical result. This is especially 

relevant because it is known that natural P. falciparum populations frequently contain 

mixtures of parasites (Thaithong et al., 1984), some of which may not survive the 

culture conditions. 

1.5.2 Genetic mechanisms of drug resistance 
Understanding the genetic mechanisms of antimalarial drug resistance is important 

for two reasons: (1) in order to design new drugs which target different parasite 

molecules; and (2) to enable predictions to be made on the efficacy of a particular drug 

regime within a parasite population. Unfortunately, the identity of parasite genes 

involved in the majority of types of drug resistance remain unknown. Indeed the 

mode of action, which might give an indication of the basis of resistance, is not 

understood for many of the drugs. 

However, the mode of action of, and mechanism of resistance to, the antifolate 

drugs is better understood. In particular, the mechanism of resistance to 

pyrimethamine has been successfully studied, and this is discussed in the following 

section (reviewed by Hyde, 1990a). It is of direct relevance to understanding the 
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genetic mechanisms underlying chloroquine resistance, because of the contrasting 

manner in which resistance to the two drugs originated and spread. 

1.5.3 Pyrimethamine resistance 
Malaria parasites are unable to scavenge pyrimidines and rely almost exclusively on 

de novo synthesis through the folic acid pathway (Ferone, 1977). Part of this 

pathway involves the conversion of dihydrofolate to tetrahydrofolate by the enzyme 

dihydrofolate reductase (DHFR), which is one component of a bifunctional enzyme 

molecule including thymidylate synthetase (TS). The antifolate drug pynmethamine 

binds to the parasite enzyme several hundred times more tightly than to the equivalent 

enzyme in the mammalian host (Ferone et al., 1969). This disrupts folate metabolism, 

which prevents pyrimidine synthesis and ultimately stops the production of DNA. 

Thus pyrimethamine is most effective at the erythocytic stage of schizont formation, 

although it is slow acting and therefore mostly used for prophylaxis. 

Pyrimethamine was introduced as an antimalarial agent in the field in 1952. The 

first indication that P. falciparum parasites were becoming pyrimethamine resistant 

came shortly after, in a report by McGregor and Smith (1952), and subsequently by 

Jones (1954; 1958; cited by Peters, 1987). Many other reports of pyrimethamine 

resistance followed, and these have also been summarised by Peters (1987). 

Typically, resistant isolates tested in vitro are able to grow in concentrations of 

pyrimethamine hundreds of times greater than those which can be tolerated by 

sensitive parasites. 

The speed by which resistance to pyrimethamine arose suggested that a single 

mutation at a single locus might be sufficient to produce resistance. Experimental 

evidence for this came with the selection of pyrimethamine-resistant laboratory lines of 

P. gallinaceum (Bishop, 1962) and P. berghei (Diggens, 1970), as described by 

Foote and Cowman (1994). Bishop (1962) found that the rate of development of 

resistance seemed to be independent of the size of the drug dose used to induce it, and 

Diggens (1970) was able to select a resistant line using a single-step, high dose 

method. Other workers too were able to produce pyrimethamine-resistant rodent 

malaria lines using a single, high dose of drug (Morgan, 1972; Walliker et al., 1973; 

1975). 

However, it was not until evidence from genetic crossing studies became available 

that the resistance character was shown to be inherited in the manner expected for a 

genetic mutation (Walliker et al., 1973). Similar conclusions were drawn from the 

results of further crosses (Walliker et al., 1975; Rosario, 1976b; Knowles et al., 1981; 

Sharkey et al., 1988). Subsequently, the P. falciparum HB313D7 cross first identified 
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the DHFR gene as being involved, or closely linked to a gene involved, in 

pyrimethamine resistance (Peterson et al., 1988). All the pynmethamine-resistant 

progeny from this cross possessed an RFLP associated with the resistant parent 

DHFR gene, while all the sensitive progeny possessed an RFLP associated with the 

sensitive parent gene. 

Further evidence that the DHFR gene determined the response of the parasite to 

pyrimethamine came from sequencing studies on the gene from the 3D7 and HB3 

clones. A single amino acid difference at position 108, which was serine in clone 3D7 

and asparagine in clone HB3, was found to be the only difference in the amino acid 

sequence of the gene of each clone (Peterson et at., 1988). This amino acid change is 

thought to be within the cleft for substrate binding, and so may affect the binding of 

pyrimethamine to the enzyme (see Hyde (1989) for molecular graphic images of the 

structure of the Lactobacillus casei DHFR enzyme used as a model for the P. 

falciparum molecule). Sequencing of the gene from different isolates has shown that, 

with few exceptions, pyrimethamine-sensitive parasites possess serine or threonine at 

position 108, while resistant parasites possess asparagine at this site (Cowman et at., 

1988; Peterson et al., 1988; Basco et at., 1995). 

Mutations at other sites in the DHFR gene may also be involved in resistance to 

pyrimethamine (Cowman etal., 1988; Snewin etal., 1989; Zoig et at., 1989; Basco et 

at., 1995). For example, a mutation at position 59 has been found to affect the affinity 

of the DHFR enzyme for pyrimethamine (Sirawaraporn et al., 1990) and this may be 

necessary for high-level pyrimethamine resistance. 

Other causes of resistance to pyrimethamine cannot be ruled out. Thaithong et al. 

(1992) have reported selecting a pynmethamine-resistant P. falciparum clone, which 

showed no mutation of the DHFR gene. They suggest that the resistance may be 

caused by a change in the promoter region of the gene which causes its over-

expression. Additional mechanisms involving mutations in genes other than DHFR 

could also play a role in resistance, for example, by decreased uptake of the drug into 

the parasite, or conversion of pyrimethamine into an inactive form. 

Of particular interest to this project is the selection of pyrimethamine-resistant 

mutants from rodent malaria parasites, and their mechanisms of resistance. 

Pyrimethamine-resistant mutants from all the rodent malaria species have now been 

selected; from P. yoelii (Diggens, 1970; Morgan, 1972; Walliker et at., 1973), P. 

chabaudi (Walliker et al., 1975; MacLeod, 1977; Cowman and Lew, 1989), P. 

berghei (Rob, 1952; van Dijk et at., 1994) and P. vinckei (Yoeli et at., 1969). Most 

were selected using the single-step method, although a few were selected using a 

continuous low-dose of drug. 
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Molecular studies of several of these mutants have shown the mechanisms of 

resistance to be remarkably similar to those seen in pyrimethamine-resistant P. 

falciparum. Cheng and Saul (1994) sequenced the DHFR gene from two 

pynmethamine-resistant clones derived from P. chabaudi (line AS) and P. yoelii (line 

17X), and showed the only difference between the resistant and sensitive clones to be 

a point mutation which causes an amino acid change of serine to asparagine at position 

106, thought to be equivalent to the serine to asparagine change at position 108 in P. 

falcipa rum. Also, duplication of the DHFR gene has been found to be associated with 

changes in drug susceptibility. Cowman and Lew (1989) selected a pyrimethamine-

resistant clone from P. chabaudi (line DS) using a continuous low-pressure method, 

and found it to have doubled the copy number of the DHFR gene by a partial 

chromosome duplication. Similar results have been reported for a low-level resistant 

line selected from P. berghei (line ANKA) (van Dijk et al., 1994). Further drug 

selection on the P. chabaudi DS clone resulted in a point mutation in one copy of the 

gene and subsequent loss of the second copy (Cowman and Lew, 1990). 

These results illustrate a possible tendency for pyrimethamine resistance 

mechanisms to be linked to differences in the method of selection of resistant parasites. 

Treatment of parasites with low doses of pyrimethamine may select for parasites with 

increased expression of the gene, whereas selection with high amounts of 

pyrimethamine may select for parasites with functional mutations in the DHFR gene 

(Cowman and Foote, 1990). This generalisation may also be important when 

considering mechanisms of resistance to other antimalarial drugs such as chloroquine. 

Mutations at other sites in the DHFR gene of P. falciparum have been associated 
with resistance to a second antifolate drug, proguanil (Foote et al., 1990a; Peterson et 
al., 1990, 1991; Basco et al., 1995). Crossing studies to confirm the role of these 
mutations in proguanil resistance have not be done. 

1.6 Chloroguine resistance 

Chioroquine is a derivative of quinine, one of the four alkaloids extracted from the 

bark of the Cinchona tree, and it contains the quinoline ring characteristic of all quinine 

derivatives. It is one of the cheapest and most widely used antimalarial drugs. 

Developed in Germany during the 1930s, it was brought into widespread use in the 

field by the Americans during the following decade. Its popularity is due to several 

characteristics: it has a low incidence of severe side-effects, it is cheap and chemically 

stable, it is administered on a weekly basis, and it has a rapid onset of action which 

makes it effective against cerebral malaria. Resistance to chloroquine however has 
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now been reported in 73 of the 95 countries afflicted by P. falciparum (Wernsdorfer, 

1991), exceptions being Central America and Haiti. 

1.6.1 Origin and spread of chioroguine resistance 

Chioroquine-resistant P. falciparum was initially reported in two geographically 

distant foci, one in Colombia (Moore and Lamer, 1961; Young and Moore, 1961) and 

the other in Thailand (Harinasuta et al., 1962). Since then, many cases have been 

documented, as described by Peters (1987). Chioroquine resistance first appeared in 

Africa in the late 1970s (Campbell et at., 1979; Fogh et at., 1979), and has now 

spread to all regions where malaria is endemic. Typically, resistant isolates tested in 

vitro are able to grow in concentrations of chloroquine 5-10 times greater than can be 

tolerated by sensitive parasites. 

Resistant parasites are believed to be selected through drug treatment programmes 

which are only partially effective and do not eliminate all the parasites of an infection 

(reviewed by Wernsdorfer, 1994). A new population of parasites which is less 

sensitive compared to the population prior to drug exposure, is selected. Further 

selection takes place upon renewed drug pressure, resulting in enhanced resistance. 

These situations are known to occur frequently with mass drug administration, 

especially if sub-therapeutic doses are used. Such administration was previously 

carried out by the use of medicated salt, as part of malaria eradication programmes in 

South East Asia, Africa and South America (for a review see Payne, 1988). Thus, it 

is not surprising that the first cases of chloroquine-resistant P. falciparum infections 

originated from areas where chloroquinized salt was used (Payne, 1988). Whereas 

pyrimethamine-medicated salt regimes produced almost instantaneous resistance and 

were withdrawn immediately, chioroquine-medicated salt was used for longer because 

of the slow spread of resistance, which was exacerbated by clandestine supplies of 

non-medicated salt (Wemsdorfer, 1994). 

The slow spread of chloroquine resistance contrasts sharply with the spread of 

pyrimethamine-resistant P. falciparum. The difference would seem to indicate that, 

whereas a single defective gene appears to be sufficient to produce pyrimethamine 

resistance, several mutations at several loci might be necessary before the malaria 

parasite is resistant to chloroquine. 

1.6.2 Mode of action of chioroguine 

The mode of action of chioroquine, and other quinoline-ring antimalarial drugs such 

as quinine, is not fully understood. They are effective only against the intraerythrocytic 

stages of pigment-producing malaria parasites (for recent studies on the stage- 
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specificity of chioroquine, see Kuile et al., 1994). A brief explanation of pigment-

formation is as follows: in order to meet their nutritional requirements for essential 

amino acids, malaria parasites ingest and degrade host erythrocyte haemoglobin 

(reviewed in Sherman, 1979; Slater, 1992). This occurs in the food vacuole, 

alternatively known as the digestive vacuole, acidic vesicle or lysosome (Figure 3), 

which is present during all intraerythrocytic stages of the parasite life-cycle. 

Figure 3. Schematic diagram of haemoglobin digestion in the malaria parasite. 

The black bar represents the possible disruption of FP[X 

polymerisation by chloroquine, as discussed later. 

22 

red 
blood 
cell 

parasite 

aci 
vac 

iaemoglobin 
digestion 

by 
proteases 
liberates 

unmo acids 

chloroquine 
may block 

of FPIX by 
a haem 

polymerase 

polymerised FPIX 
(malaria pigment) 

During breakdown of haemoglobin, large amounts of a haem moiety 

ferriprotoporophyrin IX (FPIX) are released, which is toxic and able to lyse the 

parasite cell and affect the function of lysosomal enzymes. The parasite overcomes 

this potential hazard by sequestering FPIX within the food vacuole as malaria pigment 

or haemozoin. Chemical studies have revealed haemozoin to be a polymer of haem 

units held together by iron-carboxylate bonds (Slater et al., 1991). 

Historically, three mechanisms of chioroquine action have been proposed:- 

a) Chloroguine raises the vacuolar pH above that required for the function of parasite 

enzymes involved in haemoglobin digestion- the 'Lysosomotropic Hypothesis' 

Chloroquine is a lysosomotropic agent, i.e. a weak base which concentrates in the 

acidic vesicles of both host and parasite cells (Aikawa, 1972; Yayon et al., 1984). It 
crosses the vesicle membrane as a free base and is rapidly di-protonated, becoming 
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impermeable to passage out of the vacuole. The accumulation of chioroquine is 

dependent upon the pH gradient between the acid vesicle and the extracellular medium 

(Aikawa, 1972; Yayon et al., 1984). Thus at pharmacological concentrations of 

chioroquine (10 9M), drug concentrations in the food vacuole can reach millimolar 

levels at physiological pH (Geary et al., 1986). The lysosomotropic theory of 

chloroquine action proposed that the accumulation of chloroquine raises the pH of the 

food vacuole above that required for the function of parasite enzymes involved in 

haemoglobin digestion, resulting in parasite death (Homewood et al. (1972), as 

reported by Krogstad et al. (1985) and Ginsburg (1990)). 

Subsequently, it was shown that the pH is only altered slightly at pharmacological 

concentrations of chloroquine (Ginsburg et al., 1989), so that alkalinisation of the 

food vacuole is insufficient to explain the mode of chloroquine action. The temporary 

alkalinisation of the vesicles is probably counteracted by the vacuolar proton pump 

which rapidly restores the pH and allows more chioroquine to accumulate (reviewed 

by Ginsburg and Krugliak, 1992). Moreover, it has been shown that chioroquine 

concentrates up to 800-fold more in parasite vesicles than is predicted from its 

properties as a weak base (Krogstad and Schlesinger, 1987), suggesting that the 

parasite vacuole has high-affinity chloroquine-binding sites which are not present in 

mammalian cells, and which account for the specificity of the drug (for a review, see 

Krogstad et al. (1992b)). 

Chloroquine binds to FPIX. forming a complex which is highly toxic to the parasite 

Chloroquine has been shown to bind to FPIX (Chou and Fitch, 1980a), preventing 

its polymerisation into haemozoin and leading to the formation of chloroquine-FPIX 

complexes which are highly toxic to the parasite (Chou and Fitch, 1980b and 1981; as 

reviewed by Foote and Cowman, 1994). However, evidence against FPIX being the 

receptor for chloroquine comes from the lack of correlation between the affmities of 

various antimalarial drugs for FPIX and their rank order of activities (Warhurst, 

1987). 

Chloroquine binds to DNA preventing DNA synthesis 

Chioroquine inhibits DNA synthesis in bacteria, viruses and mammalian cells at 

concentrations of 1-2mM (Parker and Irvin (1952) as reviewed by Peters (1987)). It 

has been proposed that chloroquine might manifest its antimalarial activity by 

preventing DNA synthesis in Plasmodium. Some evidence came from studies 

showing inhibition of DNA and RNA synthesis in P. knowlesi in vitro (Guueridge et 

al., 1972). However, the theory fails to account for the fact that serum chloroquine 
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concentrations reach a peak of only 1-2iM in vivo (Peters, 1987). Recent work has 

shown that chioroquine binds more avidly to specific regions of DNA and inhibits the 

transformation of B-form to Z-form DNA at concentrations as low as 20tM (Kwakye-

Berko and Meshnick, 1990). Although it is not clear whether parasite DNA is 

exposed to similar concentrations in situ, DNA intercalation could play some part in 

the antimalarial activity of chioroquine (for a review see Meshnick, 1990). 

A fourth possible mechanism for the mode of chioroquine action has been proposed 

recently:- 

(d) Chioroquine prevents the polvmerisation of haem 

A novel haem polymerase activity has been shown to be present in malaria 

parasites, which is capable of polymerising haem in vitro, and that is inhibited by 

chioroquine at pharmacological concentrations (Slater and Cerami, 1992) (Figure 3). 

This inhibition could result in the inability of the parasite to detoxify haem and render it 

susceptible to the lytic effects of FPIX. Further evidence that this haem polymerase 

may be the target of chloroquine includes the estimated intravesicular chioroquine 

concentration in the parasite (Krogstad and Schlesinger, 1987) which is great enough 

to inhibit haem polymerase activity in vitro (Slater and Cerami, 1992). Haem 

polymerase isolated from several chioroquine-resistant isolates was found to retain full 

sensitivity to chioroquine (Slater, 1992). This agrees with the widely held view that 

the mechanism of chloroquine resistance is distinct from the mode of action of 

chloroquine, suggested because chioroquine-sensitive parasites accumulate greater 

levels of the drug than do chloroquine-resistant parasites (Fitch, 1970; Verdier et al., 

1985; Yayon et al., 1985). A haem polymerase activity has also been extracted from 

chloroquine-sensitive P. berghei clone NYU-2, and shown to be down-regulated in 

the presence of chloroquine (Chou and Fitch, 1992) 

Dom et al. (1995) have recently produced evidence that haem polymerisation is not 

enzyme-mediated but rather a chemical process dependent only upon the presence of 

haem-derived material associated with haemozoin, and not on the presence of protein. 

The authors state that this does not invalidate haem polymerisation as a target for the 

action of chioroquine; however, if a protein activity does exist, they suggest that it will 

have a structural function, for example as a scaffold for the initiation of 

polymerisation, rather than a haem polymerase function. 

Further in situ studies are required to isolate the target of chioroquine. It may be 

that all of the mechanisms proposed above could play minor roles in chioroquine 

action. 
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1.6.3 Mechanisms of chioroguine resistance 
As mentioned above, the only feature which distinguishes chioroquine-resistant 

parasites from sensitive parasites is that the former accumulate less chioroquine 

compared with the latter (Fitch, 1970; Verdier et al., 1985; Yayon etal., 1985). Such 

reduced accumulation could be caused by (a) reduced uptake of the drug in resistant 

parasites; (b) enhanced efflux of the drug from resistant parasites; or (c) a combination 

of reduced uptake and enhanced efflux in resistant parasites. 

There is much debate regarding the relative merits of reduced uptake/enhanced 

efflux. Some of the experimental results from different laboratories are in direct 

conflict with each other. For example, the uptake of chioroquine into acid vacuoles 

has been reported to be similar between chioroquine-resistant and chioroquine-

sensitive parasites (Krogstad et al., 1987; Krogstad et al., 1992a; Bayoumi et al., 

1994), but mathematical models (Geary et al., 1990; Ginsburg and Stein, 1991) and 

some experimental evidence (Bray et al., 1992a) from other laboratories suggest that 

resistant parasites accumulate reduced levels of chloroquine compared with sensitive 

parasites. The reasons for these discrepancies are three-fold. Firstly, experimental 

techniques differ between laboratories. Secondly, no chioroquine-resistant P. 

falciparum clones have been obtained which are isogenic with chioroquine-sensitive 

clones; analysis of the resistant phenotype has thus been carried Out on different 

genetic backgrounds which may influence the expression of the phenotype. Finally, it 

remains a matter of debate as to whether resistance is a simple trait due to mutations in 

a few genes, or a complex trait due to many mutant genes. 

Several theories of chioroquine resistance have been suggested as follows:- 

(I) The MDR theory of chioroguine resistance 

A rapid efflux phenotype in chloroquine-resistant parasites was first demonstrated 

by Krogstad et al. (1987), who showed that although the initial rate of chioroquine 

uptake in resistant and sensitive parasites was the same, resistant parasites released 

chloroquine 40-50 times more rapidly than susceptible parasites, and that this was 

responsible for the lower steady-state accumulation levels and hence resistance to 

chloroquine. This process was found to be dependent upon ATP 

(adenosinetriphosphate) (Krogstad et al., 1992a). Subsequently, the resistant 

phenotype was found to be reversed by a calcium channel blocker, verapamil (Martin 

et al., 1987), by tricydic antidepressants (Bitonti et al., 1988) and by antihistamines 

(Peters et al., 1989). Resistance to other quinoline-containing antimalarials was also 

found to be modulated by calcium antagonists (Kyle et al., 1990). This led to the 

25 

Chapter 1: Introduction 



theory that chioroquine resistance might be similar to the multidrug resistance (MDR) 

phenotype seen in mammalian tumour cells (review by Endicott and Lmg, 1989). 

In mammalian tumour cells, the MDR phenotype is characterised by the cells 

pumping out drugs which may be structurally unrelated. This process reduces their 

intracellular concentration, thereby rendering the cells resistant to the effects of the 

drugs. The molecule which pumps out the drugs is an AlP-dependent transporter, the 

P-glycoprotein (P-gp), which is membrane-associated and has affinity for a wide 

range of drugs. In humans, P-gp is coded for by the MDR gene, MDR1, which is 

excessively amplified in drug-resistant cell lines, thereby resulting in increased 

production of the protein. The MDR phenotype can be reversed by calcium channel 

blockers such as verapamil. Thus, chloroquine resistance in P. falciparum appeared to 

exhibit similarities with the MDR phenotype of mammalian cancer cells. 

Genes encoding P-glycoproteins have been found in a variety of organisms, 

although not all are involved in drug resistance (see review by Ouellette a al., 1994). 

They make up a large group within an even larger family of proteins called ATP-

binding cassette (ABC) transporters (reviewed in Higgins, 1992), so-called because of 

their characteristic ATP-binding domains. ABC transporters consist of two similar 

halves, each containing six putative transmembrane domains and one hydrophilic 

domain containing two short motifs associated with nucleotide binding (the 'Walker 

motifs' (Walker et al., 1982), as described in Higgins (1992)). Most ABC proteins 

are known to be involved in the ATP-dependent transport of a variety of substrates. 

For example, the mammalian cystic fibrosis trans-membrane regulator (CFTR) is a 

chloride channel (Gregory et al., 1990), and the S. cerevisiae ABC transporter STE6 

is involved in transport of a pheromone (McGrath and Varhavsky, 1989), as cited by 

Ouellette etal. (1994)). 

Two MDR genes have been cloned from P. falciparum, pfindrl on chromosome 5, 

and pfmdr2 on chromosome 14 (Foote et al., 1989; Wilson et al., 1989). The 160 

kDa (kilo-Dalton) product of pfmdrl, Pghl, is found on the surface of the lysosome 

(Cowman et al., 1991), is predicted to have 12 transmembrane domains and two ATP 

binding sites (Foote et al., 1989), and has been shown to bind nucleotides, indicative 

of the protein being involved in nucleotide-regulated transport (Karcz et al., 1993a). 

Amplification of pfindrl has been noted in some chioroquine-resistant isolates (Foote 

etal., 1989; Wilson etal., 1989), suggesting that overproduction of Pghl may enable 

the parasite to expel chioroquine. A survey of 26 chioroquine-resistant isolates 

showed 16 of them to contain amplified copies of pfindrl , the majority of which were 

thought to have arisen as independent events (Triglia et al., 1991). This result 
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suggested that the area of the genome containing the pfindr] gene was under strong 

selective pressure. 

The observation that both resistant and sensitive parasites have been found to 

contam equivalent numbers of copies of pfindrl led Foote et at. (1989) to suggest that 

alleles of the gene, rather than gene amplification, might render the parasite competent 

for chioroquine resistance. Evidence for this theory came from studies showing that a 

point mutation in human P-gp altered the drug resistance pattern of tumour cells (Choi 

et al. (1988) as described by Karcz and Cowman (1991)). Foote et at. (1990b) 

claimed that two alleles were involved in chioroquine resistance, the so-called 'Ki-

type' of South East Asia and the '7G8-type' of South America. In their study, the 

chioroquine susceptibility of 34 out of 36 P. falciparum isolates exhibiting different 

cliloroquine susceptibilities were predicted correctly from the presence of these alleles. 

More recent studies have found no correlation between these pfmdrl alleles and 

chloroquine resistance in field isolates from Africa (Awad-El-Kariem et al., 1992), 

Thailand (Wilson et al., 1993), and elsewhere (Haruki et at., 1994). 

Wellems et al. (1990) analysed 16 independent recombinant progeny from a cross 

between P. falciparum clones HB3 (chioroquine-sensitive) and Dd2 (chloroquine-

resistant), for inheritance of the pfindrl gene. Dd2 was known to contain 4 copies of 

the gene and HB3 to contain one copy. Examination of the progeny produced 

evidence for amplified copies in both chloroquine-sensitive progeny and chloroquine-

resistant progeny. Interestingly, the levels of pfmdrl amplification varied among 

progeny inheriting the Dd2 gene; this was put down to the loss of amplified elements 

due to unequal crossing-over during meiosis. Analysis of the uncloned, chloroquine-

treated progeny of the cross, which were expected to contain only chloroquine-

resistant parasites, showed that an RFLP associated with the Dd2 gene did not 

segregate with the resistance phenotype. The authors concluded from this work that 

neither pfindrl amplification nor inheritance of the Dd2 allele of pfindrl correlated 
with chioroquine resistance (Wellems et at., 1990). This work is described further in 

Section iii. 

Thus the role of pfmdrl in chloroquine resistance is far from clear (reviewed by 

Ginsburg, 1991; Karcz and Cowman, 1991). Recent work suggests that pfindrl may 

be involved in the uptake of chioroquine. Two theories have been proposed for the 

mechanism of chioroquine uptake by the food vacuole: (a) the weak base effect of 

chioroquine is sufficient for its concentration (a corollaiy of the lysosomotropic theory 

mentioned above); and (b) a permease must supplement the passive diffusion of 

chioroquine into the food vacuole (Warhurst, 1986), supplemented by evidence from 

studies by Krogstad and Schlesinger (1987) and Krogstad et at. (1992b). Initially it 
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was thought that Pghl might be such a permease. Transfection of Chinese hamster 

ovary (CHO) cells with wild-type pfindrl produced cells expressing Pgh 1 which 

showed increased chloroquine sensitivity due to elevated chloroquine uptake into the 

cells (van Es et al., 1994a). Interestingly, expression of Foote et al's. (1990b) 7G8-

type pfmdrl allele, which produced mutant Pghl protein in CHO cells, did not 

produce an increase in chloroquine sensitivity as chloroquine uptake remained the 

same. However, recent work suggests that Pghl does not directly transport 

chloroquine, but may influence chioroquine accumulation by modulating the pH of 

acidic organelles, perhaps by functioning as a chloride channel which regulates 

chloride permeability of the vacuolar membrane (van Es et al., 1994b). 

Finally, a correlation has been noted between over-expression of Pghl and 

mefloquine resistance in some P. falciparum laboratory clones. Chioroquine-resistant 

parasites selected under chioroquine pressure in vitro for increased resistance, were 

found to exhibit decreased mefloquine resistance and reduced pf,ndrl amplification 

and Pghl expression (Barnes et al., 1992; reviewed by Martin, 1993). Chioroquine-

resistant clones selected for mefloquine resistance were found to have amplified and 

over-expressed pfindrl (Wilson et al., 1989; Cowman et al., 1994; Peel et al., 1994); 

these clones showed a decrease in their level of chloroquine resistance after selection 

(Cowman et al., 1994; Peel et al., 1994). Peel et al. (1994) have also shown that P. 

falciparum clones selected for different levels of mefloquine resistance contained 

equivalently amplified and over-expressed pfmdrl genes, suggesting that additional 

genetic changes may have occurred to produce different resistance levels. 

However the correlation of over-expressed Pghl and mefloquine resistance is not 

clear cut. Analysis of the HB3 (mefloquine-sensitive)IDd2 (mefloquine-resistant)P. 

falciparum cross showed no correlation between mefloquine-response and pfmdrl 

copy number among the 16 progeny clones (Wellems et al., 1990). Moreover there 

are conflicting reports from the field. Whereas some mefloquine-resistant field isolates 

from Thailand have been reported to show amplification and over-expression of 

pfindrl (Wilson et al., 1993), pfindrl copy number did not correlate with mefloquine 

resistance in 42 isolates from sub-Saharan Africa (Basco et al., 1993). Interestingly, a 

correlation has been made between mefloquine resistance and decreased susceptibility 

to halofantrine and quinine, in parasites selected in vitro (Cowman et al., 1994; Peel et 

al., 1994) and in field isolates (Basco and Le Bras, 1992; Rojas-Rivero et al., 1992; 

Wilson et al., 1993). 

A molecular model has been proposed for the part that Pghl might play in 

chioroquine resistance (Barnes etal., 1992). Pghl is present in small amounts on the 

parasite plasma membrane (Cowman etal., 1991). At low external concentrations of 
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chioroquine, over-expression of Pghl could result in a limited ability of the cell to 

remove chioroquine. At high external chloroquine concentrations, the surface Pgh 1 

may not be able to control the movement of chioroquine into the parasite. Chioroquine 

would accumulate in the food vacuole due to the increased presence of Pghl on this 

organelle, and chloroquine susceptibility would increase. Thus, over-expression of 

Pghl would be detrimental to the parasite, and strong drug pressure would select for 

deamplification of pfindrl. 

It is more difficult to devise models reconciling the inverse relationship between 

chioroquine and mefloquine resistance, and pfindrl amplification. If Pghl transports 

mefloquine, its increased presence on the plasma membrane rather than the food 

vacuole membrane, could result in increased transport of mefloquine out of the 

parasite, producing mefloquine resistance (Cowman et al., 1994). It is difficult to 

explain how this could increase susceptibility to chioroquine, unless Pghl were 

orientated towards mefloquine export and chioroquine import (Peel et al., 1994). 
Alternatively, the inverse relationship could be explained if Pghl were the target of 

mefloquine action (Cowman et al., 1994). Finally, Pghl could mediate ionic 

movements in and out of the parasite vacuole, which might influence mechanisms of 

resistance to a variety of different drugs (Martin, 1993). In this respect it is interesting 

to note that human P-gp encoded by MDRJ is bifunctional and can act as a volume-

regulated chloride ion channel in epithelial cells as well as a drug transporter, as noted 

by van Es et al. (1994b). 

The second MDR gene cloned from P. falciparum, pfindr2, does not appear to be 
involved in chloroquine resistance. The product of pfindr2 , Pgh-2, has one nucleotide 
binding domain and ten transmembrane domains, and shows significant homology to 

the S. pombe HMT1 protein, an ABC transporter molecule which is involved in heavy 
metal tolerance (Zalis et al., 1993; Rubio and Cowman, 1994). It is localised to the 

plasma membrane of parasites and one theory suggests that it may be involved in metal 

homeostasis (Rubio and Cowman, 1994). Initial reports that pfindr2 transcripts were 
overexpressed in chloroquine-resistant isolates (Ekong et al., 1993) have since been 
shown to be unfounded (Zalis et al., 1993; Rubio and Cowman, 1994). Analysis of 

the progeny of Wellems et al.'s HB3IDd2 cross also showed no segregation of an 

RFLP of an anonymous probe which maps near pfmdr2, with chloroquine 
susceptibility (Wellems et al., 1990). 

(ii) The impaired vacuolar acidification theory 
Other work to identify possible chioroquine resistance gene(s) has centred on 

regulation of the pH of the acidic vacuole. The pH gradient across the membrane of 
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the vacuole is thought to provide the driving force for accumulation of chioroquine 

(Yayon et al., 1985). The vacuolar pH is presumed to be maintained by a vacuolar-H 

adenosinetriphospatase pump (V-ATPase or proton pump) located on the surface of 

the vacuole. A model to explain its function has been proposed (Ginsburg and Stein, 

1991): as chloroquine accumulates in the vacuole, it titrates some of the protons 

present there, raising the internal pH which reduces further drug uptake. The V-

ATPase continues pumping in H+  ions, with the result that the vacuole pH becomes 

more acidic, and the uptake of chioroquine is resumed. This chloroquine titrates the 

recently entered proton(s), causing a rise in pH, and the cycle continues. Other 

molecules besides the proton pump are known to regulate proton gradients, such as the 

P-type ATP-ases. 

Vacuolar ATP-ase pump 

It has been hypothesised that the lower levels of chioroquine observed in 

chioroquine-resistant parasites may be due to a weakened vacuolar proton pump, 

which causes higher intravacuolar pH levels (Gealy et al., 1990; Ginsburg and Stein, 

1991). Evidence for this comes from Bray et al. (1992b), who have shown that a 

proton pump inhibitor reduces [ 3H]chloroquine uptake to a greater extent in resistant 

parasites than sensitive parasites, suggesting that the former have a pump which is 

already weakened compared to the latter (reviewed by Bray and Ward, 1993). V-

ATPases have been found to consist of two subunits, A and B. The genes coding for 

subunits A and B of the P. falciparum pump, VAP A and VAP B, have been cloned 

from P. falciparum. Sequence analysis from three resistant and two sensitive clones 

has shown no differences which are associated with chloroquine resistance (Karcz and 

Cowman, 1991; Karcz et al., 1994). The authors suggest other explanations to 

account for elevated vacuolar pH in resistant parasites; for example there could be 

changes in the level of expression of vacuolar ATPase subunits which could limit the 

number of active pumps on the vacuole membrane. Alternatively, alterations in the 

counter ion permeability of the membrane could play a role in the regulation of 

vacuolar PH; this is discussed next 

P-type ATPase pumps. 

P-type ATPases are a ubiquitously distributed class of membrane proteins which 

coniribute to electrochemical gradients by pumping cations, using energy derived from 

the hydrolysis of AlP (for a review see Krishna and Robson, 1991). The transporters 

can form proton gradients which affect parasite pH (Krishna and Ng, 1989), and 

hence are of interest because of the part they may play in regulating the accumulation 
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of chioroquine in the food vacuole. Several P-type ATPases have been cloned from 

species of Plasmodium. An organellar-type Ca2 -ATPase gene has been cloned from 

P. yoelii (Murakami et al., 1990) and its homologue from P. falciparum (Kimura et 

al., 1993), both of which are thought to regulate the parasites' cytoplasmic 

concentration of Ca 2  in calciosomes and the endoplasmic reticulum. 

Four other related genes have been cloned from P. falciparum. PfATPases 1-3 

(Krishna et al., 1993; Krishna et al., 1994; Trottein and Cowman, 1995) and 

PfATPase4 (Trottein and Cowman, 1995) have been examined for amplification in 

several mefloquine and chioroquine-resistant P. falciparum lines (Trottein and 

Cowman, 1995). PfATPasesl and 3 were of particular interest because of their 

location on chromosome 5, which also carries the pfindrl gene, and their possible 

involvement in amplification events in response to drug pressure. However, none of 

the genes were found to be amplified in the parasite clones tested. The authors 

concluded that these P-type ATPases are not likely to play a role in drug resistance. 

(iii) Chromosome-7 chloroguine resistance locus 

A locus on chromosome 7 of P. falciparum has been found to segregate with 

chioroquine susceptibility in the progeny of a cross between chioroquine-resistant 

(clone Dd2) and chioroquine-sensitive (clone HB3) parasites (Wellems et al., 1991). 

Sixteen recombinant progeny clones from the cross were phenotyped for chioroquine 

susceptibility and efflux, and reversal of resistance by verapamil (Wellems et al., 

1990). Eight clones were shown to possess a susceptible phenotype identical with the 

HB3 parent, and the remaining clones exhibited a resistant phenotype identical with 

Dd2. No clones demonstrated intermediate phenotypes, which would have indicated 

that the trait was multigenic. The authors concluded that a single genetic locus governs 

chioroquine susceptibility in P. falciparum. Linkage analysis of the progeny clones 

with 85 RFLP markers revealed a single locus on chromosome 7 to be linked to 

chioroquine susceptibility (Wellems et al., 1991). Mapping of chromosome 7 has 

localised the region containing the putative chioroquine resistance gene to an area of 

100 kb (personal communication from J. Ravetch, The Memorial Sloan-Kettering 

Cancer Center, New York), and further studies promise to pinpoint candidate genes. 

A recent report suggests that both resistant and sensitive parasites can exhibit a 

rapid chioroquine efflux (Bray et al., 1992a). These results cast doubt on the validity 

of the rapid efflux phenotype as a predictor of chloroquine resistance, but they do not 

challenge the unigenic trait as proposed by Wellems. 

Recently, a gene coding for a heat-shock protein was cloned from the locus, and it 

was found to be linked to chioroquine response in the HB3/Dd2 cross (Su and 
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Wellems, 1994). However, examination of three chioroquine-resistant and six 

sensitive clones from different geographical regions for the resistant allele of the gene, 

failed to show any correlation. 

(iv) Other proposed mechanisms 

Certain other genes and systems have been put forward as candidate chioroquine 

resistance mechanisms, and a brief description of these follows:- 

(a) Over-expression of calmodulin 

Calmodulin is a calcium binding protein, which changes its conformation on 

binding calcium. This enables it to modulate a number of important enzymes such as 

kinases, phosphatases and a calcium ATPase pump which regulates the flow of Ca 2  

(see review by Krishna and Squire-Pollard, 1990). Calmodulin was first suggested as 

playing a role in drug resistance by Scheibel et al. (1987), who found that calcium 

modulators acted more antagonistically in a multidrug resistant clone than a sensitive 

one. This implied that a common site of action, i.e. calmodulin, was more important 

in the resistant parasites compared with the sensitive parasites. The P. falciparum 

calmodulin gene has been cloned (Robson and Jennings, 1991), but it is not amplified 

or overexpressed in the chioroquine-resistant isolates which have been examined, 

suggesting that it plays no part in the mechanism of chioroquine resistance (Cowman 

and Galatis, 1991). 

(b) Chioroquine modification 

Cytochrome P-450 is the terminal oxidase in the eukaryotic mono-oxygenase 

systems responsible for the metabolism of a wide variety of structurally unrelated 

drugs. It has been proposed that malaria parasites may convert chioroquine to a less 

active metabolite and that this activity is increased in chioroquine-resistant strains 

(Salganik et al., 1987; cited by Ndifor et aL, 1990). Evidence is accumulating that this 

difference is due to higher levels of cytochrome P-450 messenger RNA (mRNA) in 

chloroquine-resistant compared to chloroquine-sensitive parasites (Surolia et al., 

1993). Whether this represents a true resistance mechanism or merely reflects an 

overall increase in metabolic activity in resistant parasites, remains to be seen (Ndifor 

et al., 1990). Studies are in progress to isolate the P-450 gene(s) from Plasrnodium 
(Surolia et al., 1993). 
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1.6.4 Chloroguine resistance in species of rodent malaria 
The most important feature of studies involving chioroquine resistance in species of 

rodent malaria is the ability to select chioroquine-resistant parasites from chioroquine-

sensitive lines. A number of different selection procedures have been used, but it 

appears that only a continuous low dose method produces stable chioroquine 

resistance. Few selection experiments have been carried out using cloned sensitive 

parasites as starting material. An exception to this is the work on chioroquine 

resistance in P. chabaudi, which has utilised cloned lines of resistant and susceptible 

parasites. Studies carried out on each of the four rodent malaria species can be 

summarised as follows:- 

P. voelii 

All P. yoelii isolates so far examined are innately resistant to high doses of 

chloroquine (Warhurst and Killick-Kendrick (1967); Carter (1972), as cited by 

(Walliker, 1983)). However, the stage most sensitive to chloroquine action in P. 

falciparum is the trophozoite, and recent work has suggested P. yoelii trophozoites are 

normally sensitive to the drug too (Beauté-Lafitte et al., 1994). The authors suggest 

that innate chloroquine-resistance is a result of the asynchronicity of P. yoelii 

infections, as certain parasite forms are more resistant to chioroquine than others, and 

these may not be eliminated by the drug. 

P. berghei 

Naturally occuring isolates of P. berghei are sensitive to chloroquine. Many 

attempts have been made to select chloroquine-resistant mutants (as documented by 

Peters, 1987), employing a number of different techniques. A chioroquine-resistant 

('RC') line of P. berghei was made by Peters (1965), but found to be unstable in the 

absence of the drug. This resistance may have been due to physiological adaptations 

of the parasites to the drug. Interestingly, this line did not produce malaria pigment 

when under chioroquine pressure, but was able to do so after removal of the drug 

(Peters, 1965). Subsequent claims that a stable, chioroquine-resistant line had been 

selected from a sensitive isolate of P. berghei by a single-step selection method were 

found to be unreliable; the resistant 'NS' line obtained in this work was found to 

possess enzyme forms characteristic of the innately resistant P. yoelii (Peters et al., 

1978). 
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P. vinckei 

Only one successful attempt to produce chloroquine resistance in this species has 

been reported. A resistant P. vinckei line, which was stable in the absence of drug, 

was selected by Powers et al. (1969) using a continuous low pressure method. The 

line proved to be resistant to 200 mg of chioroquine per kg mouse of body-weight 

(200 mg/kg) after 44 weeks of treatment, and appeared not to produce malaria 

pigment. Earlier attempts to select a resistant line from sensitive parasites had failed, 

and chioroquine resistance could only be developed from parasites that were already 

resistant to pyrimethamine. No genetic studies have been carried out using this line. 

P. chabaudi 
Initial studies showed isolates of P. chabaudi to be chioroquine-sensitive (Peters; 

1987; cited by Rosario, 1976a). Subsequent work has concentrated on selecting lines 

for low, intermediate and high levels of resistance, and carrying out genetic crosses to 

determine the number of genes involved. 

(a) Selection of chioroguine-resistant mutants in vivo 

Rosario (1976b) selected a chioroquine-resistant P. chabaudi clone using a low 

pressure method. The AS(3CQ) clone was found to be resistant to chloroquine at a 

concentration of 3 mg/kg administered to mice over a period of 6 days. The resistance 

was stable following six months' passage without drug, and after mosquito 

transmission. An interesting observation is that Rosario was only able to select clone 

AS(3CQ) from parasites already resistant to pyrimethamine; this mirrors the situation 

found in P. vinckei (see above). In this regard, it is also of interest that mefloquine 

resistance is easier to establish in P. falciparum in vitro if the parasites are already 

chloroquine-resistant (Foote and Cowman, 1994). 

Competition studies have shown that the chloroquine-resistant AS(3CQ) clone of P. 

chabaudi possesses a selective advantage over the sensitive clone AS from which it 

was derived, even in the absence of drug (Rosario, 1978). This is surprising because 

most mutations are disadvantageous in the absence of selection pressure in their 

favour. Rosario (1976a) suggested that the earlier schizogony noted to occur in 

AS(3C0J parasites compared with AS could account for this; chioroquine-resistant 

merozoites would be produced earlier which would be able to invade more red blood 

cells than the sensitive parasites, particularly if the numbers of red cells were low, as at 

the peak of an infection. As gametocytes are produced towards the end of an 

infection, i.e. when the supply of red blood cells is limited, the resistant line would 

also be at an advantage in cyclical transmission. 
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Further selection studies were carried Out by Padua (1981). The AS(3CQ) clone of 

Rosario was exposed to gradually increasing doses of chloroquine over a period of ten 

months, and three new resistant lines were established, AS(15C0J, AS(20CQ) and 

AS(30CQ). All lines were found to be resistant to a drug dose of 30 mg/kg 

administered to mice over six days, but parasites recrudesced at different rates 

following drug treatment; parasites of the most resistant line always emerged before 

parasites from more susceptible lines. The resistance of the lines was found to be 

stable following mosquito transmission and after multiple blood passage. 

The chioroguine resistance phenotype 

The chioroquine resistance phenotype of P. chabaudi clone AS(3CQ) has been 

studied in some detail. Tanabe et al. (1990) have shown that Ca 2  antagonists, such 

as verapamil, reverse resistance in AS(3C0J. Verapamil increased the susceptibility to 

chioroquine in the chloroquine-sensitive parent line AS, a phenomenon reported in 

sensitive P. falciparum clones (Wellems et al., 1990). Ohsawa et al. (1991) have 

studied the ultrastructural changes associated with this reversal and report finding 

swelling of the food vacuoles and clumping of electron-dense material in the nucleus, 

consistent with an increase in the accumulation of chloroquine in the resistant 

parasites. Similar changes have been reported to occur in cultures of chioroquine-

resistant P. falciparum after incubation with chioroquine and verapamil (Jacobs et al., 

1988). Padua (1980) also noted morphological differences in AS(30CQ) in the 

presence of chioroquine, such as the presence of highly vacuolated trophozoites which 

gave the parasite a foamy appearance. 

Finally, Miki et al. (1992) reported reduced accumulation of chioroquine in 

AS(3CQ) parasites compared with the sensitive parasites from which they were 

derived. The authors attributed this to enhanced efflux of the drug in the resistant line, 

although no efflux studies have yet been carried out on this parasite. Such studies may 

be irrelevant as a phenotypic indicator of chloroquine resistance, as mentioned 

previously (Bray et al., 1992a; Bray and Ward, 1993). 

Genetic studies 
Rosario (1976b) crossed the chloroquine-resistant clone AS(3CQ) with a 

chloroquine sensitive line AT, which was pyrimethamine sensitive and possessed 

different forms of the isoenzymes LDH and PGD. Clones exhibiting recombination 

between all the markers were obtained, which indicated that the chioroquine resistance 

trait underwent a typically Mendelian form of inheritance expected of a nuclear gene. 

Moreover, the two drug-resistance characters, for chioroquine and pyrimethamine, 
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segregated independently, indicating that mutations at different loci were responsible 

for each type of resistance. 

70 clones were isolated from the progeny of this cross and typed for chioroquine 

susceptibility. The drug tests used to type the clones were based upon the rate of 

appearance of parasites following drug treatment of 3 mg/kg chioroquine for 6 days; 

those appearing on or before Day 8 were typed as resistant and those appearing after 

this day as sensitive. Thirty-two clones were classified as chioroquine-resistant and 

thirty-eight as chioroquine-sensitive. The levels of parasitaemia reached by some 

resistant parasites was found to vary independently of their susceptibility status. It is 

not clear whether these intermediate levels of resistance were due to the multigenic 

nature of the resistance or to host factors affecting the susceptibility tests (Rosano, 

1976 a) 

Padua (1981) examined the progeny of two crosses between her highly 

chioroquine-resistant line AS(30CQ) and the drug-sensitive line AJ. In each cross, 

progeny were obtained showing various grades of susceptibility, from complete 

sensitivity, to low (3CQ), intermediate (15CQ), and high (30CQ) levels of resistance. 

Padua concluded that the high level of resistance seen in AS(30C0J was probably due 

to an accumulation of mutations at different loci, each conferring a low level of 

resistance. Following the cross, the genes had segregated into different parasite clones 

in various combinations which conferred different levels of resistance. The exact 

number of mutations responsible for the trait was not clear, because the drug tests used 

to type the clones were also based upon the rate of appearance of parasites following 

drug treatment, and this was subject to variation as mentioned above. 

1.7 The identification of loci through linkage analysis 

The identification of genetic loci through linkage to other markers was proposed as 

early as 1932 (Haldane, 1932). The objective is to detect a marker closely linked to 

the gene which causes the trait under study (for a review, see Weatherall, 1991). Loci 

are linked if they are close together on the same chromosome, in which case they are 

likely to be passed on together into the same gamete. Thus, there is a high probability 

that linked loci will pass through successive generations together, unless they are 

separated by a cross-over at meiosis. If the marker and gene are on separate 

chromosomes, random assortment can occur, and the gene and the marker will be 

found as often together as they are apart. Once the chromosomal location of the linked 

marker is known, then by inference, the gene can be assigned to the same area of the 

chromosome. 
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Linkage analysis involves the collection of genetic cross data or pedigrees in which 

the responsible gene is segregating. The parents and progeny are studied for 

inheritance of the trait and for inheritance of multiple polymorphic markers, until 

evidence for linkage is found. Problems can be encountered if the trait is caused by 

mutations at more than one locus, but the use of data from large 'families' over several 

generations can overcome this. Mathematical methods exist to determine whether a 

given set of data contains sufficient information to give a high likelihood of positive 

linkage, the most common method in human linkage analysis being the LOD score. 

Fine mapping can then be applied to narrow down the region containing the gene, 

but this is limited to the number of informative meioses available. In linkage analysis 

of human disease loci using family tree data, it is unusual to have more than 100 

informative meioses available, and fine mapping is often limited to intervals of 1 Mb 

(mega base) (Collins, 1992). Direct localisation of the gene ultimately requires 

physical mapping and cloning. 

Linkage analysis relies upon the availability of informative markers, i.e. markers 

that detect variation between organisms at the DNA level. Ideally they should also be 

abundant, evenly distributed throughout the genome and easily typed. RFLP markers 

have been used extensively for mapping human disease loci, for example Huntington's 

chorea (Gusella et al., 1983), but often they show a low rate of polymorphism among 

specific individuals or strains of interest, and are time-consuming to type. Other 

markers which have been developed recently include: (i) multi-locus minisatellites 

(DNA fingerprints) (Jeffreys et al., 1985); (ii) single-locus minisatellites (variable 

number of tandem repeat (VNTR) markers) (Nakamura et al., 1987); (iii) 

microsatellites (see review by Queller et al., 1993); and (iv) RAPDs (random amplified 

polymorphic DNA) (Welsh and McClelland, 1990; Williams et al., 1990). 

Linkage analysis is one part of the approach used to identify and clone genes 

causing a particular phenotype, an approach referred to here as 'positional cloning' 

(for a review, see Collins, 1992). Once a candidate gene has been located by 

positional cloning, it is necessary to confirm that a mutant form of it causes the trait, 

for example through identification of mutations in DNA from individuals exhibiting the 

phenotype. Absolute proof is obtainable from transfection studies which show the 

mutant gene to cause the phenotype of the trait in question (Wicking and Williamson, 

1991). 

1.7.1 Linkage analysis studies of Plasmodium 
Two linkage analysis studies in species of Plasmodium have been reported; the first 

study identified a chloroquine resistance locus on chromosome 7 of P. falciparum 

37 

Chapter 1: Introduction 



(Wellems et al., 1991), as described in Section 1.6.3. The second study used data 

from 11 progeny clones of the HB3IDd2 cross of Wellems et al. (1991), and identified 

a locus on P. falciparum chromosome 12 which may contain genes that determine 

mosquito-infectivity and male gametogenesis (Vaidya et al., 1995). Linkage analysis 

in crosses between species of Plasmodium is helped considerably by the haploid 

nature of the parasite genome. 

1.8 Outline of the present study 

The object of this study has been to investigate the genetic basis of chioroquine 

resistance in the rodent malaria parasite P. chabaudi, by linkage analysis of a cross 

between chloroquine-resistant and chioroquine-sensitive parasites. 

P. chabaudi is an ideal model for studying genetic mechanisms of resistance to 

chioroquine. It is possible to produce isogenic clones of P. chabaudi which differ 
only in their susceptibility to drugs. Moreover, the molecular mechanism of resistance 

to at least two drugs in P. chabaudi, pyrimethamine (Section 1.5.3) and mefloquine 

(Bisoni, 1994), are likely to be the same as that found in P. falciparum. Genetic 
crosses are more easily accomplished using P. chabaudi than P. falciparum because of 
the ethical issues involved in using chimpanzees as vertebrate hosts, and the time and 

cost of in vitro culturing. 

The chioroquine-resistant clone AS(3CQ) was chosen for this work because of its 

low level of resistance (Rosario, 1976b). The resistance was more likely to be the 

result of a single mutant gene (i.e. a single gene trait), than to multiple mutant genes 

(i.e. a multigenic trait). Also, linkage analysis of a trait becomes more complicated the 

greater the number of genes are involved. A genetically distinct parasite clone AT, was 

chosen as the chioroquine-sensitive parenL 

In the first section of this study, a description is given of the construction of a 

chromosome map of P. chabaudi. The map includes markers which were developed 

from a novel technique, RAPD-PCR, and also anonymous markers, and P. falciparum 
genes which were found to cross-hybridise to P. chabaudi chromosomes. 

The location of homologous genes between P. chabaudi and P. falciparum enabled 
a report of the synteny relationship between the two genomes to be made. This is 

presented in the second part of this study. 

In the fmal section, a cross made between the two P. chabaudi parental clones is 
described. The cross progeny were cloned and tested for their susceptibility to 

chioroquine. Chromosome markers found to be polymorphic between the parents 

were then used in the linkage analysis of the progeny clones. Evidence was obtained 

that a gene on chromosome 11 of this parasite is involved in chloroquine resistance. 
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2. Materials and methods 

Abbreviations of reagents are listed in Abbreviations, and the composition of 
buffers, solutions and media are given in Appendix 1. 

2.1 Definition of terms 

Four terms describing the type of parasite infection are used throughout this work, 

as follows:- 

Isolate - a sample of parasites collected from a wild-caught animal on 

a single occasion and preserved as deep-frozen material. An 

isolate may not be genetically homogeneous and may contain 

parasites of more than one species. 

Line - a collection of parasites which have undergone a particular 

laboratory passage. In this sense, every laboratory 

manipulation of parasites creates a new line, but usually 

parasites are described as belonging to a line only after 

special treatment, such as selection for drug resistance. All 

the parasites in a line have certain characteristics in common, 

but they need not be genetically identical 

Clone - an infection derived from a single parasite by asexual 

multiplication. All parasites within a clone are assumed to be 
genetically identical. 

Stabilate- a population of viable parasites preserved on a unique occasion. 
Plasmodium parasites are routinely stored under liquid nitrogen. 

2.2 Cloned lines of P. falciparum 
The P. falciparum clones used in this work are shown in Table 2. 

2.2.1 In vitro culture of P. falciparum 
Asexual parasite forms were cultured in vitro following a modified protocol of 

Trager and Jensen (1976) and Haynes et al. (1976). Human red blood cells (RBCs; 

group 0 and Rhesus group positive, obtained from the Edinburgh and South-East 

Scotland Blood Transfusion Service) were washed and centrifuged at 1500 g three 

times in incomplete medium (Appendix 1) and the 'buffy coat' of white blood cells 

removed. The RBCs were then resuspended in complete medium (Appendix 1) to 
give a packed red cell volume ('haematocrit') of 50%, and stored at 40C.  Newly 
thawed parasites were resuspended in this complete medium in 5 ml culture flasks 

39 

Chapter 2: Materials and methods 



Table 2. Clones of P. falciparum used in this work. 

Isolate Origin Clone Pyrimethamine Chioroquine Reference 
MICb MICE 

J..ff54a The 3D7 10-7M 0.2 x 10-6  M Walliker etal. 

Netherlands  (1987) 

Hi Honduras HB3 iO M 0.2 x 10-6  M 6Bhasin and 

 Trager (1984) 

Indochina Indochina Dd2 iO M 1.6 x 10-6 M Wellems et 

al. (1988) 

a Derived from a patient living near Schipol Airport, Amsterdam, who was 

probably infected by a mosquito imported on an aircraft from a tropical country. 

There is evidence that the parasite is of African origin (Collins et al., 1986). 
b Determined using the method of Thaithong and Beale (1981), by Babiker (1994). 

(J.Bibby Science Products Ltd.) at a final haematocrit of 5%. Flasks were gassed 
with a mixture of 1% 02,  3% CO2 and 96% N2,  and maintained at 37 0C.. Medium 
and gas were replaced daily. 

The parasitaemia and health of the parasites were monitored by microscopic 

examination of thin blood films (blood smears) taken from cultures each day. Smears 

were fixed with methanol and stained with Giemsa's stain (Gibco BRL) at pH 7.2. 

The parasitaemia was calculated by counting the number of parasites found in three 

different fields of the same Giemsa-stained blood smear, and the total number of red 

blood cells in those fields. Double and triple parasite infections were counted as two 

and three parasites respectively. The percent parasitaemia was calculated as follows:- 

% parasitaemia = number parasitized red blood cells x 100 

total number red blood cells 

Parasites were subcultured into larger 25 ml flasks also containing red blood cells, 

at 5% haematocrit when the parasitaemia reached 8-9%. 

2.2.2 Cryo-preservation of parasites 

Parasites were preserved in liquid nitrogen (Jensen et al., 1979). Cultures at a 
parasitaemia of at least 2% and containing predominantly ring forms were centrifuged 

at 1500 g for 5 minutes. After removal of the supernatant, an equal volume of deep 

freeze solution (Appendix 1) was added slowly to the packed RBCs, which allowed 

HE 

Chapter 2: Materials and methods 



the glycerol to penetrate parasitized RBCs. 0.3 ml aliquots of the cell suspension were 

pipetted into polypropylene ampoules (Nunc) which were immersed immediately in 

liquid nitrogen. 

Parasites were recovered from storage by thawing the ampoules at room 

temperature and treating the parasites using a method based on Aley et al (1984), as 
described by Ranford-Cartwright (1992). Briefly, three thawing solutions containing 

decreasing concentrations of NaC1 (Appendix 1) were added in turn to the thawed 
parasites and mixed, the mixture centrifuged at 1500 g for 5 minutes and the 
supematant removed. The RBC pellet containing thawed parasites was then placed 

into culture with new medium. 

2.3 Lines and clones of P. chabaudi and their hosts 
2.3.1 Parasite lines and clones 
The parasite lines used in this study are shown in Table 3. The two lines 

AS(sens) and AJ were originally obtained from separate, wild-caught thicket-rats of 

the Central African Republic (Carter and Walliker, 1975). They were subsequently 
cloned by dilution of blood forms by the method described by Walliker et a! (1975). 
They differed from each other in the electrophoretic form of three enzymes, lactate 

dehydrogenase (LDH; E.C. 1.1.1.27), 6-phosphogluconate dehydrogenase (6PGD; 
E.C. 1.1.1.44) and adenosine deaminase (ADA; E.C. 3.5.4.4) (Carter, 1978; 
Sanderson et al., 1981). Both AJ and AS(sens) are pyrimethamine- and chioroquine-
sensitive, as defined in Table 3. 

AS(OCOJ was derived from the AS(sens) line and is resistant to 4 daily doses of 

pyrimethamine at 15 mg/kg mouse body weight (Walliker et al., 1975). This 
resistance was established in a single step using a high pressure method. Briefly, 50 

infected mice were treated with pyrimethamine at 50 mg/kg for 4 days. Parasites 

appeared in the blood of one animal 14 days later and were then passaged through 

undrugged rodents and mosquitoes to ensure the stability of the resistance. The line 

was cloned before being cryo-preserved. 

The chioroquine resistant line, AS(3CQ), was derived from the AS(OCOJ line by 

Rosario (1976a; 1976b) and is resistant to 6 daily doses of chloroquine at 6mg/kg 

mouse body weight. This resistance was established in multiple steps using a 

continuous low pressure method. Briefly, groups of infected mice were treated with 

chloroquine at 2 mg/kg for 5 days. Parasites from the mouse which exhibited the 

highest parasitaemia were injected into a second group of mice and the treatment 

repeated. After five similar passages, during which the dose of chioroquine was 

increased to 3 mgfkg, the surviving parasites were transmitted through mosquitoes 
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Table 3. Cloned lines of P. chabaudi used during this work. 

Cloned 

Lines 

Enzyme Types 

ADA 	6PGD 	LDH 

Drug Response 

Pyrimethamine Chioroquine 

9 3 2 S 	 S 

AS(sens) 6 2 3 S 	 S 

AS(OCOJ 6 2 3 R 	 S 

AS(3C0J 6 2 3 R 	R 

Different electrophoretic forms of each respective enzyme ADA, 6PGD and LDH are 

shown as numbers. For example, AJ parasites have electrophoretic form 9 of the 

enzyme ADA, whereas AS parasites have electrophoretic form 6 of the same enzyme 

(Carter, 1978; Lainson, 1983). Drug responses for the lines are based upon the 

following drug tests: 

Pyrimethamine : S. sensitive to treatment with 15 mg/kg pyrimethamine for 4 days 

R, resistant to treatment with 15 mg/kg pyrimethamine for 4 days 

Chioroquine: 5, sensitive to treatment with 3 mg/kg chioroquine for 6 days 

R, resistant to treatment with 3 mg/kg chioroquine for 6 days 

The preparation of drug tests is described in Section 2.6.3. 

into mice and found to be resistant. The relationships between these three AS lines is 

summarised in Figure 4. 

2.3.2 Mammalian and insect hosts 
Laboratory mice (Mus musculus) and rats (Rattus norvegicus) were used 

throughout this project as mammalian hosts. Male and female outbred strains of mice 

(University of Edinburgh) were used for the routine maintenance and cloning of 

parasite lines, and 7-8 week old CBA/Ca male mice (B & K Universal, Hull) for 

chioroquine susceptibility tests and genetic crossing work. Newly weaned and 

splenectomised Wistar rats (B & K Universal, Hull) were used for inducing 

gametocytogenesis (MacLeod and Brown, 1976). Rats were splenectomised at least 

24 hours before required, following normal procedures. All rodents were kept in 

polypropylene cages with wood shavings for bedding and fed with SDS Formula 
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Figure 4. Pvrimethamine and chioroquine resistance selection experiments 
using clone AS.  
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Number 1 (Special Diets Services Ltd., Essex, England). Drinking water was 

supplemented with 0.05% PABA (para-aminobenzoic acid), which may be an 

essential requirement for parasite growth (Hawking, 1953; Jacobs, 1964). Animal 

rooms were kept at a constant 2225 0C with a cycle of 12 hours light and 12 hours 

dark. 

Anopheles stephensi mosquitoes were used as the insect host for crossing studies. 

They were maintained at 24-26 0C and 70-90% humidity with alternating 12 hour 

sequences of light and darkness, and fed with a 10% solution of glucose containing 

0.05% PABA. 

2.4 Maintenance of P. chabaudi in the laboratory 
2.4.1 Blood passage 

P. chabaudi infections were maintained by blood passage from infected to 

uninfected mice. Blood from mouse tail-snips was collected in either citrate saline or 

heparinized serum Ringer solution (Appendix 1), and 0.1ml injected 
intraperitoneally into each uninfected mouse. The day of inoculation was called Day 0 

(D0), and subsequent days Day 1 (Di), Day 2 (D2) etc. Infections were monitored by 

examining thin blood films (blood smears) taken from tail-snips and stained with 
Giemsa's stain as described for P. falciparum. 

2.4.2 Cryo-preservation 

Mice on days 3-4 of infection were anaesthetized with ether, and blood collected 

from the brachial vessels directly into citrate saline. The blood was subsequently 

treated as described for P. falciparum (Section 2.2.2). The cell suspension was 

dispensed into glass capillaries which were sealed and plunged into liquid nitrogen for 

storage. Parasites were recovered from storage by thawing frozen capillaries, diluting 

the contents with citrate saline, and inoculating uninfected mice with 0. imi each. 

Infections became patent 5-10 days after inoculation and were passaged once before 

undergoing a particular laboratory procedure. 

2.4.3 Preparation of standard inocula 

Inocula containing known numbers of parasites were required for drug resistance 

tests and for establishing clones by dilution of infected blood. Parasitaemias were 
calculated as described for in vitro cultures of P. falciparum, and a haemocytometer 
used to calculate the number of red blood cells/mi of infected mouse blood. The 

number of parasites present in a given volume of blood was then determined. 
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Inocula containing iø or 106  parasites 
An infected donor mouse was bled from the tail into fixed-volume glass micro-

pipettes (Camlab). The blood was diluted to the appropriate concentration in 

heparinized serum Ringer solution, so that each 0. lml contained 10 5  or 106  parasites 

as required. Diluted blood was kept on ice at all stages. Recipient mice were 

inoculated with 0. lml of diluent within an hour of the preparation of the inocula. 

Inocula containing 0.5 parasite (cloning) 

Clones of P. chabaudi were established using a modified limiting dilution technique 

(Walliker et al., 1975). Inocula containing 0.5 parasite/0. lml of heparinized serum 

Ringer solution were prepared from donor mice. Mice with low but rising infections 

were selected, to minimize the number of double and triple parasite infections in a 

single erythrocyte. 0. imi aliquots were injected intraperitoneally into groups of 20-40 

mice, and thin blood films examined after 10-14 days. The numbers of clones 

established from one or more parasites could be estimated from the proportion of mice 

which became infected, by means of the Poisson distribution. By inoculating 0.5 

parasite per mouse, approximately 40% of the animals should become infected. Of 

these, 75% are predicted to be clones. These calculations are approximate but 

adequate for this work, because non-clonal infections were readily detected by 

examining genetic markers. 

2.5 Preparation and administration of drugs and standard drug tests 
2.5.1 Chloroguine 

Chioroquine sulphate, commercially known as 'Nivaquine', was obtained in the 

form of a solution of 40mg chloroquine base/ml (May and Baker Ltd., Dagenham, 

England). The required dilutions of drug were made in distilled water and stored at 

40C. The drug was administered to mice orally by intubation in 0.lml amounts. 

2.5.2 Pyrimethamine 
Pynmethamine, commercially known as 'Daraprim', was obtained in powder form 

from the Weilcome Research Laboratories, Kent, England. The required dilutions of 

drug were made in warmed DMSO (dimethyl suiphoxide), due to the insolubility of 

the drug in water, and stored at room temperature. The drug was administered orally 

by intubation in 0. lml amounts. 
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2.5.3 Standard drug resistance tests 
Drug doses were expressed as mg of drug per kg mouse body weight (mgfkg). All 

drug tests involved the prior inoculation of 10 6  parasites into 4 or 5, 7-8 week-old, 

CBA/Ca male mice. Two mice served as controls, and the remainder as the mice to be 

treated with drug. Three hours after inoculation, the first drug dose was administered 

(Do) and repeated at the same time thereafter (on D1, D2 etc.). The mice were weighed 

individually and daily to take account of any changes in body weight, and the dose 

adjusted accordingly. Blood smears were taken from each mouse on appropriate days 

and examined for the presence of parasites. 

(I) Standard test for chloroguine resistance 

Mice were subjected to 3mg chloroquine/kg for 8 days and tail smears examined for 

parasites on D11, D13, D15 and, when necessary, D17. This test produced a time lag 

between the emergence of resistant parasites (on or before D13) and sensitive parasites 

(1)15 onwards), and was used for all drug tests. 

(ii) Standard test for pyrimethamine resistance 

Mice were subjected to 15mg pyrimethamine/kg body weight for 4 days and tail 

smears examined on D8 and 1310. Those parasites which appeared on or before D10 

were classified as resistant, and those which did not appear up to D20, as sensitive. 

2.6 Extraction of parasites from host cells 

2.6.1 Extraction of P. chabaudi parasites 
Mice with a parasitaemia of 60-80% were anaesthetized with ether and blood 

collected from the brachial vessels directly into citrate saline. The blood was passed 

down a column of CF1 1 cellulose powder (Whatman), pre-wetted with citrate saline, 

to remove host leucocytes (Fulton and Grant, 1956) and then lysed with a solution of 

0.15% saponin in 1 x PBS (Appendix 1). After washing twice in 1 x PBS, the 

parasites were pelleted by centrifugation at 1500 g for 10 minutes and stored at 20 0C. 

2.6.2 Extraction of P. falciparum parasites 
In vitro cultures with a parasitaemia of 10-15% were centrifuged to pellet the 

erythrocytes. As P. falciparum cultures contain few human white blood cells, removal 

of the cells by a CF1 1 column is not necessary. Erythrocyte lysis was completed 

following the method outlined above and parasites stored at -20 0C. 

I1 

Chapter 2: Materials and methods 



2.7 Alloenzvme analysis 

Electrophoretic variants of the enzymes LDH and ADA were examined by 

horizontal cellulose acetate electrophoresis (Carter, 1978; Sanderson et al., 1981; 
Babiker, 1994). Parasites freed from their host red blood cells by saponin lysis were 

lysed with a small quantity of water and loaded onto Titan ISO-VIS cellulose acetate 

plates pre-soaked in Supra-heme buffer for ADA or Electra-HR buffer for LDH 

(Appendix 1). Electrophoresis was carried out according to the manufacturer's 

instructions (Helena Laboratories, U.K. Ltd., England). Following electrophoresis, 

plates were incubated with the appropriate enzyme staining solution (Table 4). 
Samples of uninfected mouse blood were run in parallel with parasite samples as 

controls. 

Table 4. Cellulose acetate elecirophoresis running conditions and staining solutions. 

Enzyme Electrophoresis conditions Assay solution 
voltage 	time 

ADA 200 V 15 min o.i M phosphate buffer, pH 7 7 5 	2 ml 
Adenosme 	 10 mg 
MTP 	 5mg 
Xanthine oxidase 	 0.01 ml 

Nucleoside phosphoiylase 	0.01 ml 
PMSb 	 2mg 

LDH 150 V 25 mm 0.05 M Tris-HC1 buffer, pH 8.0 2 ml 
Lithium lactate 	 100 mg 
NADC 	 5mg 
MiT 	 5mg 
PMS 	 2mg 11 

a MiT: 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenylteirazolium bromide 
b PMS : phenazine methosulfate 
C NAD : nicotinaniide adenine dinucleotide 

2.8 Pulsed-Field Gradient Gel Electrophoresis (PFGE) 
2.8.1 Preparation of PFG blocks and agarosegels 
PFG blocks of P. chabaudi and P. falciparum blood forms were prepared following 

the method of Kemp et a! (1985). Freshly saponin-lysed parasites were diluted with 1 
x PBS to a fmal concentration of 4 x 109  parasites/ml. An equal volume of 2% (wlv) 
low melting temperature (LMT) agarose (Sigma), made in 1 x PBS and cooled to 
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42 0C, was added to the parasites, the solution mixed, pipetted into a pre-warmed 

mould (BioRad), and allowed to set at 4 0C for 20 minutes. Solidified blocks were 

removed into PFG lysis solution (Appendix 1) containing 2 mg/mi proteinase K 

(Boehnnger Mannheim) and incubated at 42 0C for 48 hours with one change of iysis 

solution and proteinase K. Blocks were stored at 4C in lysis solution only. 

0.8-1.0% (w/v) Molecular Biology Grade (1131) or Chromosomal Grade (BioRad) 

agarose gels were made in 0.5 x TBE buffer in a BioRad mould. Blocks were cut to 

the required size, loaded into the wells and sealed with 0.8% (wlv) LMT agarose in 

0.5 x TBE buffer. 

2.8.2 PFG electrophoresis conditions 
All PFG gels were run using a CHEF (Contour-clamped Homogeneous Electric 

Field) system (Chu et al., 1986), in which the electric field is generated from multiple 

electrodes that are arranged in a hexagonal contour around a horizontal gel and 

clamped to predetermined potentials. The gels were run in 0.5 x TBE buffer 

(Appendix 1), cooled to 10-140C. Two sets of conditions were used: 

separation of low molecular weight chromosomes 
First setting : voltage 140 V; pulse-time 120 seconds; for 24 hours; 

Second setting : voltage 130 V; pulse-time 300 seconds; for 24 hours; 

Final setting: voltage 140 V; pulse-time 180 seconds; for 24 hours. 

separation of high molecular weight chromosomes 

voltage 80 V; pulse-time 180-900 seconds (ramped); for 7 days. 

(A 'ramp' is a decrease in the ratio of run time to pulse time, which allows 

enhanced resolution of chromosomes in a certain size class.) 

S. cerevisiae and Schizosaccharomyces pombe DNA size standards (BioRad) were 

run on all gels. After electrophoresis, gels were stained with ethidium bromide at a 

final concentration of 0.5 .tg/m1 for 1/2 hour and visualized under ultra-violet light. 

P. falciparum chromosomes were numbered according to convention, with 3D7 

taken as the standard clone (Triglia et al., 1992). P. chabaudi chromosomes were 

numbered using AS(sens) as the standard clone, as shown in Chapter 3. 

2.9 Extraction of genomic DNA 

P. falciparum and P. chabaudi parasites, freed from their host red blood cells by 

saponin lysis, were incubated in an equal volume of lysis solution containing 0.2 

mg/mi proteinase K, at 370C  overnight. DNA was extracted once with TE buffer 

(Appendix 1)-equilibrated phenol containing 0.1% (w/v) 8-hydroxyquinoline, twice 

with 1:1 (v/v) phenol/chloroform and finally with 24:1 (v/v) chioroform/isoamyl- 
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alcohol (Sambrook et al., 1989), precipitated in 0.3 M ammonium acetate and one 

volume of isopropanol overnight at -20 0C, pelleted at 1300 g for 10 minutes, washed 

in 70% ethanol and resuspended in TE, pH 7.4. 

2.10 Genomic DNA digests 

P. chabaudi genomic DNA was digested following normal procedures (Sambrook 

etal., 1989). Briefly, 2.5-3 tg of DNA was incubated over-night in 5-10 units of the 

appropriate restriction enzyme and the manufacturer's buffer, in a total volume of 20-

30 tl. Restriction enzymes (Boehringer Mannheim and New England BioLabs) were 

chosen on the basis of their availability and recognition sequence. Alu I, Dra I, Hind 

H, Hinf I, Sau 3A and Rsa I were routinely used for detecting RFLPs (restriction 

fragment length polymorphisms). However, these did not always reveal a 

polymorphism between the parasite lines under investigation and a series of other 

enzymes were used; Ase I, Mse I, Ssp I, Swa I, Pac I, Prne I, Barn HI, Eco RI, Hind 
III, Asn, Dpn II, Mae I, Mae H, Sfu I, Taq I. Certain restriction enzymes proved 
more likely to produce RFLPs than others; these quickly became apparent and took 

precedence over others during screening for RFLPs. 

Genomic DNA digests were mixed with an appropriate volume of 1 x gel-loading 

buffer (Appendix 1) and electrophoresed on conventional TAE buffer (Appendix 
1) agarose gels (Sambrook et al. 1989). DNA size markers (bacteriophage X digested 

with Hind ifi) were run alongside samples on all gels. After electrophoresis, gels 

were stained with ethidium bromide for 15 minutes and visualised, as described 
previously. 

2.11 Southern blotting 

Agarose gels were Southern blotted (Southern, 1975) onto Hybond-N+ 

(Amersham International) by alkaline transfer following the manufacturer's guide-

lines. RFLP gels were depurinated in 0.25 M HC1 for 10 minutes, and DNA transfer 

allowed to proceed for 4-6 hours. PFG gels were depurinated for 1/2 hour, and the 

DNA allowed to transfer for 24 hours. After blotting, membranes were carefully 

marked to allow the identification of tracks, and stored in Saran Wrap (Dow Chemical 

Company) at 40C. 

2.12 Manipulation of recombinant DNA molecules 
Many Plasmodium genome markers were obtained as cloned inserts in the 

polylinker sites of plasmid DNA. In order to produce abundant insert and to store the 
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markers for future use, all recombinant plasmids were transformed into E. co/i and 
preparations of plasmid DNA made. 

2.12.1 Transformation 
Competent E. co/i strains INV0tF' (Invitrogen) or XL1B1ue (Stratagene), and E. 

coli strain NM522 made competent by a modified calcium chloride procedure (Mandel 

and Higa, 1970) were transformed with plasmid DNA, following Sambrook et al 
(1989). A control sample of competent cells to which 2 p.1 of TE had been added was 

treated in parallel to detect contamination of the cells by foreign DNA. 

2.12.2 Long-term storage of transformed cells 

E. coli transformed with recombinant plasmid DNA were preserved for long-term 

storage as glycerol stocks, following the protocol in Sambrook etal. (1989). Glycerol 
stocks were stored at -70 0C. Viable bacteria were recovered by scratching the surface 

of the frozen stock and streaking the loosened cells onto LB agar plates containing the 

appropriate antibiotic. 

2.12.3 Extraction and digestion of plasmid DNA 

Plasmid DNA was prepared using the WizardTm Minipreps and Wizardrm  
Maxipreps DNA purification systems (Promega) following the manufacturer's 

instructions. Inserts were released by digestion of plasmid DNA with the appropriate 

resthction enzyme, following normal procedures (Sambrook et al., 1989), and using 
Boehringer Mannheim enzymes and buffers. Digests were electrophoresed on 0.8-2% 
(wlv) LMT agarose (Gibco BRL) mini gels with Boehringer Mannheim DNA size 

markers VI and VII. After electrophoresis, gels were stained and visualised as 

described previously. 

2.12.4 Insert purification 

LMT agarose containing the required insert was excised, melted at 70 0C and the 
DNA extracted using the WizardTm PCR Preps DNA purification system (Promega) as 

described in the manufacturer's instructions. Inserts were stored in TE pH 8.0 at 

-20°C. 

2.13 Polymerase Chain Reaction (PCR) 

2.13.1 PCR reagents. reaction conditions and electrophoresis 
PCR reactions were carried out using a TRIO-Thermoblock PCR machine 

(Biometra) in 50 p.1 volumes containing 100 nM of each appropriate oligonucleotide 
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(Oswel DNA Service, Edinburgh, Scotland) in 1 x PCR reaction buffer (Appendix 
1), 1 x PCR dNTP solution (Appendix 1), 1 unit Taq DNA polymerase (Boehringer 

Mannheim) and 100-400 ng of P. falciparum or P. chabaudi genomic DNA. 

Reactions were overlaid with 100 iJ light mineral oil (Sigma). Negative controls for 

each primer pair contained all the above components except for 2 Lil of 'FE in place of 

genomic DNA. 

PCR was performed using standard conditions of amplification (Saiki et al., 1993). 

An initial DNA denaturation step was followed by a primer annealing stage and finally 

elongation of the synthesised strand. Specific temperatures were dependent upon the 

template DNA being amplified and are listed where necessary. 

5 j.tl of the total 50 j.tl PCR reaction was electrophoresed on mini TAE agarose gels 

and stained and visualised as described. 

2.13.3 Purification of PCR-amplified fragments 
The remainder of the PCR reaction was purified to remove unincorporated 

deoxynucleotides and primers using the WizardTm PCR Preps DNA purification 

system (Promega) following the manufacturer's protocol. 

2.14 Cloning PCR products 

PCR products were cloned into the vector pCRII using the TA CloningTm  
System (Invitrogen) and following the manufacturer's instructions. Figure 5 is a 
map of the pCRfl vector. 

INVaF' (Invitrogen) competent cells were transformed with the plasmids and 

plated out on fresh LB plates containing 50 pg/ml kanamycin and 25 tl X-gal (40 
mg/ml stock solution). Colonies were picked 15-18 hours later, grown in overnight 

cultures and plasmid mini-preps made. Plasmid inserts were amplified by PCR using 

Sp6 and 17 promoter primers (Promega) to verify the insert size. PCR cycling 

conditions were: 

Step 1. 950C, for 1 minute 

Step 2. 470C, for 1 minute 

Step 3. 700C, for 2 minutes 30 seconds 

for 35 cycles. Important PCR products were also sequenced. Once identified, clones 

were preserved as glycerol stocks at ...70 0C (section 2.12.2). 
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Figure 5. Map of vector pCRII (Invitrogen) used to clone PCR products. 

ZIU)C/UJ 	u.zwcDZ<-XXZX< 40 

pCR TM  II 
3.9 kb 

2.15 Dideoxy chain termination sequencing 

Dideoxy sequencing (Sanger et al., 1977) was performed on cloned PCR products 

using the Sequenase® Version 2.0 DNA Sequencing Kit (United States Biochemical 

Corp.). 30 tl of a plasmid mini-prep was alkaline-denatured in 0.4 M NaOH and 0.1 

mM EDTA at 370C for 30 minutes, precipitated in 0.3 M sodium acetate and 2 

volumes of ethanol, washed with 70% (v/v) ethanol, and resuspended in 12 tl of TE, 

pH 8. 0.6 p1 of this was used for each seqencing reaction. 

Sequencing was carried out following the manufacturer's suggestions and 

including the modified procedure of Winship (1989). Sp6 and T7 oligonucleotides 

(Promega) or the original PCR oligonucleotides were used as sequencing primers. 

Sequencing reactions were electrophoresed using standard conditions on 6% 

denaturing polyacrylamide gels made using either a Baserunner apparatus 

(International Biotechnologies, Inc.) or a Sequi-Gen Nucleic Acid Sequencing Cell 

(BioRad). 
Gels were dried to 3 MM chromatography paper (Whatman) on a vacuum dryer 

(Hoeffer Scientific Instruments) for 1.5 hours at 75 0 C and exposed to 

autoradiography film (Kodak XAR-5) at room temperature in an autoradiography 

cassette. Film was developed in an automatic autoradiographer developer (Exograph). 

DNA sequences were entered into the University of Wisconsin Genetics Computer 

Group DNA sequence analysis software for comparison with other known sequences 

on databases (EMBL, Genbank, etc.). 
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2.16 DNA radiolabelling 

A Random Primed DNA Labeling kit from Boehringer Mannheim was used to label 
probes with [a 32P] dATP (Amersham International), following the manufacturer's 

protocol. 1 tg of carrier DNA was added to the random prime mixture, the sample 

loaded onto a Chroma Spin-30 column (Clontech), and centrifuged for 5 minutes at 

700 g. The purified probe was collected in an Eppendorf tube and stored at 4 0C until 

used. 

2.17 Hybridisation of labelled DNA to Southern blots 
2.17.1 Hybridisation 

Southern blots were incubated in pre-hybridisation solution (Appendix 1) for at 
least one hour before the addition of the probe. Pre-hybridisation incubation 

temperatures were the same as hybridisation temperatures, which depended upon the 

probe being used. P. chabaudi 'homologous' probes were incubated at 650C; all 
other Plasmodium 'heterologous' probes were incubated at 40-60 0C. Blots were 
incubated inside a Maxi-Oven (Hybaid) using screw-capped glass hybridisation bottles 

(Hybaid).. 

0.1 mg sheared salmon sperm carrier DNA was added to the labelled probe, the 

volume made up to 1 ml with water and the solution boiled for 3 minutes. After snap-

cooling on ice for 15 minutes, the probe was added to the pre-hybridising blots and 

allowed to hybridise overnight. 

2.17 2 Washing Southern blots 
Hybridisation solutions were collected and stored at -20 0C for further use, if 

required. Unless a very low stringency was necessary, all blots were washed once at 

room temperature in 2 x SSC, 0.1% SDS for 5 minutes. Blots hybridised with 
homologous probes were then washed at 0.5 x SSC, 0.1% SDS, 650C for one hour 

with one change of wash solution. Blots hybridised with heterologous probes were 

also washed for one hour with one change of wash solution, at a stringency 

appropriate to the degree of conservation between the probe and P. chabaudi. 

Washed blots were sandwiched in Saran Wrap and autoradiographed with 

intensifying screens at ..70 0C. After film development, blots were re-exposed or 

stripped. 

2.17.3 Stripping Southern blots 

Southern blots were stripped in 100 mM NaOH for 30 minutes at room 

temperature, with one change of solution. 
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2.18 Chromosome markers 
Three types of probe were used as chromosome markers for the P. chabaudi 

genome:- (i) genes which had been cloned and characterised in other laboratories; (ii) 

anonymous markers from a P. chabaudi genomic DNA library; and (iii) DNA 

fragments developed from the RAPD-PCR technique (Random Amplified 

Polymorphic DNA-PCR). 

2.18.1 Markers from other laboratories 

A large number of antigen genes of malaria parasites have been cloned and 

sequenced. However, genes coding for antigens are more likely to have diverged in 

sequence than are house-keeping genes, due to immune selection by the host. For this 

reason, most of the markers chosen for this study were house-keeping genes from 

other Plasmodium species, which were more likely to cross-hybridise with P. 

chabaudi. 

Table 5 lists all the probes which were obtained from other laboratories and 

investigated for their suitability as chromosome markers for the P. chabaudi genome. 

Each probe has been given a Probe Number which is referred to throughout the text. 

The markers were excised from their vectors by enzyme digestion, or amplified by 

PCR. The DNA was then purified, radiolabelled, and used to probe blots of PFG gels 

of P. falciparum and P. chabaudi chromosomes, and of restricted P. chabaudi DNA. 

Table 5. DNA probes investigated for their suitability as chromosome markers 

for the P. chabaudi genome. 

Prob Marker Reference Insert Information 
No . ______ 

1 Ca2 - Murakaini etal. 3.3 kb in Hind ifi Contains 70% of P. 
ATPase (1990) site of pUC19; clone yoelii Ca2 -ATPase 

yH4 gene 

2 235 Holder et al. 5.5 kb in Eco RI site Clone of P. yoelii gene 
kDa (1991) of pUC9; clone E8 coding for 235 kDa 

virulence antigen 

3 pBS W. Deleersnijder, 1.2 kb cDNA in Eco P. chabaudi schizont- 
110 Institute for RI site of pBluescript specific gene 

Molecular 

Biology, Brussels, 

Belgium 	I  
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4 MSP-1 Deleersmjder et al. 5.4 kb in Eco RI of P. chabaudi genomic 

(1990) pBluescript, clone clone of major merozoite 

pBS RX4 surface protein, MSP-1 

5 PcEMA Deleersnijder etal. 2.3 kb in Eco RI of PcEMA1, P. chabaudi 

1 (1992) pBluescript; clone acidic phosphoprotein 

pBSX2A/1 gene 

6 DHFR Cowman and Lew 2.0 kb PCR P. chabaudi 

(1989) fragmenta dihydrofolate reductase 

gene (DHFR), 

bifunctional enzyme 

with thymidylate 

synthase (TS) 

7 pfindr- Foote etal. (1989) 4.8 kb in Xho JJSph P.falciparum multi-drug 
1 I site of pIC20H resistance gene 

8 TBP McAndrew et al. 690 bp in Eco RIJXba P. falciparum TATA- 
____  (1993) I site of pGEM-4Z binding protein gene 

9 Enolase Read et al. (1994) 1.3 kb in Eco RI site Clone of two-thirds of P. 

of Ml 3. falciparum enolase gene 
10 DHPS Brooks etal. 980 bp in Eco P.falciparum 

(1994) RIJNco I site in dihydropteroate 

pET22b. synthetase gene 

11 H2A Creedon et al. 360 bp PCR P. falciparum histone 2A 
(1992) fragmentb gene 

12 9.2 Ponzi etal. (1990) 4.2 kb in Eco RI site P. berghei anonymous 
of pUC 8 probe 

13 RPIII Li etal. (1991) 7 kb in Eco RI site of P.falciparum RNA 
pBluescript; clone El polymerase ifi gene 

14 5S Shippen-Lentz et 450 bp in Sma I site P. falciparum 5S rRNA 
rRNA al. (1988); of pGEM1 gene 

Shippen-Lenti 

and Vezza (1988)  
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15 EFJ-a D. Williamson, 4.3 kb in Hind III P.falciparum clone 
National Institute site of EMBL8, clone containing linked pfPK5 

for Medical pPF- 1; cut out 451 (yeast cdc-2 gene 
Research, Mill bp EF1-(x gene with homologue) and EF1-a 

Hill, London, Pvu II (elongation factor) genes 
Genbank accession 

no._X60488  

16 CDC2 Janse et al. (1994) 1 kb in Barn HJJEco P. berghei yeast CDC-2 
RI site of pBluescript gene homologue 
KS (homologue of P. 

falciparurn pfPK5) 

17 VAP A Karcz etal. 1.5 kb in Eco RI site P. falciparurn vacuolar 
(1993b) of pGEM-4Z ATPase A subunit 

homologue 

18 VAP B Karcz etal. (1994) 2.5 kb in Eco RI site P.falciparurn vacuolar 
of pGEM-4Z ATPase B subunit 

homologue 
19 G6PD O'Brien et al. 588 bp in Eco RI site P. falciparum glucose 6 

(1994) of pGEM phospate dehydro- 
____  genase (G6PD) gene. 

20 hsp-70 Sheppard et al. 1.1 kb in Eco RI site 3' half of P. chabaudi 
(1989a) of pUC13; clone gene coding for a heat 

BTA505 HS shock protein 
21 Pfcrk- Doerig et aL 2.4 kb in Xho I site P. falciparum cdc2- 

1 (1995) of pJFE related protein kinase-1 

gene 

22 Pfinap- C. Doerig, Division 1.8 kb in Xho I site P. falciparum mitogen- 
1 of Biological of pJFE-DAF activated protein kinase 

Sciences, gene 
Edinburgh 

University, 

Edinburgh  

23 Pfcrk- ,, 500 bp in Eco RI site P. fatciparurn cdc2- 
3 of pCR IFTM related protein kinase-3 

gene 
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24 DNA Ridley et al. (1991) 1 kb in Eco RI of Conserved region from 
pol a pUBS; clone pUBS P.falciparum DNA 

0/5 polymerase a gene 

25 DNA Ridley et al. (1991) 1.7 kb in Eco RI site Conserved region of P. 
p0! 5 of PUBS; clone falciparum DNA 

pUBS 2a polymerase 8 gene 

26 RAP-i Ridley etal. (1990) 2.4 kb in Pst I/Hind P. falciparum rhoptry 
ffi site of pUBS antigen gene 

27 Topo I K. Tosh, Division 1 kb PCR product; P. falciparum 

of Biological primer sequences not Topoisomerase I gene 

Sciences, known 

Edinburgh 

University, 

Genbank accession 

no._X83758  

28 Topo Cheesman et al. 2.6 kb in Hind Ill site P. falciparum 

II (1991) of pUC19; 0.8 kb topoisomerase II gene 
fragment excised with 

Hind IllJBam HI  

29 PCNA Kilbey et al. 800 bp in Hind P. falciparum 

(1993) ffl/Eco Ri site of proliferating cell nuclear 
pBluescnpt antigen (PCNA) gene 

30 GPI Kaslow and Hill 2.2 kb in Eco P. falciparum glucose 
(1990) RI/Hind ifi site of phosphate isomerase 

pUC 13 (GPI) gene 

31 HPRT King and Melton 1059 bp in Eco RI P. falciparum 

(1987) site of pUC8; clone hypoxanthine-guamne 

7-30 phosphoribosyl- 
____  transferase (HPRT) gene 

32 Cabnod- Robson and 2.2 kb in Eco RI site P. falciparum genomic 
ulin Jennings (1991) of pBR328; clone clone containing most of 

PfCM 211 the calmodulin gene 

57 

Chapter 2: Materials and methods 



33 Pcsv4 Viriyakosol et al. 1.4 kb in Eco RI site P. chabaudi 

(1989) of mpl3 fingerprinting probe 

isolated after screening 
?gt1 1 library with 

polyclonal sera raised 

against MSP-1 antigen 

34 RESA Snounou etal. 1.5 kb in Eco RI site Codes for an epitope of 

(1988) of mpl3 theP.chabaudilO5kDa 

antigenc; clone pPC105e 

35 a! Holloway etal. 1.9kb in Eco RI site P.falciparum a I 

tubulin (1989; 1990) of pBR322 tubulin gene, 5' terminus 

36 all ,, 1.75 kb in Eco RI P. falciparum a II 

tubulin  site of pBR322 tubulin gene, 3' terminus 

37 aldo-1 Meier etal. (1992) 900 bp Nco I P. berghei aldolase-1 

fragment gene, less 150 bp 

38 J3 Belkum et al. 1 kb in Sst I site of P. berghei D tubulin 

tubu!in (1991) pGEM-3Zf(-) gene 

39 AMA- Marshall etal. 2.6 kb in Barn Complete P. chabaudi 

1 (1989) HTJEco RI site of apical membrane antigen 

pBluescript gene 

40 pfran Sultan etal. (1994) 1.4 kb in Bst XI site Complete P. falciparum 

of piPE 14 Ran/TC4 GTPase 

homologue 

41 RNA Giesecke etal. 300 bp Eco RI P. berghei RNA 

____ p0! 11 (1991) fragment in pUC18 polymerase II gene 

42 eDNA Silveira et al. 190 bp in Pst I site of Uncharacterised eDNA 

167 (1984); Sharkey et pBR322 clone 

al._(1988)  

43 cDNA " 455 bp in Pst I site of if 

121  pBR322  

44 cDNA " 180 bp in Pst I site of ft 

365 pBR322  

cDNA " 330 bp in Pst I site of P. chabaudi 37 kDa 

45 148 pBR322 antigen gene 
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46 Ag3008 Favaloro (1993); 0.8 kb in Eco RI site P. chabaudi cDNAclone, 

Favaloro et al. of pGEX-2T encodes a 24 kDa 

(1993) protein located in 

parasitophorous vacuole 

membraned 

47 Ag3003 Favaloro (1993); 1.5 kb in Eco RI site P. chabaudi cDNA that 

A Favaloro et al. of pGEX-2T expresses a protein that 

(1993) reacts with 

hyperimmune serum. 

48 Ag3003 to 850 bp in Eco RI site P. chabaudi eDNA that 

B of pGEX-2T expresses a protein that 

does not react with 

hyperimmune serum 

49 Ag3020 of 1.3 kb in Eco RI site Uncharacterised P. 

 of pGEX-2T chabaudi eDNA clone 

50 Ag3024 it Insert size not 

determined; in &o of 

RI site of pGEX-2T  

51 1 Ag3015 

52 Ag3027 of 2 kb in Eco RI site of it 

pGEX-2T  

53 Ag3042 to 1.5 kb in Eco RI site Probably non-coding P. 

A  of pGEX-2T chabaudi cDNA clone 

54 Ag3042 to 700 bp in Eco RI site P. chabaudi eDNA clone 
B of pGEX-2T which cross-hybridises 

with a cDNA clone 

encoding an exported 

dense-granule antigen 

(EDGA) 

55 Ag3010 it 
 1.8 kb in Eco RI site Uncharactensed P. 

of pGEX-2T chabaudi cDNA clone 

56 Ag3012 H  900 bp in Eco RI site 

of pGEX-2T  
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57 Ag3035 It 1.1 kb in Eco RI site P. chabaudi cDNA clone 
of pGEX-2T that expresses a protein 

which reacts strongly 

with hyperimmune 

serum 

58 Ag3037 " 450 bp in Eco RI site Uncharacterised P. 

of pGEX-2T chabaudi cDNA clone 

59 Ag3040 " 240 bp in Eco RI site 

of pGEX-2T  

60 Ag3062 " 300 bp in Eco RI site 

of pGEX-2T  

61 Ag3057 " 650 bp in Eco RI site 

of pGEX-2T  

a DHFR-TS PCR primers designed from Cowman and Lew (1989) 5'-CCC CTG 

CAG TFA AGC TGC CAT ATC CAT ACT G-3'. PCR conditions: 94 0C, 60 
seconds; 450C, 60 seconds; 680C, 150 seconds; for 34 cycles; then 94 0C, 60 
seconds; 450C, 60 seconds; 680C, 10 minutes; 1 cycle. 

b H2A primers designed from Creedon et al. (1992) by P. Meaney (Division of 

Biological Sciences, Edinburgh University). H2A/1: 33 bp from start of gene 5-

GCC TCA AAG GGA ACT TCA AAT TC-3'; H2A/2: 6 bp from end of gene 5'-

ATC TFG AflT GGC AGT ACC AGC TF-3'. PCR conditions: 940C, 60 seconds; 
550C, 60 seconds; 72 0C, 60 seconds; for 30 cycles. 

C Equivalent to the Pf 155 antigen (RESA) of P. falciparum. (Gabriel et al. 1986). 
d May be the homologue of a P. falciparum circumsporozoite protein-related antigen 

exp-1 (Coppel etal. 1985). 

2.18.2 Construction of a P. chabaudi genomic DNA library 
(i) DNA digestion, ligation and transformation 
2 p.g of P. chabaudi genomic AJ DNA was digested with Sau 3A and 2 .tg of 

pBluescript®I1 KS (Stratagene; Figure 6) digested with Sal I. The recessed 3' ends 
of the genomic DNA were filled with dATP and dGTP, and plasmid DNA with dATP 

and dTFP, using Kienow enzyme following normal procedures (Sambrook et al., 

1989). Digested genomic DNA was ligated into the plasmid using T4 DNA ligase 

(Sambrook et al., 1989). E. coli NM522 competent cells were transformed, and 

recombinant colonies identified by blue/white colour selection. 
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Detection of plasmids containing repetitive DNA 
Plasmids containing repetitive DNA are of limited use as markers for linkage 

analysis because such DNA often occurs at multiple loci in the genome. For this 

reason, recombinant plasmids were screened and those containing repetitive DNA 

excluded from RFLP analysis, in the following way: recombinant colonies were 

picked, grown in culture overnight, and plasmid mini-preps made using a modified 

boiling method of Holmes and Quigley (1981). An aliquot of each mini-prep was 

electrophoresed on a 1% agarose gel and the gels Southern blotted. Blots were probed 

with random-primed AJ total genomic DNA and washed in 1 x SSC, 0.1% SDS, at 

450C for 1.5 hours with three changes of wash solution. Blots were then exposed to 

autoradiographic film. Plasmids to which the labelled DNA hybridised were classified 

as containing repetitive DNA and those which did not as containing unique DNA 

sequences. 

Storage of recombinant plasmids 
Recombinant plasmids were stored as glycerol stocks in duplicate wells of a 96-

well microtitre plate (Falcon Microtest II, Becton Dickinson & CO), as described in 

Section 2.12.2. 

Figure 6. Map of vector pBluescript® H (Stratagene) used in the construction of 

a P. chabaudi library. 
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2.19 RAPD-PCR (Random Amplified Polymorphic DNA-PCR) 

RAPD-PCR is a novel technique which has the potential to identify large numbers 

of polymorphisms in the DNA of different parasite clones and species. The technique 
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involves amplifying fragments of genomic DNA with short, single primers of arbitrary 

sequence (Welsh and McClelland, 1990; Williams et al., 1990). Unlike conventional 

PCR of known loci (Saiki et al., 1993), no prior sequence information is required. 

The reaction takes place under conditions of low stringency that encourage the 

simultaneous amplification of DNA at a number of loci. The amplified products are 

separated by agarose gel electrophoresis and visualised by ethidium bromide staining. 

The majority of RAPD-PCR products are expected to be identical in different 

individuals of a single species. A small proportion are likely to be polymorphic, 

variant forms being shown by: (i) the presence or absence of amplified bands in 

different parasite strains; or (ii) by variations in the size of amplified bands; or (iii) by 

variations in the intensity of amplified bands. Such polymorphisms are probably due 

to differences in primer binding sites caused by the mutation, deletion or insertion of 

DNA sequences. 

2.19.1 RAPD-PCR reagents 

RAPD-PCR reactions were performed using AJ and AS(3CQ) DNA, extracted as 

described previously, using each of 80 decamer primers (Operon Technologies, Kits 

E, L, 0 and R, each kit containing 20 decamers with a G+C content of at least 60%). 

The primer sequences are given in Appendix 2. Each reaction was carried out in 15 

jil containing 0.4 p.M of primer in 1 x reaction buffer (10 mM Tris-CI pH 8.8., 50 
mM KC1, 1.5 mM MgCl2, 0.1% Triton X-100; Clontech), 200 j.LM each of dATP, 
dCTP, dTTP, dGTP, 2.5 mM MgC12, 0.6 units Taq DNA polymerase (Clontech) and 
200 ng of P. chabaudi DNA. Reactions were overlaid with 100 p.1 light mineral oil. 

Negative controls for each primer contained all the above components except for 2 p1 
of TE in place of P. chabaudi DNA. Each RAPD-PCR reaction was repeated at least 
three times, using the same DNA and reagents in most cases. 

2.19.2 Reaction conditions and electrophoresis 
Cycling conditions were as follows: 

Step 1. 1 cycle of 92 0C for 3 minutes, 36 0C for 1 minute 45 
seconds, 720C for 2 minutes 

Step 2. 35 cycles of 920C for 1 minute, 360C for 1 minute 45 

seconds, 720C for 2 minutes 

Step 3. 1 cycle of 920C for 1 minute, 360C for 1 minute 45 seconds, 
720C for 9 minutes 

Amplification products were electrophoresed on 1.5% agarose gels, and visualised by 
ethidium bromide staining. 
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2.19.3 Screening RAPD-PCR polymorphisms for RFLPs 

Many polymorphic bands obtained by this technique could not be amplified 

reproducibly in repeated experiments. This problem was circumvented by screening 

polymorphic bands for RFLPs in Southern blots of restricted P. chabaudi DNA. To 

do this, polymorphic bands were excised from agarose gels and the DNA purified 

using the method of Vaux (1992). This DNA was radiolabelled by random priming 

and used to probe Southern blots of restricted P. chabaudi DNA and PFG gels, as 

descibed in Sections 2.16 and 2.17. 

Polymorphic bands which produced clear and reproducible RFLPs and which 

appeared to exist as single copies in the genome of each P. chabaudi clone, were re-

amplified using the same primers and reagents as described above, but with 2 t1 of the 

purified DNA of the excised band in place of P. chabaudi DNA. Amplification 

conditions were: 

Step 1. 920C for 30 seconds 

Step 2. 500C for 30 seconds 

Step 3. 720C for 1 minute 30 seconds 

for 25 cycles. Re-amplified PCR products were then cloned using the TA CloningTm  

System and stored as glycerol stocks for future use as probes. 

2.20 P. chabaudi MDR gene homologue 

PCR primers recognising the nucleotide binding sites (nbs 1 and nbs2) of the P. 
falciparum MDR gene (pf,ndrl) were designed by A. Sultan and M. Foley (Division 

of Biological Science, Edinburgh University), using the sequence published by Foote 

et al. (1989). Degeneracy was included in such a way as to enable amplification of 

either AlP-binding cassette, and possibly the sequence between them. Sequences of 

the primers, referred to as 857S and 858S, are given in Figure 7. 

P. chabaudi and P. falciparum genomic DNA was amplified using these primers, 
and using the PCR reagents as described in Section 2.13. Cycling conditions were 
as follows: 

Step 1. 940C, 30 seconds 

Step 2. 450C, 1 minute 

Step 3. 700C,  1 minute 30 seconds 

for 35 cycles. Amplification products were electrophoresed on 1.4% agarose gels and 

visualized by ethidium bromide staining. 

The P. falciparum amplified product was sequenced by A. Sultan to confirm its 

identity as part of the pfindrl gene. The P. chabaudi amplified product, called pcATP-

PCR, was cloned using the TA Cloning System and sequenced. The cloned insert 
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was radiolabelled by random priming and hybridised to Southern blots of P. chabaudi 

and P. falciparum PFG gels, and RFLP blots. 

Figure 7. Diagram of pfindrl showing the position of the oligonucleotide 

primers used to amplify the P. chabaudi homologue. 

4 	 4.2kb 

	

AlP binding 	 ATP binding 
cassette 1 	 cassette 2 

	

I 	 I 

I 	nbsl 	nbs2 	nbsl nbs2 	 I 

Oligonucleotide primer sequence for amplification of nbsl (primer 858S) 

5'-GGG GGA TT'C GGT GAG TCT GGA TGT GGG AAA TC -3' 
A AAA TA 	A 

Oligonucleotide primer sequence for amplification of nbs2 (primer 857S) 

5'-GGG GCA TGC CCA AAG AAG ATG TAG CTF C-3' 
TOG T G G C 

T 

2.21 P. falciparum chromosome 7-specific markers 
2.21.1 P. chabaudi pS590.7 marker 'homologue' 
PCR primers for the P. falciparum chromosome 7-specific marker, pS590.7, were 

made using the published sequence (Wellems et al., 1991). The primers are referred 
to as 421K and 422K and their sequences are given in Figure 8. P. chabaudi and P. 
falciparum genomic DNA was amplified using these primers, and PCR reagents as 
described in Section 2.13. Cycling conditions were as follows: 

Step 1. 930C, 30 seconds 

Step 2. 520C, 1 minute 

Step 3. 650C, 2 minutes 
for 35 cycles. Amplification products were electrophoresed on 1.4% agarose gels and 

visualized by ethidium bromide staining. 

The P. falciparum amplified product, called pfpS590.7, was sequenced directly 
from the PCR product, to confirm its identity. The P. chabaudi amplified product, 
called pcpS590.7, was cloned using the TA CloningTm System and sequenced. The 
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cloned insert was radiolabelled by random priming and hybridised to Southern blots of 
P. chabaudi and P. falciparum PFG gels, and RFLP blots. 

Figure 8. Diagram of P. falciparum chromosome 7 showing the relative position 

of nine markers, and the oligonucleotide sequences used to amplify 

the putative P. chabaudi homologue of 12S590.7. 

CQR 

I 	1 (15/16) 
pS9O.30 
pH270.5 	(11/16) 

	

(14/16) 	(16/16) 	T 

	

Telo pS59O.20 	pB20.23 

I 	T 

(11/15) 
pS500.7 	Telomere 

F I 

pE53a pEl2a 
(15/16) pS590.7 

(16/16) 

300 kb 

Primer 421K 
	

Primer 422K 
5'-TGC AAT TCT TGC AAC 

	
5-GGT GAG GAG GAA GAG 

TFG TCT ATG-3' 	 GTA GAG TFC-3' 
4 	 00 

expected PCR product size: 456 bp 

CQR: area encompassing Wellems et al (1991) chioroquine resistance locus 
Numbers in brackets refer to the linkage ratio among the sixteen progeny of 
Wellems et al HB3 x Dd2 cross 

Telo : telomere 

Taken from Wellems etal. (1991) with additional information supplied by T. 

Wellems (National Institute of Allergy and Infectious Diseases, National Institutes 

of Health, Bethseda, Maryland, U.S.A.). 

2.21.2 Synteny analysis 
Several similarities between the PCR products pfpS590.7 and pcpS590.7 

suggested that they might be homologous. To substantiate this one way or the other, a 

further eight chromosome 7-specific P. falciparum markers, some of which were 
known to be close to the marker pS590.7, were chosen. These are shown in Table 6 
and were kindly provided by T. Wellems. Their names and relative positions on P. 
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falciparurn chromosome 7 are shown in Figure 7. Competent cells were transformed 

with the markers, plasmid DNA was prepared and the inserts cut out from the vector 

using Barn HI and Xho I. The inserts were radiolabelled and used to probe Southern 

blots of PFG gels and RFLP gels. 

Table 6. Eight chromosome 7-specific markers used to examine synteny between P. 

chabaudi chromosome 13 and P. falciparurn chromosome 7 

Marker Reference Insert Size (kb) 

pEl2a Walker-Jonah et al. (1992) 0.7 

pE53a Wellems etal. (1991) 1.0 

pB20.23 Wellems etal. (1991); 

T.Wellems, personal 

communication 

1.9 

pH270.5 Walker-Jonah etal. (1992) 0.9 

pS90.30 Wellems etal. (1991) 1.55 

pS590.20 Wellems etal. (1991) 1.6 

pSL2 Wellems etal. (1991) 0.8 

pS500.7 Wellems etal. (1991) 1.5 

2.22 Crossing technique and analysis of the uncloned nroen 
2.22.1 Conducting the cross and recovering the progeny 
P. chabaudi clones AJ and AS(3CQ) were crossed by transmission through A. 

stephensi mosquitoes. The crossing procedure followed that of Walliker etal. (1975), 
with minor modifications, and is illustrated in Figure 9. AJ and AS(3CQ) parasites 
were inoculated into separate groups of 4 mice and allowed to attain a parasitaemia of 

20-30% (day 4-5). 0.5 ml of blood from each line were then taken together, mixed 

and injected intraperitoneally into a splenectomised rat (Cornelissen and Walliker, 
1985). Control studies on each parent line were conducted in parallel. When a large 

number of mature gametocytes were present in the blood (day 3-4), approximately 500 

4-6 day-old A. stephensi which had been starved of glucose for 2 days, were fed on 

the rats to enable crossing between gametes of each clone to occur within the mosquito 

mid-gut. 

Ten days later, a sample of mosquito midguts were examined for mature oocysts. 

The mosquitoes were allowed to feed on urnnfected mice 6 and 8 days subsequently 
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Figure 9. Schematic diagram of the cross between AS(3CO) and AJ. 
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Each clone was examined for chloroquine susceptibility 

and parent clone markers. 

PYR-S/R : sensitive/resistant to 15 mglkg pynmethamine for 4 days 

CQ-SIR : sensitive/resistant to 3 mg/kg chioroquine for 6 days 

df: deep-freeze stabilate (see Figure 4) 
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in order to establish a new infection with sporozoites. The blood forms which 

developed in these animals, termed the progeny of the cross, became patent 5-6 days 

after feeding and were stored deep-frozen in glass capillaries under liquid nitrogen. 

2.22.2 Testing for recombinant forms among the progeny 
The uncloned progeny of the cross were examined for their alloenzyme forms of 

LDH and ADA after treatment with pyrimethamine in a standard drug test (Section 
2.5.3). This gave an indication of whether cross-fertilization had occurred between 

AS(3C0J and AJ. if the parental lines were transmitted without cross-fertilization, 

only the enzyme combinations of the drug resistant parent AS(3CQ) would be 

observed after drug treatment 

2.22.3 Linkage analysis of the uncloned progeny 
An experiment was carried out to investigate the possibility of analysing the 

progeny of the cross without producing clones. Progeny were treated with 

pyrimethamine and chloroquine in separate standard drug tests, and DNA was made 

from the surviving resistant parasites. The DNA was cut using Hind H and Sau 3A 

restriction enzymes, and Southern blots made. Genome markers pBS 110, MSP-1, 

PcEMAJ and DHFR (Table 5, Probe. Nos. 3, 4, 5 and 6 respectively), P.9 and 

P.12 (Tables 8 and 9) and pcpS590.7, were radiolabelled and used to probe the 

relevant Southern blot 

The results from this experiment (discussed in Chapter 5) indicated that it was 

necessary to produce clones from the progeny mixture and analyse each of them 

individually. 

2.23 Characterization of the cloned progeny of the cross 
2.23.1 Cloning the progeny 
Progeny clones were obtained from the products of the cross by limiting dilution, 

as described in Section 2.4.3. In some experiments, the uncloned progeny were 

treated with pyrimethamine in a standard drug test, and clones made from the 

surviving resistant parasites. 

2.23.2 RFLP analysis of progeny clones 

All progeny clones were tested for the inheritance of AJ- or AS(3CQ)-alleles of 

markers. Southern blots of restricted genomic DNA from progeny clones and parental 

clones were made, and hybridised with radiolabelled genome markers. Each progeny 
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clone was marked as having inherited one or other of the parental-type RFLPs 

associated with the marker. 

2.23.3 Phenotyping the progeny for chloroguine resistance 

Those progeny clones which were identified as recombinant through linkage 

analysis were phenotyped for susceptibility to chioroqume using the standard test for 

chioroquine resistance. Parental clones AS(3CQ) and AJ were included as controls. 

Each test was repeated at least twice. Clones were typed as chloroquine resistant if a 

parasite infection appeared by D13 post-inoculation, and chloroquine sensitive if 

parasites appeared on or after D15. 

2.23.4 Parental growth tests 

During the progeny phenotyping it became apparent that parental clone AJ was 

growing faster than parental clone AS(3CQ). It was decided to monitor the 

parasitaemia of each parental clone from a group of control mice during the 

progression of an infection. Groups of two mice for each clone were infected with 

106  parasites and blood smears taken every 24 hours. Each smear was subsequently 

stained and inspected. 

2.23.5 Linkage analysis 

The inheritance of all markers by the recombinant progeny clones and their 

chloroquine phenotype was analysed for linkage. Any marker showing linkage with 

10 or more progeny clones was investigated using the binomial coefficient. This 

enabled a probability value to be assigned to each candidate marker, as an indication of 

the likelihood of linkage between the marker and a gene determining chioroquine 

resistance. 
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3. Results: Analysis of the P. chabaudi genome 

3.1 Karyotype analysis of P. chabaudi 
Previous work has shown that P. chabaudi appears to contain up to 14 

chromosomes (Langsley et al., 1987; Sharkey et al., 1988; Sheppard et al., 1989b), 

although this was speculative because of the quality of PFGs at the time the work was 

carried out. During this project, PFGE analysis (as described herein), and restriction 

enzyme digestion of chromosomal bands and hybridisation with a telomeric probe 

(Janse et al., 1994) has established beyond doubt that P. chabaudi has 14 

chromosomes. 

Figure 10A is a photograph of an ethidium bromide-stained PFG. The fourteen 

chromosomes range in size from 0.9 Mb (chromosomes 1 and 2) to 3.2 Mb 

(chromosomes 13 and 14). Chromosomes 1 and 2 migrate as a single band, which 

stains with ethidium bromide at a greater intensity than other bands which contain only 

single chromosomes. AJ chromosomes 5 and 6 migrate in reverse order compared to 

the equivalent AS(3CQ) chromosomes, and they are polymorphic in size; AS(3CQ) 

chromosomes 5 and 6 are approximately 1.14 Mb and 1.20 Mb respectively, whereas 

the same chromosomes in AJ are approximately 1.18 Mb and 1.10 Mb respectively. 

Figure lOB, a PFG probed with the chromosome 6-specific marker, DNA 
polymerase a, illustrates this polymorphism clearly. Chromosome 11 is also 

polymorphic between the two clones, migrating with chromosome 12 in AS(3CQ), 

but with chromosome 10 in AJ. This is shown in Figure 10C. Finally, the two 

largest chromosomes 13 and 14 are numbered in reverse order, in keeping with the 

nomenclature devised by Janse etal. (1994) for rodent malaria chromosomes. In the 

other rodent malaria species P .berghei, P. yoelii and P. vinckei, chromosome 13 is 

smaller and migrates further than chromosome 14; in P. chabaudi however, 

chromosome 13 is larger than chromosome 14. This was shown using markers 

known to be on each of these chromosomes in P. berghei, P. yoelii and P. vinckei 

(Janse et al., 1994). 

No obvious chromosomal rearrangements were found in the karyotypes of the AS 

clone selected for pyrimethamine resistance, or of the clone selected for chloroquine 

resistance, compared with the original AS(sens) clone from which they were selected 

(Figure bA). This was not unexpected for the pyrimethamine resistant line 

AS(OCO) as there is evidence that the resistance is due to a point mutation in the gene 

encoding DHFR (Cheng and Saul, 1994), which would not alter the size of 

chromosome 7 on which the gene is located. The absence of large chromosomal 

70 

Chapter 3 : Results 



71 

Chapter 3 : Results 



Figure 10. Karvotype and chromosome number of P. chabaudi chromosomes of clones AJ, AS(sens'). AS(OCO) and AS(3CQ). 

P. chabaudi chromosomes were separated by PFGE (A), and probed with DNA markers DNA polymerase a (B) and PCNA (C). 
Chromosomes in Lane 1 (clone AJ) are numbered according to the karyotype shown by clone AS, which is taken as the standard for P. 
chabaudi. As a consequence, chromosome numbers 5 and 6 are shown in reverse order, and chromosome 11 is shown next to chromosome 
10 (discussed in the text). 
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rearrangements in AS(3CQ) also suggested that the mechanism behind this type of 

resistance did not involve gene amplification. 

The PFGE conditions used here produced poor resolution of the high molecular 

weight chromosomes 10, 11, 12, 13 and 14. Small scale chromosomal 

rearrangements could have occured in these chromosomes which were not detectable 

under the conditions used here. 

3.2 Chromosome locations and RFLPs of markers 
Sixty-one characterised markers were analysed for their suitability as polymorphic 

markers for genetic crossing work with P. chabaudi. Each of these probes was 

radiolabelled and hybridised to Southern blots of P. chabaudi PFGs, as well as to 

blots of AJ and AS(3CQ) genomic DNA which had been cut with a variety of 

restriction enzymes. The chromosomal locations and RFLPs detected for each probe 

are listed in Table 7. For cross-reference, each marker is given the same Probe 

Number as in Table 5. Various washing conditions were employed to optimise the 

hybndisation, but only those conditions which produced the best results are given in 

the table. 

Table 7. Chromosome location and RFLPs of Plasmodium markers analysed for 

their suitability as polymorphic DNA markers 

Probe Genome Washing P.chabaudi Enzymes Tested 

No. Marker Stringency Chromosom for RFLPs 
RFLP(s) e 

Location 

1 Ca 2+.. 1 x SSC, 2a Alu I, Dra I, Hind H, Hinf I, Ase I 

ATPase 0.1% SDS, Sau 3A, Rsa I, Barn HI, Eco 

600C RI, Hind ifi, Ase I, Pac I, 

Prne I, Asn I, Dpn I, Mae I, 

Mae H, Sfu I, Taq I, Ase I, 

Ssp I 

2 235 kDa 1 x SSC, 1/2t, 3, 5, Alu I, Dra I, Hind H, Hinf I, Alu I 

0.1% 8/9b, Sau 3A, Rsa I 

SDS,47°C 13/14b  

3 pBS Homologou 3 Alu I, Dra I, Hind II, Hinf I, Alu I, 

110 s probe Sau 3A, Rsa I Hind llC, 

I Rsa I 
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4 MSP-1 it 8a Alu I, Dra I, Hind II, Hinf I, Dra I, 

Sau3A,RsaI Sau3A, 

Rsa I 

5 PcEMA- " 10 Alu I, Dra I, Hind II, Hinf I, Hinf I 

1  Sau 3A, Rsa I (faint) 

6 DHFR ft 7 Alu I, Dra I, Hind II, Hinf I, Hind H 

Sau 3A, Rsa I  

7 pfindrl PFG blots: 12 Hind II, Hinf I, Sau 3A, Ase None 

1xSSC, I,MseI 

0.1% SDS, 

50°C; RFLI 

blots: 2 x 

SSC, 0.1% 

SDS, 420C 

8 TBP 1 x SSC, 11 Alu I, Dra I, Hind H, Hinf I, DraI, 

0.1% SDS, Sau 3A, Rsa I Hinf I, 

500C  RsaI 

9 Enolase 1 x SSC, 12 Alu I, Dra I, Hind II, Hinf I, None 
0.1% SDS, Sau3A,RsaI 

500C 

10 DHPS 1 x SSC, 13/14 Alu I, Dra I, Hind H, Hinf I, None 
0.1% SDS, Sau3A,RsaI 

500C 

11 H2A 1 x SSC, 11 Alu I, Dra I, Hind II, Hinf I, Hind ifi 
0.1% SDS, Sau 3A, Rsa I, Hind ifi, Ase 

550C  I 

12 9.2 1 x SSC, 5,11 Alu I, Dra I, Hind H, Hinf I, Hind H, 
0.1% SDS, Sau 3A, Rsa I possibly 

500C  Rsa I, 

13 RPIII 1 x SSC, 13 Alu I, Dra I, Hind II, Hinf I, Alu I 
0.1% SDS, Sau3A,RsaI 

550C 

14 5S 1 x SSC, 10 Alu I, Dra I, Hind H, Hinf I, Alu I, 
rRNA 0.1% SDS, Sau 3A, Rsa I Hind II, 

500C 1 Rsa I 
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15 EFJ-a 1xSSC, 11 AluI,DraI,HindII,Hinfl, Hindu 

0.1% SDS, Sau3A,RsaI 

500C 

16 CDC2 1 x SSC, 11 Alu I, Dra I, Hind II, Hinf I, Alu I, 

0.1% SDS, Sau 3A, Rsa I Hind II, 

600C  RsaI 

17 VAP A 1 x SSC, 14 Alu I, Dra I, Hind II, Hinf I, None 

0.1% SDS, Sau3A,RsaI 

500C 

18 VAP B 1 x SSC, 10 Alu I, Dra I, Hind II, Hinf I, Hind III 

0.1% SDS, Sau 3A, Rsa I, Barn HI, Eco 

500C RI, Hind III, Ase I, Pac I, 

PrneI  

19 G6PD 1 x SSC, 13a Alu I, Dra I, Hind II, Hinf I, Alu I, 

0.1% SDS, Sau3A,RsaI Hind II 

500C 

20 hsp-70 Homologou 7,12 Alu I, Dra I, Hind H, Hinf I, None 

s probe  Sau 3A, Rsa I  

21 Pfcrk-1 1 x SSC, 7 Alu I, Dra I, Hind H, Hinf I, None 

0.1% SDS, Sau 3A, Rsa I, Barn HI, Eco 

450C RI, Hind III, Ase I, Pac I, 

PrneI  

22 Pfrnap-1 1 x SSC, 10 Alu I, Dra I, Hind II, Hinf I, possibly 

0.1% SDS, Sau3A,RsaI Hind II 

500C 

23 Pfcrk3 1 x SSC, 13 Alu I, Dra I, Hind II, Hinf I, Alu I, 

0.1% SDS, Sau3A,RsaI Sau3A, 

500C possibly 

Hind II 

24 DNA 1 x SSC, 6 Alu I, Dra I, Hind H, Hinf I, Alu I, 

pol a 0.1% SDS, Sau 3A, Rsa I Hinf I 

500C 

25 DNA 1 x SSC, 5 Alu I, Dra I, Hind H, Hinf I, Rsa I 

p0l 8 0.1% SDS, Sau 3A, Rsa I 

500C 	I 
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26 RAP-i 6 x SSC, 0.1% SDS, 420C to 4 x SSC, 0.1% SDS, 650C, in 

increments of 50C and decrements of 1 x SSC, produced either 

much background or no significant hybridisation to both PFGs and 

RFLP blots.  

27 Topo 1 2 x SSC, 11 A/u I, Dra I, Hind II, Hinf I, A/u I, 

0.1% SDS, Sau3A,RsaI RsaI 

500C 

28 Topo 11 1 x SSC, 10 Alu I, Dra I, Hind II, Hinf I, Hinf I 

0.1% SDS, Sau3A,RsaI 

 550C 

29 PCNA 1 x SSC, 11 Alu I, Dra I, Hind II, Hinf I, Hind H 

0.1% SDS, Sau3A,RsaI 

450C 

30 GPI 1 x SSC, 10 Alu I, Dra I, Hind H, Hinf I, Alu I 

0.1% SDS, Sau 3A, Rsa I possibly 

500C  but faint 

31 HPRT 1 x SSC, 0.1% SDS, 500C and 0.5 x SSC, 0.1% SDS, 600C, 

produced either much background or no significant hybndisation to 

both PFGs and RFLP blots.  

32 Calmod- PFG blots: 10 Alu I, Dra I, Hinf I, Sau 3A, Bands 

u/in 0.5 x SSC, Rsa I faint; no 

0.1% SDS, RFLPs 

65°C; 

RFLP blots: 

2 x SSC, 

0.1% SDS, 

550C 

33 Pcsv4 0.5 x SSC, 13/14 A/u I, Dra I, Hind H, Hinf I, None 

0.1% SDS, Sau 3A, Rsa I, Barn HI, Eco 

650C RI, Hind ifi, Ase I, Pac I, 

PrneI  

34 RESA Homologou 6 A/u I, Dra I, Hind II, Hinf I, A/u I, 

s probe Sau 3A, Rsa I Hinf I, 

1 Rsa I 
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35 al 1 x SSC, 4 or 5 Dra I, Hind II, Hinf I, Rsa I Hind II 

tubulin 0.1% SDS, 

500C 

36 all 0.5 x SSC, 4 or 5 Alu I, Dra I, Hind II, Hinf I, Hind II, 

tubulin 0.1% SDS, Sau 3A, Rsa I Rsa I 

550C 

37 aldo-1 1 x SSC, 13a Alu I, Dra I, Hind II, Hinf I, Hind H 

0.1% SDS, Sau3A,RsaI 

600C 

38 J3 1 x SSC, 12 Alu I, Dra I, Hind II, Hinf I, None 

tubulin 0.1% SDS, RsaI 

500C 

39 AMA-i Homologou ga Dra I, Hind H, Hinf I, Ase I, Ssp I, 

s probe  Ssp I, Swa I Hinf I 

40 pfran 0.5 x SSC, ga Alu I, Dra I, Hind II, Hinf I, Hind 11 
0.1% SDS, Sau3A,RsaI 

500C 

41 RNA 1 X SSC, ga Alu I, Dra I, Hind II, Hinf I, None 

pol II 0.1% SDS, Sau 3A, Rsa I, Ase I, Mse I, 

650C Ssp I, Swa I  

42 cDNA 5d Alu I, Dra I, Hind II, Hinf I, None 

167 Sau 3A, Rsa I, Ase I, Mse I, 

Ssp I  

43 cDNA We Alu I, Dra I, Hind III, Hinf I, Alu I, 
121  Sau3A,RsaI Hindll 

44 cDNA 12e Alu I, Dra I, Hind II, Hinf I, Alu I 
365 Sau 3A, Rsa I  

45 cDNA H  13e,f Alu I, Dra I, Hind II, Hinf I, Alu I, 
148 Sau 3A, Rsa I Dra I 

46 Ag3008 1/2 Alu I, Dra I, Hind H, Hinf I, None 
Sau 3A, Rsa I  

47 Ag3003 3 Alu I, Dra I, Hind II, Hinf I, Alu I, 
A  Sau3A,RsaI RsaI 

48 Ag3003 3 Alu I, Dra I, Hind H, Hinf I, None 
____ B Sau 3A, Rsa I 
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49 Ag3020 It 
 1/2 Dra I, Hind II, Sau 3A, Rsa I Dra I, 

Hind II, 

Sau 3A 

50 Ag3024 it 
 5 Alu I, Dra I, Hind II, Hinf I, Dra I 

Rsa I  

51 Ag3015 it 
 5 (faint), Alu I, Dra I, Hind II, Hinf I, Hinf I, 

8/9, 13/14 Sau 3A, Rsa I, Barn HI, Eco Eco RI, 

(faint) RI, Hind ifi, Ase I, Pac I, both 

Pme I 'blurred' 

52 Ag3027 It 
 Alu I, Dra I, Hind II, Hinf I, Hinf I 

Sau 3A,RsaI  

53 Ag3042 it 
 5, 6, 8/9, Alu I, Dra I, Hind II, Hinf I, None 

A  12 Sau3A,RsaI  

54 Ag3042 " 1/2, 4, 5, 7, Alu I, Dra I, Hind II, Hinf I, Alu I, 

B 8/9, 11; Sau 3A, Rsa I Hind II, 

13AJonly Sau3A, 

Rsa I 

55 Ag3010 it 
 8/9 Alu I, Dra I, Hind H, Hinf I, Dra I 

Sau 3A, Rsa I, Barn HI, Eco 

RI, Hind III, Ase I, Mse I, 

Ssp I  

56 Ag3012 " 7 Alu I, Dra I, Hind II, Hinf I, Hinf I 

Sau 3A, Rsa I, Barn HI, Eco 

RI, Hind III, Ase I, Pac I, 

PmeI  

57 Ag3035 " 5 Alu I, Dra I, Hind H, Hinf I, Alu I 

Sau 3A, Rsa I  

58 Ag3037 " 5, 6, 8/9, Alu I, Dra I, Hind II, Hinf I, None 

12 Sau3A,RsaI  

59 Ag3040 " 12,14 Dra I, Hind H, Hinf I, Sau Dra I, 

(weak 3A, Rsa I Hinf I, 

signal) Sau 3A, 

Rsa I 

60 Ag3062 " 1/2 Alu I, Dra I, Hind H, Hinf I, None 

Sau 3A, Rsa I 
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61 Ag3057 1 5, 6,8/9, Alu I, Dra I, Hind II, Hinf I, 1 None 
12 Sau3A,RsaI 

a As determined by Janse et at. (1994). 
b Incomplete separation of chromosomes 1 and 2, 8 and 9 and 13 and 14 during 

PFGE made it difficult to determine the precise chromosomal location of some 

probes. In such cases, the chromosome location is referred to as 1/2, 8/9 and 13/14. 
C Restriction enzymes underlined represent those used to analyse the inheritance of 

RFLPs in the progeny of the AJ x AS(3C0J cross. 
d As determined by Sharkey etal. (1988) 
e Previous chromosomal location as determined by Sharkey etal. (1988) was 

inaccurate due to the quality of PFGs at the time the work was carried out 
f Chromosomal location determined through inheritance of alleles in the progeny of 

the AJ/AS(3C0J cross. See Table 14. 

3.3 Markers obtained from P. chabaudi genomic DNA library 

3.3.1 Identification of recombinant DNA plasmids 

A genomic DNA library of clone AJ was constructed in order to produce random 

markers within the P. chabaudi genome. 72 recombinant colonies chosen by 

blue/white colour selection were collected and screened for the presence of repetitive 

and low copy number DNA sequences. Table 8 presents the results. 

Table 8. Recombinant plasmids from a P. chabaudi genomic DNA library 

P1, P9, P10, P11, P12, P13, P14, P18, P20, 
recombinant plasmids P21, P22, P23, P25, P29, P31, P36, P38, P53, 

containing low copy P55, P57, P61, P67, P71, P72, P73, P81, P82, P84, 

number DNA sequences P88, P90, P97, P109, P110, P113, P116, P117, 

P119, P122, P128, P131, P138, P139, P141 

recombinant plasmids R33, R77, R102, R104, R106, R107, R118, R124, 

containing repetitive R129, R132, R133, R134, R136 

DNA sequences  

recombinant plasmids 3, 7, 17, 19, 59, 68, 69, 70, 78, 79, 80, 94, 95, 99, 

containing partially 112, 142 

repetitive DNA sequences 

Plasmids in bold face were analysed for chromosome location and RFLPs, as 

indicated in Table 9. 
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Forty-three plasmids appeared to contain low copy number DNA, and the 

remaining 29 to contain repetitive or partially repetitive DNA. This represents 

approximately 60% of the recombinants which contained low copy number DNA 

sequences. This can be compared with the anonymous P. falciparum libraiy screened 

for polymorphic loci (Walker-Jonah et al., 1992), in which 50% of the recombinant 

plasmids contained unique sequences. However, in the current work, the small 

number of P. chabaudi recombinants obtained indicates that the library was not 

representative of the whole P. chabaudi genome; low copy number DNA may have 

been preferentially cloned over repetitive DNA. 

3.3.2 Chromosome location and RFLPs of unique sequence DNA 

Plasmid inserts which appeared to be of unique sequence were radiolabelled and 

used to probe Southern blots of P. chabaudi PFGs and restricted AJ and AS(3CQ) 

genomic DNA. Table 9 gives the chromosomal location and RFLPs of these 

markers. In addition, each marker has been given a Probe Number. 

Table 9. Insert size. chromosome location and RFLPs of markers analysed from an 

anonymous P.chabaudi library. 

Plasmid Insert P.chabaudi Restriction Enzymes Tested RFLP(s) Probe 
Size Chromosome 

No. (kb) Location for RFLPs No. 

P.1 0.35 4 Alu I. Dra I, Hind II, Hinf Ssp 1 62 

I, Sau 3A, Rsa I, Ase I, 

Mse I, Ssp I, Swa I 

P.9 0.8 4 Alu I, Dra I, Hind H, Hinf Alu I, 63 

I, Sau 3A, Rsa I Hind IIC  

P.10 1.0 13/14b AluI,DraI,Hindfl,Hinf none 64 

I, Sau 3A, Rsa I 

P.11 0.5 no AluI,DraI,Hindfl,Hinf no 65 

hybridisation I, Sau 3A, Rsa I hybridisation 

P.12 0.55 6 Alu I, Dra I, Hind II, Hinf Sau 3A 66 

I, Sau 3A, Rsa I 

P.13 0.52 13/14 Alu I, Dra I, Hind II, Hinf no 67 

I, Sau 3A, Rsa I hybridisation 

to RFLP 

blots  
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P.20 0.5 no Alu I, Dra I, Hind II, Hinf no 68 

hybridisation I, Sau 3A, Rsa I, Ase I, conclusive 

Mse I, Ssp I hybndisation 

to any RFLP 

blot  

P.21 0.45 unable to radiolabel marker 69 

P.22 1.4 11 Alu I, Dra I, Hind H, Hinf Asn I, 70 

Sau 3A, Rsa I, Ase I, Mae II 

Mse I, Ssp I, Barn RI, Eco 

RI, Hind III, Pac I, Pme I, 

AsnI,DpnI,MaeI,Mae 

Sfu I, Tag I 

P.23 1.2 7 Alu I, Dra I, Hind II, Hinf Ase I 71 

I, Sau 3A, Rsa I, Ase I, 

Mse I, Ssp I, Pac I, Swa I, 

PrneI  

P.29 0.7 5 A/u I, Dra I, Hind II, Hinf Alu I 72 

I, Sau 3A, Rsa I 

P.31 0.6 no A/u I, Dra I, Hind II, Hinf no 73 

hybridisation I, Sau 3A, Rsa I hybridisation 

P.36 1.1 13/14 A/u I, Dra I, Hind II, Hinf none 74 

I, Sau 3A, Rsa I 

P.38 1.3 Alu I, Dra I, Hind H, Hinf none 75 

I, Sau 3A, Rsa I 

Legend as for Table 7. 

Thus, of the 14 recombinants containing unique sequence DNA which were 

analysed, 6 (approximately 43%) produced RFLPs. This is in contrast to the P. 

falciparum library of Wellems et al. in which only 5-10% of the anonymous probes 

produced useful RFLPs (Wellems et al., 1991; Walker-Jonah et a/., 1992). However 

only a small number of unique sequence recombinants were screened, which may 

have resulted in bias. 
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3.4 Chromosome locations and RFLPs of RAPD-PCR markers 
The technique of RAPD-PCR was explored in an endeavour to reveal DNA 

polymorphisms more quickly and efficiently than was possible by screening libraries 

for RFLPs. Preliminaiy experiments showed that primers less than 10 bp in length, 

and less than 60-70% G + C, did not produce as many amplified products as primers 

with those characteristics (data not shown). Accordingly, 80 decamer primers of 60-

70% 0 + C were chosen at random (Appendix 2) and used to amplify DNA from 

both parasite lines. 

3.4.1 Initial RAPD-PCR results 

In an initial screening, 51 out of the 80 primers produced one or more amplified 

DNA bands which were polymorphic between the two clones. Each of the three 

different polymorphisms expected (Section 2.19) was observed, and examples of 
these are given in Figure 11. 

As can be seen, most of the bands were present in both AJ and AS. Figure hA 
shows the products amplified using primer OPR-12. A 0.5 kb band is present in AJ 
but absent from AS(3CQ). Figure 11B shows the products amplified using primer 

OPR-10. A 1.3 kb band has been amplified from AS(3CQ) DNA that stains more 

intensely with ethidium bromide than its conterpart in clone AJ. Presumably there has 

been greater amplification of the AS(3C0J fragment compared to the Al fragment. 
Figure 11C shows the products amplified using primer OPL-08. A 2.1 kb band is 

present in clone AJ but absent from AS(3C0J, and a second band of 1.9 kb is present 

in clone AS(3CQ) but absent from AJ. This may represent sequence differences 

between the primer binding sites at a single locus, or alternatively, such bands could 

be presence and absence types of polymorphism at two loci. 

3.4.2 Amplified products within the negative control lanes 
Figure 11 also shows the presence of amplified bands within the control lanes of 

all three primers. The majority of the other RAPD primers tested also produced bands 

in their negative controls. The control reactions contained all the components of an 

average RAPD-PCR reaction, except for 2 p1 of TE in place of P. chabaudi DNA. In 

an attempt to identify the contaminating DNA, the amplified products of two negative 

controls were radiolabelled and used to probe Southern blots of restricted parasite 

DNA. No hybridisation to the blots was seen (data not shown), a result which 

eliminated the possibility of contamination of the controls by P. chabaudi DNA. 

Recently it has been shown that contamination of preparations of Taq polymerase 
with T.aquaticus DNA is a common occurrence (Bottger, 1990). The most likely 

MN 
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Figure 11. Bands amplified from P. chabaudi genomic DNA using the RAPD-PCR 

technique. 

RAPD-PCR reactions were carried out using primers (A) OPR-12, (B) OPR-10 and 

(C) OPL-08. Arrows mark the site of polymorphic bands mentioned in the main text. 

Size markers to the right of each plate are in kb. 

Lane 1 AJDNA 

Lane 2 AS(3CQ) DNA 

Lane 3 control without DNA 
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explanation for the presence of the amplified bands in the negative controls is 

amplification of small amounts of such contaminating DNA. In the presence of an 

excess of P. chabaudi DNA, it is possible that the primers are able to anneal to this 

DNA at more sites, and so to 'compete-out' the contaminating material. 

3.4.3 Reproducibility of the RAPD-PCR technique 

RAPD-PCR reactions were repeated at least three times for each primer. It soon 

became apparent that the reproducibility of the technique was poor. Although the 

majority of the primers produced at least one polymorphic band, these could not be 

reproduced every time. Some polymorphic bands were amplified on all three 

occasions, but there was no guarantee that they would be reproducible on subsequent 

occasions. This problem with reproducibility has been noted in many studies with 

RAPD-PCR on other organisms e.g. (Riedy et al., 1992; Ellsworth et al., 1993; 

Kernodle et al., 1993; Meunier and Grimont, 1993; Schierwater and Ender, 1993). 

Some laboratories have optimised the PCR reagents and conditions for the organism 

under study (Dias Neto et al., 1993; Tighe et al., 1993; Waitumbi and Murphy, 1993) 

to give reproducible results. 

In this work it was decided to circumvent the problem of reproducibility by first 

excising amplified polymorphic bands from the agarose gels and screening them for 

RFLPs in restriction enzyme digests of genomic DNA. An example is shown in 

Figure 12. The amplification products of the primer used, OPL-16, are shown first 

after gel electrophoresis (A). As can be seen, several DNA fragments were amplified, 

ranging in size from 0.3 to 2.4 kb. Two polymorphisms are evident, an amplified 

band of approximately 1.3 kb in AS which is absent from AJ, and a difference in the 

intensity of a band of approximately 0.35 kb, the Al 0.35 kb band being more intense 

than the AS(3CQ) band. Figure 12B and C shows the OPL-16 1.3 kb polymorphic 

band, which has been excised and radiolabelled, hybridised to Southern blots of Alu I-
restricted DNA and to P. chabaudi chromosomes in a PFG. An RFLP of this marker 

is clearly seen in digests of AS(3CQ) and AJ genomic DNA, and it appears to reside 

on chromosome 5. 

In addition to the RFLP obtained with RAPD primer OPL-16, a further six 

polymorphic bands obtained from six different amplifications were screened for 

RFLPs. Table 10 presents the type of RFLP and chromosome location for all seven 

bands. Five of the bands produced clear and reproducible RFLPs consistent with 

being present as single copies in the genome of each clone. The remaining two, OPL-

08 and OPL-13, produced amplified bands which were present on more than one 

chromosome, and thus may contain repetitive sequences or be members of a multigene 

V. 
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family. Their precise chromosomal location was unclear due to incomplete separation 

of the chromosomes during PFG electrophoresis. Each RFLP was also given a Probe 

Number. 

Table 10. RAPD primers which produced polymorphic bands subsequently used 

to detect RFLPs in P. chabaudi.. 

Primer Sequence RFLP Chromosome Probe  
Location No. 

OPL-04 5'-GACTGCACAC-3' Eco RI 11 76 

OPL-12 5'-GGGCGGTACT-3' Hind II 13 77 

OPL-16 5'-AGGTFGCAGG-3' Alu I, Rsa I 5 78 

OPR-02 5'-CACAGCTGCC-3' Alu I, Hind II, 14 79 

___  Hinfl,Rsa_I  

OPR-14 5'-CAGGATFCCC-3' Hind II 12 80 

OPL-08 5'-AGCAGGTGGA-3' Alu I, Dra I, Hind 1/2, 7, 8/9, 81 

II,Hinfl,Sau 3A, 11, 13/14 

Rsa_I,_Eco_RI  

OPL-13 5'-ACCGCCTGCT-3' Alu I, Dra I, 1/2, 3, 4, 82 

Hind ll,Hinf I, 5 (AJ only), 

Sau3A,RsaI, 14 

EcoRI I 

3.5 The multiple drug resistance gene of P. chabaudi 

3.5.1 Isolation and chromosome location 

The multiple drug resistance (MDR) gene in P. falciparum, pfindr-1, has been 

implicated in the mechanism of chloroquine resistance (Foote et al., 1989; Wilson et 

al., 1989; Foote et al., 1990b). Accordingly it was decided to examine the role the 

homologous MDR gene in P. chabaudi might have in chloroquine resistance in this 

species. 

Cross-hybridising the pfmdrl gene to Southern blots of P. chabaudi proved 

problematical; bad background and weak hybridisation signals meant that some 

restriction enzymes could not be tested for RFLPs, and those which were did not 

reveal an RFLP (Table 7, Probe Number 7). As a consequence, it was decided to 

isolate the P. chabaudi homologue of pfindrl. 
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PCR oligonucleotides 857S and 858S, which recognise highly conserved 

nucleotide binding sites within the two AlP binding cassettes of pfindrl , were used in 

an attempt to amplify P. chabaudi DNA. These primers amplify a 550 bp fragment 

from P. falciparum, which has been found to code for the amino terminal AlP binding 

cassette of pfmdrl (Figure 13A; A. Sultan, personal communication). Using the 

same primers, a 600bp fragment, called here pcATP-PCR, was amplified from both 

AJ and AS(3CQ) DNA, as shown in Figure 13A. The marker was given the Probe 

Number 83. Occasionally, a few faint, larger bands were amplified from both P. 

falciparum and P. chabaudi DNA. It is possible that these were the result of 

amplification of a fragment recognised by primer 858S of the AlP-binding cassette 1 

and primer 857S of cassette 2. 

Figure 13B shows the chromosome location of pcATP-PCR in P. chabaudi to be 
chromosome 12. pfmdrl is found on chromosome 5 in P. falciparum (Foote et al., 

1989; Wilson et al., 1989). pcATP-PCR cross-hybridises to chromosome 5 of P. 

falciparum and pfmdrl cross-hybridises to chromosome 12 of P. chabaudi at a 
stringency of 500C, 1 x SSC, 0.1% SDS, when hybridised to PFG blots of each 

respective species (data not shown). These results suggested that a part of the P. 

chabaudi MDR gene had been isolated; it was decided to clone and sequence the PCR 

amplified product of P. chabaudi. 

3.5.2 Sequence analysis 

The pcATP-PCR fragment was cloned and partially sequenced. The nucleic acid 

sequence and deduced amino acid sequence are shown in Figure 14. The DNA 
sequence was translated in all three reading frames and common restriction sites 

mapped using the MAP programme on the UWGCG (University of Wisconsin 

Genetics Computer Group) package (version 7), on the VAX computer, University of 

Edinburgh Computing Service. Alignment between the amino acid sequence of the P. 

chabaudi fragment and the two AlP binding cassettes of pfindrl was made using the 

PILEUP programme (also from UWGCG), and this is shown in Figure 15. The 
PCR product shows more homology at the amino acid level with the carboxyl AlP-

binding cassette of pfmdrl (C.pfmdrl) than with the amino ATP-binding cassette 
(N.pfmdrl). 86.7% of the residues are conserved between C.pfmdrl and pcATP-
PCR, and 43.6% between N.pf,ndrl and pcATP-PCR. 

The high homology between pfindrl and the P. chabaudi PCR fragment suggested 

that the MDR gene homologue of P. chabaudi had been isolated. The PCR fragment 
was renamed pcmdrl. 
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Figure 13. Amplification and chromosomal location of ocATP-PCR. 

PCR products resulting from the amplification of Plasmodiu,n DNA using primers 
which recognise the nucleotide binding sites of pfindrl. 

Lane 1 negative control 

Lane 2 P. falciparum clone HB3 

Lane 3 P. chabaudi clone AJ 

Lane 4 P. chabaudi clone AS(3CQ) 

Hybridisation of pcATP-PCR to chromosome separations of P. chabaudi. 
Chromosome numbering and sizes are as for Figure 10. The arrow points to 
chromosome 12. 

Lanel AJ 

Lane 2 AJ, after transmission through mosquitoes 

Lane 3 AS(3CQ) 

Lane 4 AS(3CQ), after transmission through mosquitoes 
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Figure 14. Nucleotide and deduced amino acid sequence of 301 bp of P. 

chabaudi marker pcATP-PCR. 

1 	 Hinc II 
AAGTCTCTAAGAAAATTATTTGCGATAGTTAACCAAGAAC CAATGTTGTTTAATATGTCT 

---+ ---------+ ---------+ ---------+ ---------+ ---------+ 

KS L R K L F A IV N Q E PM L F N MS 
S L * EN Y L R * L T K N Q C C L I CL 
VS K K II CD S * PR TN V V * Y V Y 

61 
ATTTATGAkATATAAAATTCGGTAAAGAAGATGCAACATAGAAGATGGTAAAAAGGGCT 

---+ ---------+ ---------+ ---------+ ---------+ ---------+ 

I YEN 	KFGKEDATLLED V KR A 
FM K I * N S V K KM Q H * KM * KG L 
L *K Y K I R * R R C NI R R C K KG L 

12]. 
TGTAGATTGGC TGCTATTGACGAATTTATTGAACCATTACCAAATAAATATGATACTAAT 

---+ ---------+ ---------+ ---------+ ---------+ ---------+ 

CR LA A I D E F I E P L P N KY D TN 
V D W L L L TN L L N H Y Q IN MI L N 
* I G C Y * RI Y * TI T K * I * y * C 

181 	Hind III Alu I 
GTAGGACCTTATGGAAAAAGCTTATCAGGTGGTCAA.AAACAACGAGTTGCTATTGC TAGA 

---+ ---------+ ---------+ ---------+ ---------+ ---------+ 

V G P Y G K S L S G G Q K  Q R V A I A R 
* DL ME K A Y Q V V K N N E L L L L E 
R T LW K K LI R W S K T T SC Y C * S 

241 	 primer 857S---- 
GCCCTATTAAGAGAACC TAAAATATTGTTGTTAGACGAGGCCACATCATCTCTGGCATGC 

---+ ---------+ ---------+ ---------+ ---------+ ---------+ 

A L L R E P K I L L L D E A T S S LA C 
P Y * EN L KY C C * T R PH H LW H A 
P1K R T * N IV V R R G H 115GM P 

301 
--> 
CCC 

P 

Amino acid abbreviations are given in Abbreviations. 

The section of sequence marked 'primer 857S' refers to the oligonucleotide 
sequence incorporated during amplification of parasite DNA. 

Restriction sites are underlined or are outlined in bold if two or more enzymes 

recognise the same sequence. 
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Figure 15. Comparison of pcATP-PCR with the two ATP binding cassettes of 

pfmdrl, at the amino acid level. 

The amino (N.pfmdrl) and carboxyl (C.pfmdrl) ATP binding cassettes of pfmdrl are 

marked in blue, r: \ I PP( R is marked in rd, and matchi ng residues between the P. 

chabaudi and P. falciparum sequences are marked in r.reen. Dots indicate gaps in the 

sequence, which enable maximum alignment between the sequences. 

1 
	

30 

N .pfmdrl 
	

TYENKNFSLI SN..... SMT SNELLEMKKE 

C .pfrndrl 
	RDLRNLFSIV SQEPMLFNMS IYENIKFGRE 

pcATP- PCR KSLRKLFAIV NQEPMLFNMS IYENIKFGI<E 

31 
	

MV 
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N .pfmdrl 

C .pfrndrl 

pcATP- PCR 

N .pfmdrl 

C .pfmdrl 

pcATP-PCR 

N .pfmdrl 

C .p.frndrl 

pcATP-PCR 

YQTIKDS'/V DVSKKVLIHD FVSSLEDKr_ 

DATL. . DVK RVSKFAAIDE FIESLPNKYD 

DATLE. .vK RACRLAAIDE FIEPLPNKYD 

61 	 90 

TLVGSNASK. ;GIS AF.-IMRNPY F 

TNVGPYAKSL SGGQKQRIAI ARA.LLREPKI 

TNVGPYGKSL SGGQKQRVAI ARALLREPKI 

91 	 103 

LILLAS DNK 

LLLDEATSS1. DSN 

LLLDEATSSL ACG 

3.5.3 RFLPs and cogw number of pcmdrl 

Twelve restriction enzymes were screened for RFLPs within pcmd.rl to give an 

indication of the copy number of the gene. The copy number was important for two 

reasons; firstly, to exclude the possibility that the cloned fragment was part of a 

pseudogene, and secondly to search for amplification of the gene in parasite lines 

which had been selected for drug resistance. 

Figure 16 shows the results of two Southern blots of restricted P. chabaudi DNA 

hybridised with radiolabelled pcmd.rl. The number of restriction sites determined by 
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Figure 16. Hvbridisation of pcmdrl to Southern blots of P. chabaudi restricted 

DNA. 

Restricted DNA samples are to the left of the plate, and autoradiographs from 

hybridisations to the right. 

Lane 1 AJ genomic DNA 

Lane 2 AS(3CO3 genomic DNA 

Lane 3 Second sample of AS(3CQ) genomic DNA 

A. DNA restricted with: a A/u I 

b DraI 

c Hind II 

d Hinf I 

e Sau 3A 

f Rsa I 

B. DNA restricted with: a Barn HI 

b EcoRI 

c Hind III 

d Ase I 

e PacT 

f PrneI 
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sequencing the PCR fragment correlate with the number of bands seen on the 

autoradiographs, with the exception of Dra I, Hind II, Hinf I, Sau 3A, Rsa I and Ase I 

which produced bands that had not been predicted from the restriction map. 

However, digestion of the pcmdrl fragment with each enzyme revealed the presence 

of these restriction sites (data not shown). The sites probably exist in the section of 

the fragment that was not sequenced, or alternatively, the sequence data may be 

slightly inaccurate. Problems were encountered during sequencing of pcmdrl, 

resulting in poor quality autorads which may account for this. 

Only Eco RI produced a size polymorphism between AJ and AS(3C0J (Figure 

16B), and this was subsequently used to follow the inheritance of pcmdrl among the 

progeny of the cross. 

Hybridisation with pcmdrl and washing of PFG blots under conditions of low 

stringency (1 x SSC, 0.1% SDS, 500C), revealed possible homologous genes to be 

located on P. chabaudi chromosomes 3 and 6 (data not shown). This is discussed 

further in Chapter 6. 

3.6 The P. chabaudi genome marker pcpS590.7 

3.6.1 Isolation and chromosome location 
In an attempt to isolate the P. chabaudi homologue of pS590.7, the P. falciparum 

chromosome 7 marker linked to a chioroquine resistance gene as postulated by 

Wellems er al. (1991), oligonucleotide primers 421K and 422K which recognised 

pS590.7 were made. These amplify a 456bp fragment of pS590.7 from DNA of P. 

falciparum clones Dd2 and HB3 (Wellems et al., 1991), referred to here as 

pfpS590.7. This fragment recognises an RFLP in Southern blots of Rsa I restricted 

Dd2 and HB3 DNA, which segregates with chioroquine resistance in the progeny of 

the HB3 x Dd2 cross of Wellems et al.. 

The oligonucleotides were used in a PCR reaction to amplify possible homologous 

sequences from P. chabaudi. A high annealing temperature of 52.5 0C was used to 

prevent non-specific amplification. The results are shown in Figure 17A. A 400bp 

PCR fragment referred to as pcpS590.7 was amplified from both AJ and AS(3CQ) 

DNA. The AJ pcpS590.7 fragment was cloned and subsequently used to probe 

Southern blots of P. chabaudi chromosomes. Figure 17B shows that pcpS590.7 is 

found on chromosome 13 in P. chabaudi. The marker was given the Probe Number 

84. 

To obtain further evidence that pcpS590.7 could be the P. chabaudi homologue of 

pfpS590.7, the AJ PCR fragment was used to probe a Southern blot of P. falciparum 

separated chromosomes, as shown in Figure 18A. This shows that pcpS590.7 

Chapter 3: Results 



97 

Chapter 3: Results 



Figure 17. Amplification of P. chabaudi marker pc12S590.7 by PCR. and 
hvbridisation to chromosomes of P. chabaudi. 

PCR products resulting from the amplification of Plasmodium DNA using primers 
which recognise marker pS590.7. 

Lane 1 negative contol 

Lane 2 P. falciparum clone HB3 

Lane 3 P. chabaudi clone AT 

Lane 4 P. chabaudi clone AS(3C0J 

Hybridisation of pcpS590.7 to chromosome separations of P. chabaudi. 
Chromosome numbering and sizes are as for Figure 10. Although the figure is not 
clear, careful measurement of the distance between the wells and the signal showed the 
marker to be located on chromosome 13 (arrow). 

Lanel AT 

Lane 2 AT, after transmission through mosquitoes 

Lane 3 AS(3CQ) 

Lane 4 AS(3CQ), after transmission through mosquitoes 
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Figure 18. Hybridisation of P. chabaudi marker pc12S590.7 to P. falciparum 

chromosome separations and to Southern blots of P. chabaudi restricted 
genomic DNA. 

A. Hybridisation of pcpS590.7 to chromosome separations of P. falciparum. 
Lane 1 P. falciparum clone 3D7 
Lane 2 P. falciparum clone Dd2 

Chromosome separations of P. falciparum clones 3D7 and Dd2. Chromosome 
numbering and sizes are shown for clone 3137 only. 

Autoradiograph of pcpS590.7 hybridised to a blot of the gel. 
Autoradiograph of a P. falciparum chromosome 7-specific probe, pS500.7 (see 

Table 6 and Figure 8), hybridised to the blot to confirm the identity of the 
chromosome number. The blot was stripped prior to probing. 

B. Hybridisation of pcpS590.7 to Southern blots of restricted P. chabaudi DNA. 
Lane! AJ 

Lane 2 AS(3CQ) 

DNA resthcted with: a A/u I 

b Dra I 

c Hind II 

d Hinf I 

e Sau 3A 

f Rsa I 
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hybridises to P. falciparum chromosome 7, the same chromosome on which marker 

pS590.7 is located. 

3.6.2 Copy number and RFLPs of pc12S590.7 

Six restriction enzymes were screened for RFLPs within pcpS590.7 and to 

determine whether the marker exists as a single copy on chromosome 13. Figure 

18B shows that Hind II and Sau 3A produced polymorphisms between AJ and 

AS(3CQ). Both RFLPs were subsequently used to follow the inheritance of 

pcpS590.7 among the progeny of the AJ x AS(3CQ) cross. Evidence suggests that 

the marker may occur as a single copy on chromosome 13, because no unexpected 

bands, as deduced from the restriction map (Section 3.6.3), appeared on the 

autoradiographs. The detection of a single Sau 3A band as opposed to the two 

predicted by the restiction map is expected because of the position of the Sau 3A site 

14 bp from one end of the probe (Section 3.6.3); such a small region of homology 

is unlikely to have been sufficient for hybridisation of the probe to the second genomic 

DNA fragment. 

3.6.3 Sequence analysis 
Although the similar PCR product sizes, and the cross-hybridisation to P. 

falciparum chromosome 7 suggested that pcpS590.7 might be the homologue of 

pfpS590.7, it was decided to sequence pcpS590.7 and compare it to the sequence of 

pfpS590.7. Figure 19 gives the nucleotide sequence of pcpS590.7 as deduced from 

dideoxy chain termination sequencing. The 400bp fragment is 92.8% A + T rich and 

does not appear to be within a coding region of DNA; each reading frame of the amino 

acid sequence (deduced using MAP, UWGCG) produced a stop codon (Figure 19). 
Analysis of the nucleotide sequence of pfpS590.7, kindly provided by T. Wellems 

(National Institutes of Health, Maryland, U.S.A), revealed this DNA segment to be 

77.5% AlT rich. It also does not contain an open reading frame as determined using 

MAP (data not shown). 

A comparison of the two sequences was made using PILEUP (UWGCG) and this 

is shown also in Figure 20. There are many small regions of homology between the 

two sequences, for example from 54 bp to 72 bp, 16 out of 19 nucleotides are 

conserved. This is not surprising considering the level of A + T richness that exists in 

the two sequences. Thus the homology between the sequences could have occurred 

purely by chance. 
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Figure 19. Nucleotide and deduced amino acid sequence in all three frames, of P. 

chabaudi marker pcpS590.7. 

1 
ATTTGAAAATGGAGTTC GAAAATTTAATAATAATTATGATAAAAATGTTAGACGAAAAAT 

---+ ---------+ ---------+ ---------+ ---------+ ---------+ 
I * K W S S K I * * * L * * K C * T K N 
F EN G V R K F N N NY D K N V R R K I 
L K ME F EN L I I I MI K ML D E K F 

61 
TTTTAATTTAC CAAAGTAAAAAGGAAATGGGATGGTAGTTTATGATGAAGAAGATGACT 
A 

---+ ---------+ ---------+ ---------+ ---------+ --------+ 
F * FT K D KR K W D G S L * * R R * L 
F N L P K 1KG N GM V V Y D E E D D Y 
LI Y Q R * K EM G W * F MM K K MT 

121 
TAATGATAGTCAAGAAAAAATCAGACAAAAAAAGAAAAGTAGGAAAGAGGAAAAACGAGA 

---+ ---------+ ---------+ ---------+ ---------+ ---------+ 
* * * SR K N Q T K K E K * E R G K T R 
ND SQ E K I R Q K K K SR K E E K RE 
M I.V K K K SD K KR K V G KR K N EN 

181 
ACAAAAATTAAAAAGTATATTACAAGATATGAATAAAAAkA.AAAACAAATATAACTAAAA 

--- ---------- + ---------+ ---------+ ---------+ ---------+ 
T K 1K KY IT R Y E * K K K Q I * L K 
Q K L K SI L Q D MN K K K N KY N * K 
K N * K V Y Y K I * 1K K K TN IT K N 

241 
ATTCGATTGAAGATGAAATGGGTAATATATCAAATAAAATGAATAATTATAAAGACATT 
A 

----+ ---------+ ---------+ ---------± ---------+ ---------+ 
I R L KM K WV I Y Q 1K * 111K T L 
F D * R * N G * Y 1K * NE * L * RH * 
SI EDEN G N IS N K MN NY K DI K 

301 	 Sau3A 	352 
AAAATGTTATTGCTGATATATGTAATAATATTATGGGTGATCAAAC TATGTA 

----+ ---------+ ---------+ ---------+ ---------+-- 
K ML L LI Y V I I LW V 1K L C 
K C Y C * Y M * * Y Y G * SN Y V 
N V I A DI C N N 1MG ID Q TN 

Amino acid abbreviations are listed in Abbreviations. 
The single Sau 3A site is underlined. 
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Figure 20. Comparison of pcpS590.7 with pfpS590.7 at the nucleotide level. 

pcpS590 7 is marked in blue, 	7 is marked in ied, and niaichin bases are 

marked in green. Dots indicate gaps in the sequence, which enable maximum 

alignment between the sequences. 

1 	 50 

............ ......... A TTTGAAAATG GAGTTCGAAA 
i (ZAT 

51 	 100 

ATTTAATAAT AATTATGAIA AAAATGTTAG ACGAAAAATT TTTAATTAC 

	

TATAAT 	T7\ATGAT.'. PATGTTA ATATGAAT A T TTAATGA7A 

101 	 150 

CAAAGTAAAA GAAATGGG ATGGTAGTTT ATGATGAAGA AGATGACTAT 

	

.AA 	 Z7TACA 7AATAT 

151 200 
AZTGATAI C AALAAAAA I C .GACAAPAA AAGAAAAGTA GGAAJkGAGGA 

JAATTAPGTG APLGATATAAT AAATATTTT GAl A7TA1 :a.:f. 

201 	 250 

AA?. ....... ........ AC GAGAACAAAA ATTAAAAAGT ATATTACAAG 
: :TAAAT 	TTAAT 

251 	 300 

rATGAATAA AAAAAAAA- AAATATAL.0 A,.TJ\TTCGA TTGAPGATGA 

ATA(T-AP.C. AG'TATTCAC ATTTTAAAAT TAAA 	7A-A AA1 

301 	 350 

AATGGGTAAT i A ICAAATA AAA IGAATAA TTATAAAGAC ATTAAAATG 

Jr. ATAT7T A IA TAATAA :AA 	A]7AAA 	7TTTA.AI'T 

351 	 400 

TTATTGCTGA TATATGTAAT A1J ..... ... TATGGGTGAT CAAACTATGT 

TTATT77A-PL i7TGGCCTACP TTT A,AT TATATGTTAA TCAAA-ATTT 

401 

A ....... 
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It was decided to look for further evidence that pcpS590.7 and pfpS590.7 might be 

related by hybridismg other chromosome 7-specific P. falciparum markers to Southern 

blots of separated P. chabaudi chromosomes, and looking for regions of synteny. 

This is discussed in Chapter 4. 
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4. Results: Regions of synteny between P. chabaudi and 
P. falciparum 

The criteria used for defining homologies between genes in different species have 

been proposed by the Committee on Comparative Mapping (Lalley et al., 1987). The 

classification depends upon the number and order of the homologous genes, thus: 

homology segments refer to regions of DNA homology, for example within a 

single gene. This is the fundamental unit of comparative gene mapping, because it 

represents the first evidence concerning the location of a homologous chromosomal 

segment between species. 

conserved syntenies are homology segments composed of two or more pairs of 

homologous genes located on the same chromosome, and regardless of gene order. 

This provides the first evidence of conservation of DNA sequences. Finally; 

conserved linkages are groups of genes conserved not only in synteny, but also in 

gene order. 

This chapter deals with regions of synteny conservation between the two species P. 

chabaudi and P. falciparum. 

4.1 Synteny between the genomes of P. falciparum and P. chabaudi 
During the search for RFLPs in the genome of P. chabaudi, many P. falciparum 

genes were cross-hybridised to P. chabaudi chromosomes to test their suitability as 

genome markers for the latter. It soon became apparent that certain pairs of 

homologous genes were conserved in their chromosomal location between the 

genomes of the two species. 

The homologous genes identified as being present in such conserved syntenies are 

shown grouped together on their respective chromosomes in Table 11. The 
significance of these regions of synteny is discussed in Chapter 6. 
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Table 11. Conserved syntenies between the genomes of P. falciparuma*i4 

P. chabaudi. 

Chrom P. falciparum (31)7) P. chabaudi (AS) 
No.  

1 RESA 1  Ag3008(46) 

2+ ATPase2  

2  Ca2  ATPase( 1) 

3 RNA p01 113  
Pf1RAP24*, CSP5 . 

4 DLIFR-TS6, Pfcrk1(21)*. PfTRAP2*, CSP 17 . 

DNA p01 a(24) a? tubulinl8* 

all tubulin(36) 

VAP_B(18)  

5 pfindr-l(7) DNA p01 & 

TBP(8), Topo I(27)*. a? tubuli&8* 

6 Histone 2A(1 1) RESA(34) 

DNA pol a* 

7 DHFR-TS(6), Pfcrk1*. 

hsp-70 19  

8 hsp-70-17 P6K, MSP-1(4). 

DHPS(10) RNA pol 1I(41)* 

9 PGK8 , MSP-19 AMA-1(39), pfran*.  

at tubulin(35) 

10 tubuIin 0, enolase(9). 5s rRN % 	4y. Topo IJL2. 

DNA pol (25) Calmodulin(32). GPI(O). PfMAP 

VAPB* 

11 exp-111 PCNA, CDC2( 16). EFlcx 

A MA-I 12, pfran(40). Histone 2A* 
'UBP*,_Topo_I. 

12 pcmdr1* 

hsp-70 19  
_tu buIin(38),_enolase*. 
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13 PCNA(29), PIPK5 13 , RN\ pol I1I, 	pfcrk-3t, 	SSP 

EFIa(15). 1120. 

VAPA(17) 

RNA pot 111(13), plcrk3(23)*, Aldolase 1(37) + 1121*, G,6PD*. 

TR AP 14  

14 5s r1 N A 14 	. Topo TIC 2 VAP A* 

almodulin( 42 Actifl I 

1)1\IAP- 1(22 V 

Aclin 115 

Aldolase 16, G6PD(19). I 

The table shows the chromosome location of 40 homologous genes in the reference 

clones 3137 of P. falciparwn, and AS of P. chabaudi. An asterisk marks those genes 

whose location was detemiined during this project. Groups of genes in bold colour 

represent synteny groups conserved between the two species; blue groups contain two 

genes, green groups contain three genes, and red groups contain hN t genes. Numbers 

in parenthesis refer to the Probe Number as given in Tables 5 and 7. Superscript 

numbers refer to notes for genes not previously mentioned, as follows:- 
1 P. falciparwn iing-infected erythrocyte swface antigen (Kemp et aL, 1987) 

2 P.falciparum Ca2 -ATPase gene (Kimura etal., 1993); localised by Trottein and 

Cowman (1995) 

3 P. falciparwn RNA polymerase H gene (Li etal., 1989) 

4 P. falciparum TP.AP-2 gene, 0.5 kb in Eco RI site of pCRIITh; C. Doerig 1994 

5 P. falciparum circumsporozoite protein gene (Kemp etal., 1987); see Janse etal. 

(1994) 
(ip falciparum dihydrofolate reductase-thymidylate synthase gene (Cowman et aL, 

1988; Peterson etal., 1988) 

P. falciparum heat shock protein 70-1 (Sharma, 1992) 

8 p. falciparwn phosphoglycerate kinase gene (Hicks etal., 1991 ) see Janse eta). 

(1994) 

9  P. falciparum MSP-1 gene (Kemp etal., 1987) 
10p falciparum P tubulin gene (Holloway etal., 1990) 

11 P. frzlciparzun exp- 1 (circumsporozoite protein-related antigen gene) (Coppel etal., 

1985) 
12 P. falciparum apical membrane antigen gene (Kemp etal., 1987) 

13 P. falciparwn CDC2-like protein kinase gene (Ross-Macdonald etal., 1994) 
14 P. falciparum thrombospondin-related anonymous protein gene (Robson eta)., 

1990) 
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15 P. falciparum actin I gene (Wesseling etal., 1988); see Janse etal. (1994) 

16 P.falciparum aldolase gene (Knapp etal., 1990; Triglia etal., 1992) 

17 P. berghei circumsporozoite protein gene (Lockyer etal., 4990); see (Janse et aL, 
1994) 

18 a1 and all tubulin cross-hybridise to both chromosome 4 and 5 with equal 

intensities and it is not known which gene is located on which chromosome 

19 P.falciparuin hsp-70-1 cross-hybridises to two P. chabaudi chromosomes with 

equal intensities, but it is likely that one chromosome contains another hsp-like gene 

which is as yet uncharacterised 

20 P. berghei sporozoite surface protein-2 (Rogers etaL, 1992), homologue of P. 

falciparum TRAP (K. Robson, pers.comm.); see Janse etal. (1994) 
21 P. berghei aldolase II gene (Meier etal., 1992); P. falciparwn has only one aldolase 

gene 

Another method of representing conserved syntenies is in the form of an Oxford 

grid (Figure 21). Conserved syntenies are shown as coloured blocks within the 

grid; this shows clearly that 10 blocks are conserved between the two genomes. 

Figure 	w IS 	rflrTrTyi.(s)lI.pt. .itsJ(sZ.1L'utITI1Ti 

its)mes of P. fialcipanan and1fl7,77?I. 

P. chabaudi chromosomes 1-14 

1 2 3 4 5 6 7 8 9 10 1112 13 14 
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4.2 P. falciparum chromosome-7 conserved linkage groups 
In Chapter 1, it was pointed out that the P. falciparum marker pS590.7 is closely 

linked to a gene determining chioroquine resistance on chromosome 7. The aim of 

this work was to determine whether a homologous region exists between chromosome 

7 of P. falciparum and chromosome 13 of P. chabaudi. This would clarify the 
relationship between the pS590.7 markers in each species, and provide an indication 
of whether a chloroquine resistance locus on P. falciparum chromosome 7 might have 
a homologue on chromosome 13 of P. chabaudi. 

Eight chromosome 7-specific P. falciparum markers were chosen for cross-
hybridisation studies between the two species (Table 6 and Figure 8.) No DNA 
sequence data existed for any of the markers, and it was not known whether they were 

parts of coding regions of DNA (Walker-Jonah et al., 1992). Each marker was 
radiolabelled and used to probe Southern blots of PFG and RFLP gels. The results 

are given in Table 12. Various washing conditions were employed to optimise the 

hybridisation, but only those conditions which produced the best results are shown for 

each marker. 

Initial results showed that 4 of the 8 markers hybridised to a band containing 

chromosomes 13 and 14 (referred to as 'chromosomes 13/14'). For example, marker 

pH270.5 which is approximately 40-240 kb from pS590.7 and shows partial linkage 

with chioroquine resistance in the P. falciparum HB3/Dd2 cross (T. Wellems, 
personal communication and Figure 8), hybridised weakly to P. chabaudi 
chromosomes 13/14. 

Table 12. P. chabaudi chromosome location and RFLPs produced by cross-
hybndisation of eight P. falciparum chromosome 7-specific markers. 

Genome Approximate Washing P.chabaudi Enzes tested 
I 

Marker distance from Chromosome i RFLP(s) 
pS590.7 (kb) Stringency Locationb for RFLPs I 

pEl2a 0-95 2 x SSC, 0.1% SDS, 400C: Not attempted 
bad background signal, no 

significant hybridisation  

pB20.23 0-130 1 x SSC, 0.1% SDS, 50°C: Notattempted 
either bad background signal 

or no significant hybndisation  
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pE53a 0 - 197 1 x SSC, 8/9, 13/14 Not attempted 
0.1% SDS, 

500C 

pH270.5 45 - 235 1 x SSC, possibly Not attempted 

0.1% SDS, 13/14 

500C I 
pS90.30 45 - 235 1 x SSC, 0.1% SDS, 60°C: either bad background 

signal or no significant hybridisation to PFG or RFLP 

blots._____________  

pS590.20 125 - 500 5 x SSC, 8/9, 13/14 Alu I, Dra I, None; 
0.1% SDS, Hind II, Hinf poor 

500C I, Sau 3A, hybrid- 
_______  Rsa I isation 

pSL2 285-520 1 x SSC, 0.1% SDS, 500C: Not attempted 
2 hour exposure, no 

hybridisation; 30 hour 

exposure, hybridised to all 

chromosomes 

pS500.7 490 - 710 PFG blots: 8/9, 12, Alu I, Dra I, Rsa I 
2 x SSC, 13/14 : not Hind II, Hinf (repro- 

0.1% SDS, significant as I, Sau 3A, ducibility 
600C; RFLP poor repro- Rsa I not good) 

blots: 3 x ducibility 

SSC, 0.1% 

SDS,_55°C  
a An estimated range of distance between the marker and pS590.7, as deduced from 

Figure 8. 
b It was not possible to distinguish between hybridisation to chromosome 13 or 14 in 

the majority of cases, due to the poor hybridisation signals emitted. 

Interestingly, three markers hybridised to bands containing chromosomes 8 and 9 

(referred to as 'chromosomes 8/9'), as well as to chromosomes 13/14. For example, 

marker pS590.20 which is approximately 125-500kb from pS590.7 in P. falciparum, 
hybridised to chromosomes 8/9, and 13/14 in P. chabaudi (Figure 22A). The cross-
hybridisation signals to these bands were weak. 
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Another example of a marker which hybridised to P. chabaudi chromosome 8/9 and 

and 13/14 is pS500.7, which is 490-710 kb from pS590.7 and is not linked to 

chloroquine resistance in the P. falciparum HB3IDd2 cross (Wellems et al. (1991) 

and Figure 8). It also hybridised to P. chabaudi chromosome 12 which migrates as 

a doublet with chromosome 11 in AS(3CQ). Unfortunately, this result was not 

reproducible; an attempt to hybridise pS500.7 to a second PFG at the same stringency 

produced a hybridisation signal from all chromosomes, which subsequently washed 

off at an increased stringency (data not shown). 

Markers pEl2a, pB20.23 and pE53a which are 0-95 kb, 0-110kb and 0-197kb 

respectively from pS590.7 in P. falciparum, were the closest available markers to 

pS590.7. If a region of synteny were to exist between P. falciparum chromosome 7 

and P. chabaudi chromosome 13, these were the most likely markers to indicate it. 

However, pEl2a and pB20.23 did not cross-hybridise to any P. chabaudi 

chromosomes (Table 12). pE53a cross-hybridised weakly to chromosomes 8/9, and 

even more weakly to chromosomes 13/14 (Figure 22B). 

Whether these results provide evidence for a region of synteny between the. two 

chromosomes is discussed in Chapter 7. 

4.2.1 Cross-hybridisation of P. falciparum marker pS590.7 

A final experiment was carried out to determine whether pcpS590.7 was the 

genuine homologue of pfpS590.7. P. falciparum marker pS590.7 was hybridised to a 

blot of a PFG and the results are shown in Figure 23. Under stringent conditions (1 

x SSC, 0.1% SDS, 60°C; Figure 23B) the marker hybridised to chromosome 12 

only. Under conditions of lower stringency (2 x SSC, 0.1% SDS, 500C), the marker 

hybridised to P. chabaudi chromosome 12 and weakly to chromosomes 1/2 and 8/9 

(Figure 23C). pcpS590.7, the PCR product amplified from P. chabaudi DNA, 

hybridises to P. chabaudi chromosome 13. This suggests that pcpS590.7 is probably 

not the P. chabaudi homologue of the P. falciparum marker pS590.7, and is discussed 

further in Chapter 7. 
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Figure 22. Cross-hybridisation of two P. falciparum chromosome 7-specific 
markers to chromosome separations of P. chabaudi. 

P. chabaudi chromosomes were separated by PFGE, and probed with (A) pS590.20 

and (B) pE53a. Chromosome numbering and sizes are as for Figure 10. Arrows 
indicate chromosome numbers. In addition, PFG B was probed with marker CDC2 

(Probe Number 16) without prior stripping, for the purpose of identifying 

chromosome 11. 

Lanel AJ 

Lane 2 AJ after transmission through mosquitoes 

Lane 3 AS(3CQ) 

Lane 4 AS(3CQ) after transmission through mosquitoes 
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Figure 23. Hybridisation of P. falciparum marker pS590.7 to chromosome separations of P. chabaudi. 

P. chabaudi chromosomes were separated by PFGE (A), and probed with marker pS590.7 under conditions of (B) high sthngency and (C) 
low stringency. Chromosome numbering and sizes are as for Figure 10. Arrows indicate chromosome numbers. 
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Lane 2 AS(sens) 

Lane 3 AS(OCQ) 
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5. Results: The progeny of the cross 

A cross was made between the chioroquine-sensitive clone AJ, and the 

chloroquine-resistant clone AS(3CQ), selected for resistance as described in Chapter 

2. 

5.1 Mosquito infections 
Ten days after mosquitoes had been fed on the infected rats, a sample of 

mosquitoes from each cage was dissected and examined for oocysts. All of the cages 

were found to contain infected mosquitoes, as follows: 

six out of seven mosquitoes taken from the cage fed on the AS(3C0j-infected rat 

had ten or more oocysts 

two of three mosquitoes taken from the cage fed on the AJ-infected rat had three 

and six oocysts respectively 

two of six mosquitoes taken from the cage fed on the rat infected with a mixture of 

AS(3CQ) and AJ parasites had one and eight oocysts respectively. 

The presence of oocysts indicated that fertilisation and meiosis had occurred. 

The mosquitoes were fed on separate, uninfected mice 16 and 18 days after their 

first blood meal, in order to recover the progeny of the cross. Seven days later, when 

the infections had become patent in the blood, each mouse was bled and the parasitised 

blood stored in liquid nitrogen, as stabilate numbers 1517 to 1523 inclusive. 

5.2 The uncloned progeny of the cross 
Experiments involving the uncloned progeny of the cross utilised parasites as close 

to the original source as possible, usually 1 passage through mice from the deep-

frozen material. This was to prevent selection of more common genotypes over rare 

genotypes, which might have led to a bias in the results. 

5.2.1 Karyotype of the uncioned progeny 
Chromosomes of the uncloned progeny were separated by PFGE (Figure 24), 

and probed with markers P.12 and PCNA which recognised chromosomes 6 and 11 

respectively (see Tables 7 and 9). These two chromosomes are different in the two 

parent clones, chromosome 6 being approximately 1.1 Mb in AJ and 1.2 Mb in 

AS(3CQ), and chromosome 11 being around 1.8 Mb and 1.9 Mb in AJ and AS(3C()J 

respectively, as described previously in Chapter 3 (Figure 24B and Q. 

The presence of both forms of both chromosomes among the uncloned progeny 

indicated that little selection involving these chromosomes had occurred between the 
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Figure 24. Karyotype and chromosome number of the uncloned progeny of the cross. 

P. chabaudi chromosomes were separated by PFGE (A), and probed with chromosome markers P.12 (B) and PCNA (C). Chromosome 
numbering and sizes are as for Figure 10, except note the reverse order of the clones. Arrows indicate chromosome numbers. 

Lane 1 AS(3CQ) 

Lane 2 AS(3CQ) after transmission through mosquitoes 

Lane 3 uncloned progeny of the cross 

Lane4 AJ 

Lane 5 AJ after transmission through mosquitoes 

Marker P.12 recognises chromosome 6, which is polymorphic between AJ and AS(3CQ) as shown by the presence of two bands in the 
uncloned progeny (Lane 3). 

Marker PCNA recognises chromosome 11, also polymorphic between AJ and AS(3CQ) and which is also shown by the presence of two 
chromosome 11 bands in the uncloned progeny (Lane 3). 
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fertilisation events in the mosquitoes and the time when blood forms were examined. 

However, the AJ form of both chromosomes appeared to be present in greater 

amounts compared to the AS(3CQ) form. This may have been due to more AJ self-

fertilisation occurring than AS(3CQ) seif-fertilisation (see also Discussion). 

The fact that both size polymorphisms of chromosomes 6 and 11 were present 

provided no information as to whether recombination had occurred between the two 

parent clones; this subject is discussed in the next section. 

5.2.2 Testing for recombinant forms among the uncloned progeny 

The uncloned progeny of the cross, both untreated and treated with either 

chioroquine or pyrimethamine, were examined for parent clone markers. The results 

were expected to be as follows: 

untreated progeny would be expected to exhibit both parental alleles, of each 

marker, in the absence of selection 

if recombination had not occurred between the parent clones, the drug-treated 

progeny would be expected to exhibit only the allelic forms of the resistant parent line 
AS(3CQ) 

if recombination had occurred, the drug-treated progeny would be expected to 

contain both parental alleles of all markers, with the exception of markers closely 

linked to gene(s) determining drug resistance; for these markers, only the alleles 

of the resistant parent clone would be expected to be present. 

The uncloned progeny were examined first to detect whether crossing had 

occurred, and this was done using enzyme markers. They were then examined to 

determine whether any markers linked to chioroquine or pyrimethamine resistance 
could be detected. 

(i) Enzyme markers 

The uncloned progeny, both untreated and treated with pyrimethamine, were 

examined for alloenzyme forms of LDH and ADA; the chromosomal locations of these 

genes are not known in P. chabaudi (although see Chapter 6). Results are shown in 
Table 13. Both parental forms were found following drug treatment. This showed 

that recombination must have occurred during the cross. In the absence of 

recombination, only enzyme types LDH-3 and ADA-6 would have been present, as 

these are characteristic of the drug resistant parent 
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Table 13. Analysis of the uncloned progeny with enzyme and DNA markers. 

Enzyme DNA Markers 

Markers  

Parasite LDH ADA Pc- P.9 DHFR MSP- PBS P.12 pc 

clone EMAJ (63) (6) 1 110 (63) pS590. 

(5)  (4) (3)  (84) 

AJ 2 9 AT AT AJ AJ AT Al AT 

AS(3CQ) 3 6 	1 AS AS AS AS AS AS AS 

Uncloned 2 + 3 9 + 6 AT + AT + AT + AT + AT + AT AT + AS 

progeny  AS AS AS AS AS  

Uncloned 

progeny 

treated with 2 + 3 9 + 6 AT + AT + AS AT + AS AT AT 

15mg/kg AS AS AS 

PYR for 4 

days  

Uncloned 

progeny ND ND AT + AT + AT + AS AT + AT AT + 

treated with 3 AS AS AS AS AS 

mg/kg CQ 

for 8 days  

Chromosome ND ND 10 4 7 8 3 6 13 

Location 

Numbers in parentheses refer to Probe Numbers as shown in Tables 5 and 9 

2,3 and 9,6 - alloenzyme types of LDH and ADA 

CQ - chioroquine; PYR - pyrimethämine 

ND - not determined 

AT - AT-type allele inherited; AS - AS(3C0j-type allele inherited 

(ii) DNA markers 

Seven DNA markers were analysed in the uncloned progeny, and in the uncloned 

progeny which had been treated with pyrimethamine or chioroquine (Table 13). 

Results for each marker were as follows:- 
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PcEMA-1 and P.9 : untreated progeny and progeny treated with both drugs 

exhibited both allelic forms of these markers. Thus they behaved as markers unlinked 

to drug resistance gene(s). 

DHFR: pyrimethamine-treated progeny exhibited the AS(3CQ) allele of this 
marker only, which indicates that DHFR could be the gene, or linked to a gene, 
responsible for pyrimethamine resistance. Evidence has accumulated that a mutant 

DHFR plays a role in resistance to pyrimethamine in P. chabaudi, as it does in P. 
falciparum (see Introduction 1.5.3), and this result provides further evidence that 
this is the case. The chioroquine-treated progeny exhibited both parental alleles, 

showing that the DHFR gene was not involved in resistance to this drug. 
MSP-1. pBS 110 : single allelic fonus characteristic of AS(3CQ) were 

exhibited by the chioroquine-treated and pyrimethamine-treated progeny respectively, 

suggesting that these markers could play a rOle in, or be linked to genes involved in, 

each respective type of drug resistance. 

P.12. 12cpS590.7 : both these markers produced curious results. First, the 
AS(3CQ) allele of marker P.12 was not detectable in any of the uncloned progeny, 
treated or untreated; second, the AS(3CQ) allele of pcpS590.7 was not present among 
the pyrimethamine-resistant progeny. 

A possible explanation for these results is as follows: during drug treatment, the 

parasites are kept at a sub-patent level by the drug. This is true even for resistant lines 

of parasite. As the parasites recover following removal of the drug, there may be 

competition between them, resulting in some genotypes being selected over others, for 

example due to their ability to grow faster. This produces bias in those genotypes 

which have survived the 'bottle-neck'. Thus it may be that the drug-selection 

procedure causes certain genotypes to be favoured over others. 

The results of this work on the uncloned progeny showed that recombination 

between the parent clone markers had clearly occurred, but that individual progeny 

clones needed to be characterised in order to follow the segregation and recombination 
of each chromosome marker. 

5.3 The cloned progeny of the cross 

24 clones were isolated from the uncloned progeny (deep frozen stabilate no. 
1519), taken from the first mouse fed upon by infected mosquitoes. Each clone was 

grown in mice and tested for its susceptibility to chloroquine, and subsequently 
analysed for the inheritance of 46 markers that distinguished the parent clones. 
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5.3.1 Inheritance of parental markers 

Eighteen of the twenty-four clones examined were found to be recombinants. The 

remaining six clones (38 / 2, 38 / 3, 39 / 7, 40 / 4, 42 / 10 and 49 / 3) were AT parental 

types. No AS(3CQ) parental type clones were isolated. One group of four clones (39 

/ 3,73 / 3,63 / 1 and 64/7), one group of three clones (103 / 3, 103 / 6 and 105 / 1), 

and two groups of two clones (39 / 8 and 72/2, and 38 / 9 and 64/ 3) were identical 

to each other as determined from inheritance data of approximately 35 markers. One 

clone from each group was selected as representative, and the rest were excluded from 

further analysis. Table 14 shows the inheritance pattern of the markers among the 

resulting eleven independent recombinant clones. 

The total number of polymorphic sites analysed during this study was 492. Of 

those, 241 (49%) were inherited from the AJ parent, and the remaining 251 (51%) 

from the AS(3C0J parent. This is not significantiy different from the expected ratio of 

1:1. However, there does appear to be skewed inheritance of AS(3CQ) and AT alleles 

by two chromosomes. The inheritance of chromosome 5 was examined at a total of 

55 polymorphic sites, and 43 of these (approximately 78%) were found to be alleles of 

the AJ parent. Chromosome 11 was analysed at a total of 99 sites, and 76 

(approximately 77%) were found to be alleles of the AS(3CQ) parent. 

Two markers on chromosome 5 displayed skewed inheritance among the progeny 

clones. AJ alleles of markers Ag3035 and OPL-16 were inherited by 10 out of 11 

progeny. This is of particular relevance to progeny clone 74 / 5, which inherited 
AS(3CQ) alleles for all markers studied except Ag3035. 

The RFLP inheritance data also suggested possible chromosome locations for the 

genes coding for alloenzymes ADA and LDH. Neither of the genes determining these 

enzymes has been cloned in P. chabaudi. Table 14 shows LDH to have the same 
RFLP pattern among the progeny clones as the chromosome 13 marker pcpS590.7, 

which may suggest that the LDH gene is on chromosome 13. The location of the gene 

coding for ADA is more difficult to determine. Markers P.9 and cDNA 121 are on 

chromosomes 4 and 10 respectively, and both show the same inheritance pattern as 
ADA in ten out of eleven progeny clones. 
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TabLe 14. Inheritance of marker alleles in 11 progeny from the AJ x AS(3C0) P. chabaudi cross. 

Proenv Clones 

Probe Probe 7: 	: 39/3 62/3 62/8 Linkage 
Ratiob 

Number Namea I 
Chromosome 1 

49 	A —F5/1  I 

Chromosome 2 ____  

1 
Ca2 - 

ND AJ \S AJ ND A. 7/9 
ATPase 

Chromosome 3 

3 	pBS1IO AJ 	AS 	AS  	AJ 	AJ 	AJ 	A 	6/11 

47 
Ag3003 

AJ S A S \S AJ \ AJ AJ AJ AJ 8/11 
A 

Chromosome 4  

62 P.1  AJ AJ AJ ND AJ AJ ND  AJ AS 2/9 

63 P.9  AJ AJ AJ  AJ AJ AJ •\S AJ AS 3/11 

Chromosome 4/5  

36 
all 

AJ AJ AJ AJ \' AJ 5111 
t ubuline  ______  ______ ______ _______  



Table 14. continued. 

Probe ()• 
H 	2 2 74H 

Name  

H H 39/3 62/3 62/8 Linkage 

Ratio 
Probe 

Number 

Chromosome S  

57 Ag3035 AJ AJ Ad AJ AJ AJ AJ AJ AJ AJ 4/11 

EM_ 78 OPL-16 AJ  Ad AJ  Ad AJ AJ AJ AJ AJ 4/11 

25 
DNA 
POI 

AJ AJ Ad Pd Ad Pd Pd Ad Pd 5/11 

72 P.29 AJ  AJ AJ  AJ AJ AJ Pd Pd  4/11 

50 Ag3024 \'  Ad AJ .AJ Ad  AJ I 	Ad  6/11 

Chromosome 6 

66 P.12 Al AS Al Ad AS Pd Pd AS  Pd AS 4/11 

24 
DNA 
pola Pd Pd AJ Ad Pd AJ Pd Pd AS 4/11 

34 RESA Al AS Pd Ad AS Pd Ad Ad Ad Al Ad 5/11 

'1 



Table 14. continued. 

Probe 

N umber 

Probe 

Name 

; 39/3 62/3 62/8 Linkage 

 Ratio 

Chromosome 7  

6 DHFR \S AJ AJ Al ASAS Al AS Al Al 6/11 

71 P.23 Al  Al  AS  AS Al Al Al Al 8/I1 

Chromosome 8 

4 MSP-1 \ Al A AS Al AS Al Al 8/11 

Chromosome 9  

51 Ag3027 Al AS Al Al AS Al Al  AS AS  3/11 

39 AMA-i Al AS Al AJ ND Al Al NT) AS AS Al 2/9 

40 pfran Al  Al \S  Al 4/11 

Chromosome 10  

14 5srRNA Al Al Al Al  AT AS Al  4/11 

43 
cDNA 

121 As Al Al Al Al Al Al AS Al AS 3/11 

18 VAPB \s AS AS Al ND Al Al I 	ND _____ AJJ AS 419 

C.) 



Table 14. continued. 

Probe 

Number 

Probe 

Name ___________________ 

39/3 

____ 

62/3 

_________ 

62/8 
Linkage 

Ratio 

Chromosome 11  

16 CDC2 \S \S AS  AS \S  AJ  AJ 10/11 

15 EFJa \S  AS A \S AS AJ AS AJ 10/11 

29 PCNA \: \ AS  AS  AS AS AJ AS AJ 10/11 

76 OPL-04 AS  AS  A  AJ  AJ 10/11 

70 P.22  AS AS AJ AS \S AJ  AJ 9/11 

11 H2A  AS AS AJ AS AS AJ AS AJ 9/11 

12 9.2  AS  AJ AS  AJ  AJ 9/11 

27 Topol \ \ AS  AS AJ AS AS AJ AS AJ 9/11 

8 TBP _____ _____ AS AS AS AJ _____ AS AJ AS AJ 9/11 



Table 14. continued. 

Probe 

Number 

Probe 

Name 

H 	H 39/3 
 _____________ 

62/3 62/8 
Linkage 

 Ratio 

Chromosome 12  

83 pcmdrl \ \S AJ AJ  AJ  AJ  AJ 7/11 

80 OPR-14 \  AJ AJ  ND AJ  AJ  6/10 

Chromosome 13  

37 aldo-I AJ :\S AS  \S AJ \ AJ  AJ AJ 7/11 

54 
Ag-

3O42B AJ \ AJ AJ AJ AJ 7/11 

84 
PC- 

pS590.7 M AJ AJ AS AJ AJ 7/11 

13 
RNA 

pol III AJ AJ ND S AJ ND 6/9 

77 OPL-12 \' AJ HS, 

AJ AJ  AJ AJ 7/11 

45 
cDNA

148 ND AJ AS Ai AJ ND AJ 6/9 

19 G6PD AJ AJ :\S  AJ  AJ AJ AJ AJ 7/11 

cr1 

-4 



Table 14. continued. 

Probe Probe ., 39/3 62/3 62/8 Linkage 

Number Name Ratio 

Chromosome 14  

79 OPR-02 \'' AJ AJ AJ  AJ AJ AJ AJ  5/11 

59 
Ag- 

AJ AJ ND AJ AJ \' 5/10 

A1kpn7vnie mirkerc The chrnmnsome location of the genes coding for these enzymes is not known. 

LDH  AJ  AJ  AJ  AJ AJ 7/11 

ADA 	AJ AJ AJ AJ  AJ AJ AJ  AJ  2/11 

a The order of markers was determined in such a way as to minimise the number of cross-overs, according to the premise that double cross-

overs are less frequent than single cross-overs, and that both of these occur less frequently than no cross-overs. However, as no long-range 

restriction mapping studies were made of the chromosomes during this project, the order may be imprecise. 
b Ratio of the number of progeny showing linkage of chioroquine susceptibility with the marker, to the total number of progeny. 

C Marker may be on chromosome 2, although RFLP pattern is markedly different from the only other marker on this chromosome. 

d 	and AJ indicate alleles inherited from the 	 ( and chioroquine-sensitive AJ parents, respectively. 

e a I and a II tubulin cross-hybridise to chromosomes 4 and 5, but it is not known which gene is present on which chromosome. 

Markers indicated in bold detected sequences on more than one chromosome. 

ND - not determined 

N.B. Progeny clones typed as 	riinn -  cii are marked in i ci and those typed as chloroquine-sensitive are marked in blue. 

00 



5.3.2 Distribution of cross-overs among the chromosomes 

The data in Table 14 revealed the number of cross-overs which had occurred 

within each chromosome during meiosis, and these are given in Table 15. It is 

apparent that the number of cross-overs increases as the number of markers for each 

chromosome increases. The one exception to this is chromosome 11, which was 

analysed using 9 markers, but only 1 cross-over event was identified. It was not 

possible to determine if any crossing-over events had occurred within chromosomes 

1, 2 and 8 because of the insufficient number of markers examined. 

It was not possible to calculate a meaningful recombination frequency from this 

data because the position of the chromosome markers and the distance between them is 

not known. 

Table 15. Number of crpss-overs for each chromosome in the AJ x AS(3C0) 

cross. 

Chromosome 

number 

Approximate 

chromosome 

size (kb) 

Number of 

markers 

Number of 

cross-overs 

1 900 1 - 

2 900 1 - 

3 940 2 2 

4 1000 3b 4 

5 1140 5 6 

6 1200 3 3 

7 1320 2 6 

8 1580 1 - 

9 1580 3 4 

10 1800 3 7 

11 2100 9 1 

12 2100 2 1 

13 3200 7 4 

14 3100 2 3 
a Determined from chromosome separations of P. chabaudi clone AS 
b Includes marker cdl tubulin 
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5.3.3 Chloroguine susceptibility 

Each clone was jested for its susceptibility to chioroquine at least twice using a 

standard 8-day drug test (Materials and methods 2.5.3). Tail smears were taken 

on Dii, D13 and  D15.  Each smear was examined for the presence of parasites in 20-

25 fields (each field containing approximately 500 rbcs) and scored using a simple 

system based on that of Padua (1981). This form of scoring takes into account any 

changes in parasite morphology, for example the presence of gametocytes which 

indicate that the parasites are under duress, as well as estimating the number of 
parasites present. Parasites appearing on or before Di 3 were typed as chloroquine-

resistant and those appearing on or after D15  as chioroquine-sensitive. 

Table 16 shows the results of the chloroquine susceptibility tests carried out on all 

11 recombinant progeny. The clones were tested in two batches of six and five, 

(Tables 16A and 16B respectively), and separate control tests were carried out on 

AS(3CQ) and AJ for each test. The parent controls in the second drug test appeared to 

take 48 hours longer for their development, as compared with previous drug test 

results. Consequently the results for clones 38 / 9, 39 / 2, 72 / 2, 103 / 6, 39 / 3 and 

62 / 8 (Table 16A) were also 48 hours later. The results for this drug test have been 
adjusted to take this into account. 

Clones 38 /9, 39 / 1, 39 / 2, 72 / 2, 74 / 5 and 103 / 6 were typed as chioroquine-

resistant, and 39 / 3, 62 / 3 and 62 / 8 as chioroquine-sensitive. Two clones showed a 

susceptibility between that of the sensitive and resistant phenotypes; clones 43 / 8 and 
63/3 showed patent parasitaemias on Dii,  but the parasitaemia remained low and did 

not develop as high as the AS(3CQ) control. These were typed as low-level 

chloroquine resistance clones. The importance of detecting two types of resistant 

phenotype is discussed in Chapter 6. 
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Table 16A. Chioroguine susceptibility results of six recombinant progeny from the AJ x AS(3C0) cross. 

Day 5 control Day 11 Day 13 Day 15 Conclusion 
not drugged drugged drugged drugged  

AJ ai ++++++  1 	- 
2- 

 
 

1+- 
2- 

test 1 2 ++++++ 3 	- 3 	- 3 - sensitive 
parent AJ 1 ++++ 1 	- 

2- 
1 	- 1 	- 
2- 2- 

test 2' 	1 2 ++++ 3 	- 3 	- 3 	- 
AS(3C0J ai 1- 1+- 

2 +- 2 ++ ND 
test 1 2 +++++ 3 +- 3 ++ resistant 

parent AS(3C0J 1 1 +- 1 	++ 1 +++++ 
2 +- 2 ++ 2 ++retics 

test2b 2 ++ 3 +- 3 ++ 3 ++++ 

38/9 1 +++. 1 	- 1+_  2- 2+- 2++ 
test 1 2 ++++ 3 	- 3 	+- 3 +++ 

resistant 38/9 ai +++ 1 	+- 1 	+- 1 ++ 
2- 2- 2+ 

test 2b 2 +++ 3 	+-- 3 + 3 +++ 

39/2 ai +++++ 1 	+- 1++ 1ND  
2+- 2++ 2ND 

test 1 2 +++++ 3 	- 3 	- 3 	+- 
resistant 39/2 1 +++++ 1 +- 1 ++ 1 ++++++ 

2- 2- 2++ 
test 2b 2 +++++ 3 + 3 +++ 3 +++retics 



Table 16A cnntiniied 

Day 5 control Day 11 Day 13 Day 15 Conclusion 
not drugged drugged drugged drugged  

72/2 ai +++++ 1+- 1 +- 1++  
2+- 2+ 2+ 

test 1 2 +++++ 3 	+-- 3 + 3 + 
resistant 72/2 1 ++++ 1 	- 1 + 1 +++ 

2 + 2 +- 2 ++retics 
test 2b 2 +++ 3 +-- 3 +- 3 ++ 

103/6 ai +++++  
 

1 +- 1+++  
2+- 2+++ 

test 1 2 +++++ 3 - 3 - 3 +-- 
resistant 103/6 1 +++++ 1 	- 1 	- 1 ++ 

2 + 2 ++ 2 ++retics 
test 2b 2 +++ 3 + 3 ++ 3 +retics 

39/3 ai +++++ 1 	- 
2- 

1 	- 
2- 

1 	 - 
2- 

test 1 2 +++++ 3 - 3 - 3 - 
sensitive 39/3 1 ..... 1 	- 1 	- 1 	- 

2- 2- 2+-- 
test 2b 2 +++++ 3 - 3 - 3 - 
62/8 ai ++++ 1 	- 

2- 
1 	- 
2- 

Cl 	 - 
2- 

test 1 2 +++++ 3 - 3 - 3 - 
sensitive 62/8 1 +++++ 1 	- 1 	- 1 +-- 

2- 2- 2- 
test 2b 2 +++++ 3 - 3 - 3 - 

a Blood smears taken on Day 6; b  See Results 5.3.3; C  Blood smears taken on Day 16; retics - reticulocytes present; ND - not determined 
Parasitaemia scoring: +-- 1 parasite/500 rbcs; +- <0.5>0.1 parasite/500 rbcs; + >0.5 parasite/500 rbcs: ++ >2 parasites/500 rbcs; 
+++ >5 parasites/500 rbcs; ++++ >10 parasites/500 rbcs; +++++ >20 parasites/500 rbcs; ++++++>50 parasites/500 rbcs 

t.) 



C) 
Igor 

Table 16B. Chioroguine susceptibility results of five recombinant progeny from the AJ x AS(3C0) cross. 

Day 5 control Day 11 Day 13 Day 15 Conclusion 
not drugged drugged drugged drugged  

AJ 1 +++.  1 	- 
2- 

1 	- 
2- 

1- 
2-i--- 

test 1 2 +++++ 3 	- 3 	- 3 	- sensitive 
parent AJ 1 ++++ 1 	- 1 	- 1 	- 

2- 2- 2- 
test 2 2 +++++ 3 	- 3 	- 3 	+- 

AS(3CQ) 1 ++ 
1 	+- 1 	++++ 1 	++++pp 
2 + 2 ++ 2 +++pp 

test 1 2 ++++ 3 	+- 3 +++ 3 +++pp resistant 
parent AS(3CQ) 1 1 	+- 1 	+++ 1 	+++++ 

2 	+- 2 +++ 2 +++++ 
test2 2 +++++ 3 d 

39/1 1 ++~~+ 1+ 1++ 1++pp 
2+- 2+++ 2++ 

test 1 2 ++++ 3 ++ 3 ++ 3 + 
resistant 39/1 1 +++++ 1 	+-- 1 	+ 1 	+++ 

2- 2+- 2+ 
test 2 2 +++++ 3 	+- 3 + 3 +++ 

74/5 1 ++++ 1+__ 1+ 1+++ 
2+- 2++ 2 	++++-i- 

test 1 2 +++++ 3 	+- 3 ++ 3 ++++ 
resistant 74/5 1 	+++-i-+ 1 	+- 1 ++gams 1 	+++. 

2- 2+- 2++++ 
test 2 2 ++++++ 3 	+-- 3 	++retics 3 +++++ 



C) 

Table 16B. continued. 

Day 5 control Day 11 Day 13 Day 15 Conclusion 
not drugged drugged drugged drugged  

43/8 1 ++++++ 1 - 1 +- 1 +retics 
2- 2+-- 2+ 

test 1 2 ++++ 3 +- 3 + 3 ++ low level 
43/8 1 +++++ resistance  2- 2+-- 2+- 
test2 2 ++++ 3 - 3 - 3 - 
63/3 1 +++++ 1+-- 1+- 1 ++ 

2+- 2+ 2+ 
test 1 2 +++++ 3 +-- 3 +- 3 +-retics low level 

resistance 63/3 1 	+++-I--1- 
1 	+-- 1 	- 1 	+- 
2- 2+-- 2+- 

test 2 2 +++++ 3 +-- 3 +-- 3 +- 

62/3 1 +++-1- 1 
2 

- 
- 

1 
2 

- 1 
2 

- 
- i-- 

test! 2 +++++ 3 d _____________ 
sensitive 62/3 1 +++ 1 	- 1 	- 1 	- 

2- 2- 2- 
test 2 2 +++++ 3 - 3 - 3 - 

gams - gametocytes present; pp - post-peak of infection; d - died from unknown cause 
Parasitaemia scoring as for Table 16A. 



5.3.4 Course of infection of parent clones 

During the progeny phenotyping it became obvious that parental clone AJ grew 

faster than parental clone AS(3CQ) in undrugged control mice, although equal 

numbers of parasites had initially been inoculated. Figure 25 is a graph plotting the 
course of AS(3C0J and AJ infections. Each point on the graph represents the average 

parasitaemia of two mice, determined from two counts of 350-500 red blood cells for 
each mouse. Standard errors (s.e; data not shown) around these parasitaemia 

measurements were calculated using the formula: 

s.e 
 =J 

p(l-p) where: p is the measured proportion of parasitised rbcs 

n is the total number of cells counted in the two mice 

A significant difference in growth rates could be seen from D2 onwards (P < 0.01). 

For example, AJ reached a parasitaemia of 40% by D5, whereas AS(3CQ) did not 
reach this level until D6.  The importance of this observation, as regards the progeny 

of the cross, is discussed in Chapter 6. 

Figure 25. The course of infection of parental clones AJ and AS(3C0). 
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5.4 Linkage analysis 

Analysis of the inheritance data of the 46 markers among the progeny clones 

immediately suggested a possible chioroquine resistance locus on chromosome 11 
(Table 14, column labelled 'Linkage Ratio'). 

In all the clones examined, with the exception of clone 62 / 3, four markers 
(PCNA, CDC2, EFJ a and OPL-04) co-segregated with the chloroquine resistance 

phenotype. In nine of the eleven clones, another five markers also segregated with 
chloroquine resistance (P.22, H2A, 9.2, Topo I and TBP). No such co-segregation 
with resistance was seen for markers on any of the other chromosomes. 

From this information it was possible to produce a provisional linkage map of the 

markers along chromosome 11 (Figure 26). This shows a division of the nine 

Figure 26. Genetic linkage map of P. chabaudi chromosome 11. 

P.22 locus 
i 	PCNA locus 

P.22 
H2A 	PCNA 

9.2 	EF1a 	CQR Topol 	CDC2 	? TBP 	OPL-04 ,,,' 

U-M U 
>< 

103 /6 

Schematic linkage map of a section of chromosome 11 showing the positions of nIne 

markers relative to each other and to a possible chloroquine resistance locus (CQR?), 
as determmed from the inheritance data in Table 14. The single crossing-over event 
which gave rise to recombinant clone 103/6 is marked. The map is not to scale. 

markers into two 'loci', termed here the 'PCNA locus' and the 'P.22 locus'. A cross-
over event between these loci would account for the genotype of clone 103 / 6. A 
cross-over between the PCNA locus and the putative locus determining chloroquine 

resistance could also account for the genotype of clone 62/ 3. It was not possible to 
order the markers at the PCNA and P.22 loci in any more detail, because of the lack of 
cross-overs between them among the progeny clones. 

An alternative explanation for the chromosome 11 results was that the chloroquine 

resistance locus was not on this chromosome, and that the co-segregation of the 

markers had occurred purely by chance. This possibility was investigated by 
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calculating the probability that association of the PCNA locus with chloroquine 

resistance could have occurred simply by chance, using the binomial probability, as 

follows: 

The probability that association of the PCNA locus with chioroquine resistance in 10 

of the 11 progeny could have occurred simply by chance: 

Probability of obtaining observed result or better, 

	

Pr 
=n 	

M! ](p)x(,_P)n-x I L!(n-x)f 
x=r 

where n = number of independent recombinant progeny 

and r = number of recombinant progeny showing 

association with PCNA locus 

and P = the probability of an association between chioroquine susceptibility and 

the PCNA locus, assuming no linkage 

and 1-P = the probability of no association between chioroquine susceptibility and 

the PCNA locus 

For n = 11 and r = 10, then 

	

11' 	 10 	1 	11! 	1 	11 	0 

Pr = [ 10!(11-10) 1  ] (0.5) (0.5) + [ 11!(1111)!*i (0.5) (0.5) 

= 11(0.5) 10  (0.5) + 1 (0.5)11 

= 0.0054 (to 4 d.p.) + 0.0005 
= 0.0059 (to 4 d.p.) <0.05, i.e. significant at the 5% level 

* Note that by definition, 0! is 1 

Thus there is a 1 in 169 chance of the association being spurious. If the result had 

shown a chance of 1 in 20 or less, with the confidence interval set at 95%, there 
would have been a significant possibility that the association was spurious. 

However, the probability of a false association between marker and phenotypic trait 

increases as the number of markers examined increases. At one extreme, the total 

number of markers used to obtain the inheritance data can be included in the statistical 

analysis to take account of this, although the result is likely to be highly conservative 

because markers representing the same locus are not excluded. For the data presented 

here, 46 markers in total were analysed. Assuming that the markers are independent 

of each other, the probability of obtaining the observed result or better, after testing 46 

markers (i.e 46 different tests), is:- 

Pr' = 1 - (probability of obtaining a worse result) 46  

= 1-(1-Pr)"6  

= 1(10.0059)46 
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= 0.24 (to 2 d.p.) > 0.05, i.e. not significant at the 5% significance level 
Therefore, there is a 1 in 4 chance of having obtained spurious linkage. 

At the other extreme, a limited number of markers can be included in the analysis, 

because markers present on the same chromosome do not act independently of each 

other due to linkage. Therefore, the number of independent tests is not equal to the 

number of markers tested, but rather to the number of linkage groups within the 

genome. In all organisms which have been intensively studied genetically, the number 

of linkage groups is expected to be equal to n, the haploid number of chromosomes. 

In P. chabaudi, n = 14 (Results 3.1; Janse et al., 1994). If the number of 
independent tests is taken to be 14, then:- 

Probability of obtaining observed result or better, after 14 independent tests 

Pr" = 1 - (1-Pr) 14  

= 1(10.0059)14 

= 0.08 (to 2 d.p.) > 0.05, i.e. not significant at the 5% level 
It is likely that the true probability lies somewhere between these two values. As a 

concession to both extremes, if the number of loci showing different inheritance 

patterns according to the data in Table 14 (i.e. 46-13=33) is used to calculate the 
probability, then:- 

Probability of obtaining observed result or better, after 33 independent tests 

Pr" = 1 - (1-Pr) 33  

= 1 - (1 - 0.0059) 33  

= 0.17 (to 2 d.p.) > 0.05, i.e. not significant at the 5% level 
Although these statistics revealed that the association of the PCNA locus with 

chioroquine susceptibility could have occurred by chance within a confidence interval 

of 95%, no other marker showed such a marked association. It was decided to 

analyse further clones from the AJ/AS(3CQ) cross to determine whether a chloroquine 

resistance locus might indeed exist on chromosome 11. 

5.5 Analysis of additional progeny clones 

Ten further clones were isolated from the uncloned progeny of the cross, using 

parasites from the second mouse on which infected mosquitoes had been allowed to 

feed (deep freeze stabilate no. 1523). It was hoped that cloning from these parasites 

would produce novel clones with genotypes distinct from those previously isolated. 

These were subjected to the same chloroquine susceptibility tests and RFLP analysis 

as the previous 11 clones. 
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5.5.1 Inheritance of parental markers 

The clones were analysed for the inheritance of fourteen markers taken from 

chromosomes 1/2, 3, 5, 7, 8, 10, 11, 12, 13, and 14. Table 17 shows the 

inheritance data of all ten clones. 

Only two novel genotypes appear to have been isolated. Clone 131 / 1 was clearly 

of a different genotype from any clone isolated before. The remaining nine clones 

shared the same RFLP inheritance pattern as each other, but were also different from 

any clone isolated previously. It seems likely that these nine clones are identical, 

having originated from the same parasite; this is discussed further in Chapter 6. 

Clone 115 / 9 was selected as representative of all nine clones, and tested for 

susceptibility to chioroquine with clone 131 / 1. 

5.5.2 Chloroguine susceptibility 

Clones 131 / 1 and 115 / 9 were tested for chloroquine susceptibility twice as 

described previously, and the results are shown in Table 18. Both were found to be 

chioroquine-sensitive. 
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Table 17. Inheritance of RFLP markers in ten ftirther progeny from the Ad x AS(3CQ) P. chabaudi cross. 

Progeny Clones  

Probe 

No. 

Probe 
Namea 

Chrom. 131/1 115/9 119/5 159/2 
No.  

133/3 122/2 124/8 131/3 132/5 133/7 

49 1 Ag3020  Add Ad Ad Ad Ad Ad Ad Ad Ad Ad 

47 
Ag3003 

A 
ASd AS AS \S AS 

50 A0024 5 Ad Ad Ad Ad AJ Ad Ad Ad Ad Ad 

6 DHFR 7 Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad 

4 MSP-I 8  AS AS V-  AS 

14 
5s 

rRNA 10 Ad Ad Ad Ad Ad Ad Ad Ad Ad 

29 PCNA 11 Ad AJ Ad ND ND Ad ND Ad Ad ND 

76 OPL-04 11 Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad 

11 H2A 11 Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad 

27 Topol 11 Ad AS  ND ND AS AS  ND ND 

8 TBP 11 Ad _____  AS _____ AS AS AS 



Table 17. continued. 

Probe Probe Chrom. 131/1 115/9 119/5 159/2 133/3 122/2 124/8 131/3 132/5 133/7 
No. Name No.  

83 1 pcmdrl 12  \S  \'.' ___  

84 
PC- 

ps590.7 13 AJ 

Ag- 
59 14 AJ AJ AJ AJ AJ AJ AJ AJ AJ 

Legend as for Table 13. 

-a 



Table 18. Chioroguine susceptibility results of recombinant clones 131 / 1 and 115 / 9. 

II Day 5 undrugged Day 11 Day 13 Day 15 Day 17 
Conclusion Ii control drugged drugged drugged drugged  

AJ 1 1- 
2 	- 

 1- 
2 	- 

1- 
2 	- 

1+- 
2 +- 

teSt 1 2 +++++ 3 	- 3 	- 3 	- 3 	+- sensitive 
parent AJ 1 +++++ 

1 	- 
2 

1 	- 
2 

1 	- 1 	- 
- - 2 	+-- 2 +++ 

test 2 2 +++++ 3 	- 3 	- 3 	+-- 3 ++ 

AS(3CQ) 1 1 	+- 1 	+++ 1 	++++ 1 	++++retics 
2 	+- 2 +++ 2 ++++ 2 	++++retics 

test 1 2 ++++ 3 +++ 3 ++++ 3 	+++++retics 3 	++-i-+-i-retics resistant 
parent AS(3CQ) 1 1 	+- 1 	++ 1 	+++pp 1 	++pp 

2 	+- 2 ++ 2 +++pp 2 ++pp 
test 2 2 +++++ 3 ++ 3 ++ 3 +++pp 3 +++pp  
131/1 1 +++++  

 
 1+- 1+++ 
 2- 2+ 

test 1 2 +++++ 3 	- 3 	- 3 	- 3 	+-. 
sensitive 131/1 1 +++++ 1 	- 1 	- 1 	- 1 	+- 

2- 2- 2+- 2+++ 
test 2 2 +++++ 3 	- 3 	- 3 	- 3 	- 
115/9 1++++++  1 	- 1 	- 1 	+- 

2- 2- 2- 2+ 
test 1 2 ++++ 3 	- 3 	- 3 + 3 ++++ 
115/9 1 	+.+-i- + sensitive 

test 2 2 ++++ 3 	- 3 	- 3 	+- 3 ++++  
Legend as for Table 16. 

N.) 



5.5.3 Linkage analysis of all 13 clones 

The chloroquine phenotype results and chromosome 11 inheritance data of all 13 

clones are shown in Table 19. 

It was clear from these results that a recombination event had occurred in clone 115 

/ 9, and because of this it was possible to order markers within the P.22 locus. 

Figure 27 is a revised linkage map of chromosome 11 incorporating these changes. 

Figure 27. Revised genetic linkage map of P. chabaudi chromosome 11 

Topo 1 	P.22 	
PCNA

locus locus 	locus 
i PCNA 

Topol 	P.22 	EF1a 	CQR 
TBP 	H2A 	CDC2 	? 
9.2? 	9.2? oPL04/ 	\ 

II 
><>< 
115/9 	103/6 

Revised linkage map of a section of chromosome 11 showing the positions of nine 

markers relative to each other and to a possible chloroquine resistance locus (CQR?), 

as determined from the inheritance data in Table 19. The two crossing-over events 
which gave rise to recombinant clones 103 /6 and 115/9 are marked. It is not clear 

whether marker 9.2 segregates with the Topo I or P.22 locus, and this is represented 
as '9.2 T. The map is not to scale. 

it is interesting to note that the demarcation of Topol and TBP into a locus separate 
from the PCNA and P.22 loci correlates with the synteny data shown in Table 12. 
Two conserved syntenies are shown to exist on P. chabaudi chromosome 11, 
consisting of PCNA, CDC2 and EFIa in one and found on P. falciparum 

chromosome 13, and TBP and Topo 1 in another, found on P. falciparum 
chromosome 5. H2A is not found in either synteny group, and this is reflected in its 

position in the separate P.22 locus and on P. falciparum chromosome 6. 
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Table 19. Inheritance of chromosome 11 RFLP markers in 13 progeny clones. 

('klrnrii iinrptct 	(flflES 	 I 	Chloroouine-sensitive clones 	I 
Probe 

No. 

Probe 722 
Narnea  

39/3 62/3 62/8 131/1 fl5/9 Linkage 

Ratiob 

Chromosome 11  

16 

15 

CDC2 

EFJa 

5d 

AS 

AS 

AS 

AS 

AS 

AS

AS AS AS 

AS As 

 \' 

AJd 

AJ 

AS 

AS 

AJ 

AJ 

ND 

ND 

ND 

ND 

10/11 

10/11 

29 PCNA \s AS AS AS  \S  AJ \' AJ AJ AJ 12/13 

76 OPL-04 AS AS AS AS  AS AS AS AJ \ AJ AJ AJ 12/13 

70 P.22 AS \ AS \'  AJ AS AS AJ \S AJ ND ND 9/11 

11 H2A  AS AS AS  AJ AS As AJ AS AJ AJ AJ 11/13 

12 9.2f AS AS A" AS  AJ .S AS AJ AS AJ ND ND 9/11 

27 Topo I m 	'Y' I 	AS f  AS A AS AJ AS  AJ  AJ AJ As 10/13 

8 TBP  AS I 	AS I 	AS AS AJ AS AJ AS AJ Al AS 10/13 

Legend as for Table 14. 

rl 



5.5.4 Statistical analysis of the linkage data 

Linkage analysis of all 13 clones revealed that 12 of them showed association of 

markers OPL-04 and PCNA with chioroquine susceptibility. The probability that this 

association had occurred simply by chance was calculated using the binomial 

probability, as described previously: 

For n= 13 and r = 12, then 

1Pr
131 	1(0.5)12(0.5)1 + [ 

	
13! 

13!r-13)!j(o. 53  (05) = 	12!(13-12)!.J 

= 13 (0.5)12  (0.5) + 1 (0.5)13 

= 0.0017 (to 4 d.p.) <0.05, i.e. significant at the 5% 

level 

This represents a 1 in 588 chance of the association being spurious, which is highly 

significant using a confidence interval of 95%. 

Correcting for the total number of markers analysed, which will produce the most 

conservative estimate of an association not having occurred by chance: 

Probability of obtaining observed result or better, after testing 46 markers (i.e 46 

different tests), is:- 

Pr' = 1 - (probability of obtaining a worse result) 46  
= 1 - (1-Pr)46  

= 1 - (1 - 0.0017)46  
= 0.075 (to 3 d.p.) > 0.05, i.e. not significant at the 5% level• 

This represents a significant decrease in the probability that the association has 

occurred by chance, from 0.24 (as determined from 11 progeny, see Section 5.4.2) 
to 0.075. 

According to the revised inheritance data, 46-12=34 loci appear to have different 

inheritance patterns. If this value is used to calculate the probability, then: 

Probability of obtaining observed result or better, after testing 34 independent markers 
Pr" = 1 - (1-Pr) 34  

= 1 - (1 - 0.0017) 3  

= 0.056 (to 3 d.p.) > 0.05, i.e. close to significance at the 5% level 

This probability is still quite conservative, given that some of the 34 markers are 

known to be on the same chromosome. Indeed, a probability of 0.024 (to 3 d.p.), i.e. 

a 1 in 42 chance, of obtaining false linkage is produced when taking the number of 

independent tests is taken as 14. This is a highly significant figure at the 5% level. 

Thus a range of probability values can be calculated for the data, depending upon 

the method of calculation. Analysis of more progeny clones and chromosome markers 
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is needed in order to determine with greater significance the likelihood that a 

chloroquine resistance locus exists on chromosome 11 in P. chabaudi. 

5.6 Construction of a genetic linkage map of P. chabaudi 

A genetic linkage map of the P. chabaudi genome was constructed using all the 

data obtained from development of over 100 markers and linkage analysis of 13 

progeny clones. Results are shown in Figure 28. 

The 44 polymorphic markers are ordered along each chromosome according to the 

inheritance data., although the distance between them bears no relationship to the actual 

distance. At least one marker was identified for each chromosome, and some 

chromosomes had as many as 20 (e.g. chromosome 5). Certain markers could not be 

allocated to a particular chromosome because of insufficient separation during PFGE, 

and others hybridised to several chromosomes and were classsified as multi-copy. 

The map also includes markers hybridised to P. chabaudi chromosome separations 
during collaborative work with C. Janse and A. Waters (see Janse et at., 1994). 
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Figure 28. Chromosome map of the genome of P. chabaudi clone AS: 
chromosomes 1-7. 
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Figure 28. Chromosome map of the genome of P. chabaudi clone AS: 

chromosomes 8-14. 
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Each chromosome is drawn to scale. Chromosome-specific markers are arranged 

under their respective chromosomes, and polymorphic markers used to analyse the 

products of the cross are ordered alongside chromosomes. Markers represented more 

than once in the genome are underlined. Numbers in parenthesis refer to the Probe 

Number as shown in Tables 5, 9 and 10. Letters in parentheses refer to the 

reference for probes not previously mentioned, as follows:- 

anonymous DNA probe (Ponzi et al., 1990) 

probe containing an unidentified open reading frame; A. Thomas, Rijswijk, The 

Netherlands (Janse et al., 1994) 

see Table 12 for reference 

rRNA small sub-unit DNA probe (Dame and McCutchan, 1983) 

ADP ribosylation factor gene, A. Waters, Leiden University, The Netherlands 

(Janse et al., 1994) 

21-kDa ookinete surface antigen gene (Paton et al., 1992) 

ubiquitin fusion protein gene (Ohmachi et al., 1989) 

gene encoding a protein with multiple GGMP repeats (Langsley et al., 1993) 
hexokinase gene (Olafsson et al., 1993) 

cysteine proteinase gene (Rosenthal, 1993) 
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6. Discussion 

6.1 Summary of the results 

The principal findings of this project can be summarised as follows: 

Analysis of the P. chabaudi genome. 
The first genetic linkage map of P. chabaudi has been made, using DNA markers 

developed by a number of different methods, including the novel RAPD-PCR 

technique. Improvements in chromosome separation have provided the means to 
characterise the P. chabaudi karyotype, and show that the number of chromosomes 

present is fourteen. Studies of the inheritance of markers has enabled the identification 

of over 40 cross-over events. A comparison of genes conserved between P. chabaudi 
and P. falciparum has resulted in the identification of at least 10 conserved syntenies 
between the two genomes. 

Analysis of the genetic basis of chlorouuine resistance. 

A cross between chloroquine-resistant and chloroquine-sensitive parasites has been 

made, and the recombinant progeny analysed for their chloroquine susceptibility and 
inheritance of 46 markers. The P. chabaudi homologue of the P. falciparum MDR 
gene was isolated, and found not to be linked to chloroquine susceptibility in the 

progeny studied. A possible homologue of the marker claimed to be linked to a locus 
determining chloroquine resistance in P. falciparum, pS590.7, was isolated from P. 
chabaudi, but showed no association with the chloroquine resistance trait. A possible 

chioroquine resistance locus on chromosome 11 was identified through linkage of 

markers in 12 out of 13 progeny clones studied. 

The results are discussed here with regard to work by others on these subjects. 

6.2 Is chioroguine resistance a multigenic trait? 
Resistance of P. falciparum to the antimalarial drug pyrimethamine arose 

independently from various geographical foci within 2 years of the introduction of the 

drug. The ease of development of resistance suggested that mutation of a single locus 

was responsible. Subsequently the genetic basis of pyrimethamine resistance was 

found to be due to a single point mutation in the DHFR gene. This is in marked 

contrast to the appearance of chloroquine resistance, which first became evident 20 

years after its introduction to the field. This has led some researchers to conclude that 

the genetic basis of chioroquine resistance probably involves an additive effect of 

mutations at more than one locus, i.e that it is a multigenic trait (e.g. Cowman and 
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Foote, 1990). 

As described in the Introduction, initial work by Foote et al. (1989) produced 
evidence that the pfmdrl gene of P. falciparum was involved in chioroquine 
resistance. This was disputed by Wellems et al., who took the view that resistance 
was caused by a single mutant gene, and subsequently produced evidence that this was 
not pfindrl (Wellems et al., 1990). Linkage analysis of a cross between chioroquine-

resistant and chioroquine-sensitive parasites detected a single locus on chromosome 7 

which segregated with the chioroquine resistance phenotype (Wellems et al., 1991). 
However, Foote et al. (1990b) provided evidence of a strong link between pfmdrl 

genotype and chioroquine resistance, when the chioroquine susceptibility of 34 of 36 

isolates was correctly predicted from sequencing the pf,ndrl gene. A 'competent mdr 
theory' was proposed to explain these results, which suggested that both a pfmdrl 
allele competent for chioroquine resistance and a mutation in a second unknown gene 

(possibly Wellems' chromosome 7 gene) were required for chioroquine resistance in 
P. falciparum (for comment, see Newbold, 1990). 

The single-gene/multi-gene nature of chioroquine resistance remains unresolved. 

This prompts the question of whether it is possible to shed light on this subject from 

studies of laboratory-induced chioroquine-resistant rodent malaria mutants, and in 

particular from the results produced during this project. 

The manner in which chloroquine-resistant rodent malaria mutants have been 

selected may give an indication as to how many mutant genes are involved in the 

mechanism of resistance. Only a continuous low drug selection pressure method has 

resulted in the appearance of stable, resistant parasites (Powers et al., 1969; Rosario, 
1976b). High levels of resistance have been produced by gradual increments in the 

initial drug pressure (Padua, 1980). These results suggest that low levels of 

chloroquine resistance may be caused by mutations at several loci, and that the 

accumulation of these in a single parasite results in high levels of resistance. The cross 
between a highly chloroquine resistant P. chabaudi mutant, AS(30CQ), and the 
sensitive clone AJ, produced progeny with intermediate levels of resistance (Padua, 

1981), and thus would appear to provide evidence for this theory. 
The manner in which P. chabaudi clone AS(3C0J was selected and its low level of 

chloroquine resistance, suggested that mutations in a few genes, or even a single gene, 

might be responsible for the resistance (Rosario, 1976a). Unfortunately, analysis of 

the progeny from the first cross between AS(3C0J and a sensitive clone AJ, which 

might have resolved the question of how many genes were involved, was 

inconclusive; intermediate levels of chloroquine resistance were recorded for some of 

the recombinants, but it was not clear whether this was due to a multigenic phenotype 
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or to host effects (Rosario, 1976a). 

The results of the work presented here could be explained by a single gene on 

chromosome 11 being responsible for the chioroquine resistance of AS(3CQ). 

However, certain findings suggest that more than one gene could be involved. 

Thirteen recombinant progeny clones were examined, five of which were phenotyped 

as chloroquine-sensitive and eight as chioroquine-resistant. The resistant progeny 

could be further sub-divided; six clones showed similar resistance to the AS(3CQ) 

parent clone, whereas two clones showed an intermediate level of resistance. These 

results could be explained if resistance is caused by mutations at more than one locus. 

During the original selection for resistance in AS(3CQ), parasites were treated with the 

lowest level of drug which produced stable resistance, and drug pressure was stopped 

two passages after resistance had been established (Rosario, 1976a). This does not 

exclude the possibility that mutants selected for resistance to less than 3 mgfkg 

chioroquine might contain mutations in only one gene. Tanabe et at. (1990) have 
shown that P. chabaudi AS parasites are unaffected by chloroquine at a concentration 

of 1 mg/kg, but that they are marginally suppressed at 2 mg/kg, suggesting that 

parasites exhibiting levels of resistance intermediate between 1 mg/kg and 3 mg/kg 

could be produced. 

A simple genetic model can be formulated based on the discovery of two resistant 

phenotypes among the progeny of the cross:- 

1) Two mutant genes at separate loci confer chioroguine resistance in AS(3C0) 

Let the two mutant genes be referred to as R and R', the wild-type sensitive forms 
being + and +1. Each mutant gene confers a low level of resistance, but in 

combination they produce a higher level of resistance. The progeny of a cross between 

RR' (AS(3CO3) and ++' (AJ) would show 3 phenotypes: (i) sensitive (-H-'), (ii) a 
high level of resistance (RR'), and (iii) a lower level of resistance due to the 

segregation of either R or R', producing R+' or +R'. Twice as many progeny 

exhibiting the intermediate level of resistance would be expected compared with the 

number exhibiting the high level of resistance, among the recombinant progeny. A 

diagram of this model is shown in Figure 29. 
if the two-gene model predicted from the phenotypic data is accurate, it should fit 

with the available genetic data. Linkage analysis of the 13 recombinant clones 

identified only a single locus on chromosome 11 which may be involved in 

chloroquine resistance. No other markers showed such an association. A second 

locus required by the two-gene model was not detected; this may have been because an 

insufficient number of markers were examined for their inheritance. For example, the 
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progeny clones were examined for the inheritance of only one marker, MSPJ, specific 
for chromosome 8. Analysis of MSP1 produced a linkage ratio of 8/13, suggesting 
that there was no association of the marker with chioroquine susceptibility. However, 

this result does not exclude the possibility that other markers are present on the 

chromosome which are linked to resistance genes. 

Figure 29. Diagram of the segregation and phenotypes expected if two genes. 
R and R'. confer chioroquine resistance. 

chloroquine 	 chioroqurne 
resistant 	 sensitive 

Vi 
eiosis 

chloroquine 	chloroquine 	inteimediate 	intennediate 
resistant 	 sensitive 	resistance 	resistance 

possible meiotic products 

It is not possible to draw conclusions from the observed numbers of clones of each 

phenotype compared with the expected number, because of the small number of 
progeny analysed. 
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Clone 62 / 3, which is chioroquine-sensitive but has the AS(3CQ) alleles of all 

chromosome 11 markers, does not fit well with the two gene model unless a cross-

over between the PCNA locus and the putative chioroquine resistance locus is 

assumed, with the corollary that the PCNA locus is not tightly linked to the resistance 

locus. Alternatively, a second model may fit the results better: 

2) A single mutant gene confers a basal level of chloroquine resistance, which is 

enhanced by other competent gene(s) that alone cannot produce resistance 

Let the mutant gene that confers a basal level of resistance be referred to as R, and a 

second gene that enhances resistance as R'; the wild-type of these genes are denoted as 

+ and +' respectively. R is epistatic to R'. The progeny of a cross between the clone 

RR' (AS(3CQ)) and ++' (AJ) would exhibit 3 phenotypes: (i) sensitive (genotypes 

++' and +R'), (ii) resistant (RR'), and (iii) a lower level of resistance, due to the 

segregation of R only. Twice as many sensitive progeny would be expected compared 

with each of the resistant phenotypes, among the recombinant progeny. A diagram of 

this model is shown in Figure 30. The model is reminiscent of the competent MDR 

theory suggested by Foote etal. (1990b) as mentioned above. 

In this model, a second resistance locus would be less discernible by linkage 

analysis because the primary resistance locus is epistatic to it. Thus the model also 

predicts that some recombinant progeny could be typed as chloroquine sensitive even 

though they contain competent allele(s). This could explain the result of clone 62/3; it 

may be competent at the chromosome 11 locus but lack the epistatic gene which is an 

absolute requirement for chloroquine resistance. The competent gene model therefore 

appears to fit both the phenotypic and genotypic data of the cross. However, it is not 

possible to draw conclusions from the observed numbers of clones of each phenotype 

because of the small number of progeny analysed. 

As discussed previously, chloroquine resistance in P. chabaudi appears to be a 
stable character and inherited in a Mendelian fashion (Rosario, 1976b), i.e it is not due 

to a temporary physiological change. It has been shown that clone AJ grows faster 

than AS(3CQ) in the absence of chloroquine (Figure 25). In the presence of 
chioroquine, AJ does not grow to the same extent as AS(3CQ), indicating that 

chloroquine resistance gene(s) exist in the latter which are not present in the former. 

Thus the presence of growth genes and the presence of drug resistance genes are two 

different components. This does not exclude the possibility that the resistance 

phenotype could be enhanced by independently segregating growth genes, but it does 

rule out the prospect that progeny typed as having intermediate levels of resistance are 

actually fast growing chioroquine sensitive clones. 
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Figure 30. Diagram of the segregation and nhenotypes exDected if gene R 

confers chioroguine resistance and is epistatic to a second mutant 

gene R' which alone cannot produce resistance. 

chioroquine 	 chloroquine 
resistant 	 sensitive 

Jk-) Y 
Meiosis 

chioroqume 	chloroquine 	intennediate 	chioroquine 
resistant 	 sensitive 	resistance 	sensitive 

possible meiotic products 

To conclude, an explanation of the cross results reported here is that at least two 

genes are involved in the mechanism of chioroquine resistance in AS(3CQ). If the 

locus identified on chromosome 11 plays a role in resistance, then it may be as a 

secondary locus, competent forms of which increase the level of resistance in 

conjunction with a major gene. 

The results and model presented above do not preclude the possibility that the 

chloroquine resistance exhibited by AS(3CQ) may be a phenotypically continuous 

trait, caused by mutations at many loci which have an additive effect This is because 
the in vivo drug tests may not be sufficiently sensitive to distinguish between 

additional classes of drug susceptibility (discussed in more detail in Section 6.7). 

155 

Chapter 6 : Discussion 



6.3 Candidate chioroguine resistance genes 

The nature of the gene, or genes, at the chromosome 11 locus identified during this 

work, or of genes which might be present at other chioroquine resistance loci, is not 

known. In the absence of chioroquine, AS(3C0J is morphologically identical to the 

sensitive clone from which it was derived, consequently no gene product differences 

are visible. However, several genes have been proposed as candidate chioroquine 
resistance genes in P. falciparum, and some of these have been analysed in this 
project. These are discussed in relation to the chromosome 11 locus as follows: 

pfindrl. 

Cross-hybridisation studies during this work suggested that the P. chabaudi 
homologue, pcmdrl, is on chromosome 12. Thus the chromosome location of this 
gene excludes it as being the putative chioroquine resistance locus found during this 
study. The possibility that pcmdrl might play a role in chioroquine resistance in 
AS(3CQ) is discussed in more detail in the following section. 

pS590.7. 

Cross-hybridisation of this marker to P. chabaudi chromosomes 1/2 and 12 ruled 
out the possibility that the P. chabaudi homologue might have been closely linked to 
the chromosome 11 locus. The putative P. chabaudi homologue of pS590.7 is 
discussed in more detail in Section 6.10. 

Genes coding for the vacuolar ATPase subunits A and B (VAP A and VAP B). 
Both P. chabaudi homologues of VAP A and VAP B were found on chromosomes 

other than chromosome 11, excluding the possibility that they might be the 

chromosome 11 locus genes. No RFLPs were identified for the VAP A homologue, 
but a Hind ifi RFLP found within VAP B homologue enabled the cross progeny to be 
examined for inheritance of the gene. Limited results from only nine of the clones 

showed no evidence of the AS(3CQ) allele segregating with either the chloroquine-

resistant or the intermediate chloroquine-resistant progeny. In P. falciparum, attempts 
at showing a link between mutations in these genes and a proposed chloroquine 

resistance-linked, vacuolar acidification defect have been unsuccessful (Karcz et al., 
1993b; Karcz et al., 1994). The genetic results presented here support these findings. 

Further work to ifiuminate the part played by the proton pump in the accumulation of 

chioroquine within the lysosome could include a comparison of the enzymatic 

properties of the vacuolar H+ ATPase holoenzyme from chloroquine-resistant and 
sensitive parasites (Karcz et al., 1994). P. chabaudi clone AS(3CQ) would be an ideal 
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model for this because it is isogenic with the chioroquine-sensitive line AS(sens). 

Calm odulin. 

Calmodulin was first proposed as having a role in chioroquine resistance by 

Scheibel (1987), but subsequent studies involving the gene cloned from P. falciparum 

found these claims to be unfounded, at least in the few clones studied (Cowman and 

Galatis, 1991). Calcium transport and regulation in P. chabaudi have been studied 
(Tanabe etal., 1982) and it is likely that similar mechanisms operate in this species and 

P. falciparum. Therefore, it was of interest to see what rOle the gene might play in 

chloroquine resistance in AS(3CQ). The P. falciparum gene was found to cross-
hybridise to P. chabaudi chromosome 10. However, cross-hybridisation to Southern 

blots was weak and RFLPs were not detected, preventing examination of the 

AJ/AS(3CQ) cross progeny for segregation of the marker with chioroquine resistance. 

The observation that the P. chabaudi homologue is on chromosome 10 rules out this 
gene as being the chromosome 11 resistance locus. 

Genes involved in drug resistance in other organisms. 

Studying mechanisms of drug resistance in other organisms may provide clues as to 

possible chloroquine resistance genes. For example, clinical isolates of Pseudomonas 
aeruginosa are resistant to aminoglycosides such as gentamycin, because of altered cell 

wall porins which cause reduced uptake of the drug (see review by Neu (1992)). This 

prompts the question that perhaps a mechanism of chioroquine uptake could be 

involved in resistance. However, it is not known how chloroquine is taken up. One 

theory proposes that a permease pumps the drug into the food vacuole (Warhurst, 

1986). The only known permease on the surface of the vacuole, with the exception of 
the proton pump, is the product of pfindrl , Pghl (Cowman et al., 1991), but it is not 
thought to transport chioroquine directly (van Es et al., 1994b). An understanding of 
the mechanism of chioroquine uptake may help to identify other genes which could be 

involved in chloroquine resistance. 

The pleiotropic drug resistance gene PDR1 of S. cerevisiae also provides an 
interesting example of a resistance mechanism which may be relevant to malaria 

parasites. The amino acid sequence of PDR1 has homology to regulatory proteins 
involved in the control of gene expression (Baizi et al., 1987). Mutations in PDRJ are 
known to produce changes in the protein which interfere with the transcriptional 

control of several genes coding for membrane proteins. These membrane proteins 

have been proposed as regulators of drug import and/or efflux (Balzi et al., 1987), and 
therefore alterations in their expression could alter drug accumulation. The gene 
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coding for one such protein, PDR5, has been cloned and found to be a putative 

membrane pump which confers multidrug resistance when caused to be over-

expressed by PDRJ (Balzi et al., 1994). There is also evidence that alternative PDRJ 

mutations could affect the expression of other target genes with distinct efficiencies. 

The identification of a single resistance phenotype (identical chioroquine efflux and 

IC50 values) among the progeny of the Dd2IHB3 cross, and cloning of a single locus 

on chromosome 7 which segregates with chloroquine susceptibility (Wellems et at., 
1991), could be due to a single gene having multiple effects through regulation of a 

number of other genes. Different mutations at the locus could produce different levels 

of resistance. However, this molecular mechanism does not explain why resistance to 

chioroquine took so long to appear after the iniroduction of the drug in the field. 

6.4 The role of P-glycoprotein genes in drug resistance 

Genes coding for parasite P-glycoproteins have been cloned from Trypanosoma 
cruzi (Dallagiovanna et at., 1994), Schistosoma mansoni (Bosch et at., 1994), 
Trichomonas vaginalis (Johnson et at., 1994), Entamoeba histotytica (Descoteaux et 
at., 1992), and Leish,nania (reviewed by Ouellette et at., 1994). A distinction exists 
between P-glycoproteins thought to be involved in the mechanism of resistance to a 

variety of structurally unrelated drugs, and those involved in resistance to specific 
drugs. For example, the L. major P-glycoprotein gene pgpA is involved in resistance 
to arsenite and antimonite (Callahan and Beverley, 1991; Papadopoulou et at., 1994), 
but not to a spectrum of drugs to which MDR mammalian cells are resistant (Légaré et 
al., 1994), and to which amplification of the tdmdrl gene of L. donovani produces 
resistance (Henderson et at., 1992). Moreover, not all parasite P-glycoproteins have 

been found to be involved in drug resistance. The lack of a consistent relationship 

between, for example, metronidazole resistance and levels of expression of a T. 
vaginatis P-glycoprotein gene, Tvpgpl (Johnson et at., 1994), has led to the 
suggestion that the P-glycoprotein in protozoan parasites may be involved in a general 

stress-related state that allows the organism to survive until a specific response, such 

as a resistance mechanism, is mounted (Ouellette and Borst, 1991). 

These points should be kept in mind when considering the role that MDR genes 

might play in drug resistance in Plasmodium. Latterly, the two MDR genes cloned 
from P. fatciparum, pfmdrl and pfmdr2, have been considered to be involved in 
chioroquine resistance rather than multiple drug resistance. Although the concept of 

parasites exhibiting cross-resistance between structurally unrelated drugs has been 

discussed (see Peters (1987) for example), such isolates are difficult to appraise in 
vivo because of the problems in assessing whether the parasite population is clonal or 
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a mixture of parasites, each with a different drug susceptibility (Cowman and Foote, 

1990). The widespread use of many antimalarial drugs makes it possible that parasites 

have successively acquired resistance to a number of drugs, rather than acquiring 

resistance to one drug which renders the parasite resistant to many others. Thus the 

term 'cross-resistance' should ideally be used to refer to parasites which are resistant 

to structurally related compounds, and 'multidrug resistance' to parasites which are 

resistant to many drugs, however the resistance mechanism was acquired. 

Historically, two lines of phenotypic evidence indicated that the failure of 

chloroquine therapy in P. falciparum infections might be attributed to a multidrug 

resistance mechanism analogous to that observed in MDR mammalian cells; (1) the 

demonstration that chloroquine resistance is associated with impaired drug 

accumulation (Fitch, 1970; Verdier et al., 1985; Yayon et al., 1985) and enhanced 
drug efflux (Krogstad et al., 1987; Krogstad et al., 1992); and (2) the reversal of 
chioroquine resistance by calcium channel blockers (Martin et al., 1987; Bitonti et al., 
1988; Kyle etal., 1990). 

Recent studies have called these lines of evidence into question. Firstly, no 

difference has been found in chioroquine efflux rates between some sensitive and 

resistant parasites (Bray et al., 1992), suggesting that chioroquine resistance may not 

be caused by a mechanism which pumps out chioroquine. Secondly, Bray et al. 
(1994) showed that the reversing effect of the calcium modulator verapamil could not 

be accounted for by its effect on chloroquine accumulation. Thirdly, models based 

upon existing data indicate that the difference in drug accumulation between resistant 

and sensitive parasites could be due to a decrease in vacuolar proton pump activity 
(Geary etal, 1990; Ginsburg and Stein, 1991; Ginsburg and Krugliak, 1992), or the 

presence of a drug-importer in chloroquine sensitive parasites (Ferrari and Cutler, 

1991), without having to invoke the presence of an MDR export pump. 

Thus the relationship between the MDR phenotype of mammalian tumour cells and 

the chioroquine resistance phenotype of Plasmodium is not as clear-cut as was once 
suggested. This is also clear from genetic studies on pf,ndrl and pfmdr2 as described 
in the Introduction and reviewed in Ginsburg (1991) and Foote and Cowman 
(1994). 

The P. chabaudi homologue of pfindrl , pcmdrl , was an obvious candidate marker 
to be used in analysis of the AS(3CQ)/AJ cross in order to assess the role it might 

play, if any, in chioroquine resistance in P. chabaudi. Moreover, reports that calcium 
antagonists reversed resistance in AS(3C0J (Tanabe et al., 1990), and that resistant 
parasites accumulated cliloroquine at a reduced rate compared with sensitive parasites 

(attributed to enhanced efflux of the drug in the resistant line, although no efflux 
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studies were carried out) (Mild et al., 1992), strengthened the phenotypic similarities 
between chioroquine resistance in P. falcipa rum and P. chabaudi and made the 
assessment even more appropriate. 

The sequence data and cross-hybridisation studies with pfindrl suggested that part 
of the perndrl gene had been isolated in the current work. As an RFLP of the 

homologue was to be used as a marker for linkage analysis of the progeny, it was not 

thought necessary to isolate and sequence the complete gene. The presence of a single 
copy of the gene on P. chabaudi chromosome 12 and data from probing Southern 

blots of genomic DNA appeared to exclude the possibility that the fragment was part of 

a pseudogene. This is a significant finding because of an earlier report of two P-

glycoprotein pseudogenes, each with a frame shift and stop codon in identical places 

within the amino ATP-binding site, in E. histolytica (Descoteaux et al., 1992). 
Further evidence that the fragment does not originate from a pseudogene comes from 

the apparent duplicative transposition of the gene to a second chromosome in several 
P. chabaudi lines selected for mefloquine resistance (Bisoni, 1994). Evidence that 
amplification of pfindrl causes mefloquine resistance in P. falciparum was discussed 
in the Introduction (Barnes et al., 1992; Cowman et al., 1994; Peel et al., 1994). 

It was also important to determine the copy number of the gene because of results 
showing amplification of pfmdrl in some chioroquine-resistant isolates of P. 
falciparum (Foote et al., 1989; Wilson et al., 1989). Southern blot data suggests that 
the gene exists as a single copy in the genome (unless it is amplified as a tandem array 

with no disruption of restriction sites). Further proof comes from PFG separations of 

chromosome 12 from AS(3CQ) and AS(sens) parasites, which showed no difference 

in size between the chromosomes, unlike chioroquine-resistant P. falciparum isolates 
with pfmdrl amplicons, which show considerable variations in the size of 
chromosome 5 compared with sensitive isolates (Foote et al., 1989). 

Linkage analysis of the progeny clones with pcmdrl failed to show segregation of 
the gene with chloroquine resistance (Table 14). Thus chioroquine resistance in 
AS(3C0J and in the progeny does not appear to be caused exclusively by a mutant 
allele of pcmdrl. Moreover, a competent form of pcmdrl, in addition to a major 
resistance gene, was not recognised as enhancing chioroquine resistance among the 

progeny; two out of the six resistant clones inherited AJ alleles of the gene, and one of 

the two intermediate resistant clones inherited the AS(3CQ) allele of the gene. Foote et 
al. have proposed that both a competent pfmdrl allele and a mutation in a second gene 
are necessary for chloroquine resistance (Foote  et al., 1990b). if the AJ allele of 
pcmdrl is 'naturally' competent for chloroquine resistance, this might explain the lack 

of segregation of the AS(3CO3 allele with the resistance phenotype. 
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However, this does not exclude the possibility that pcmdrl may play some role in 
chloroquine resistance. If resistance in P. chabaudi is a continuous trait, it may be 
caused by the accumulation of many small changes in a number of genes. The 
expression of pcmdrl may be influenced by other genes that have yet to be identified, 

and which complicate the segregation pattern of genes seen in Table 14. This was 
also suggested by Newbold (1990), who noticed that in the P. falciparum HB3IDd2 
cross, both parental clones had the competent form of pfindrl hypothesised by Foote 
et al. (1990b), but HB3 had one copy of the gene whereas Dd2 had 4 copies. The 

phenotypes of the recombinant clones, whether they possessed a single pf,ndrl copy 
from HB3 or between two and four copies from Dd2, had identical IC50 values and 

chioroquine efflux rates. As Newbold states, this implies that the pf,ndrl genotype 
and copy number cannot alone be responsible for these characters, and other genes are 

probably more important in their determination. 

If pfmdrl is not directly associated with chioroquine resistance, the question 

remains as to its function. Suggested functions include transportation of chloroquine 
(Barnes et al., 1992; van Es et at., 1994a) or mefloquine (Cowman et al., 1994), or 
regulation of vacuolar pH (van Es et at., 1994b). Alternatively, Pghl may be involved 

in a stress-related response, as mentioned previously (Ouellette and Borst, 1991; 
Barnes et at., 1992). There is insufficient experimental evidence so far to determine if 
any of these functions could be applied to pc,ndrl too. 

Although the evidence for pcmdrl or pfindrl playing a rOle in drug resistance is 
contradictory, the possibility still exists that other P-glycoprotein genes could be 
involved in chioroquine resistance in Plasmodium. Low stringency washing of PFG 
blots hybridised with a fragment of pcmdrl identified at least two other loci on 
chromosomes 3 and 6, which may be homologous genes encoding P-glycoproteins 
(Chapter 3). In Leishmania, a P-glycoprotein gene family was identified by similar 
cross-hybridisation techniques (Légaré et al., 1994). Cloning these P. chabaudi 
genes and examining them for increased levels of expression in drug resistant lines 
may identify possible mechanisms of resistance. 

6.5 The inheritance data 

During this work, a comparison was made between linkage analyses using data 

obtained from uncloned drug-treated progeny and data obtained from cloned progeny 

of the cross. The results showed the importance of analysing individual recombinant 

clones. For example, analysis of the uncloned, chloroquine-treated progeny for 
inheritance of the marker MSP-1 appeared to show segregation of the AS(3CQ) form 
of the allele with the chloroquine resistance phenotype (Table 12). Analysis of the 
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13 progeny clones, however, detected two clones which were chioroquine-resistant 

and had inherited the AJ-type allele of MSP-1. This is evidence that the drug-selection 

procedure causes certain genotypes to be favoured over others, as proposed in 

Results 5.2.2, and that these two clones were selected against during drug 

treatment. Alternatively, clones with these genotypes may have been present in such 

low numbers that detection of their DNA by radioactive probe hybridisation was not 

possible. 

Uncloned, chioroquine-treated progeny of the HB3IDd2 P. falciparum cross were 

analysed for inheritance of pfindrl in this way, and no linkage of the gene with 

chioroquine resistance was found (Wellems et al., 1990). It is a matter of speculation 

whether the treated progeny were truly representative of all the genotypes produced 

during the cross. Selection of particular genotypes during multiplication in the 

chimpanzee host or during in vitro culturing, has been noted in genetic crossing work 

with other P. falciparum clones (Ranford-Cartwright et al., 1993). 

The pattern of RFLP markers inherited by the cloned progeny of the cross 

showed that extensive recombination and reassortment had occurred among. the 

chromosomes during meiosis. RFLPs of most loci exhibited approximately even 

distribution in the progeny. However, two chromosomes in particular showed 

skewed inheritance of RFLPs among the progeny; chromosome 5 markers inherited by 
the progeny were predominantly AJ-type, and chromosome 11 markers inherited by 

the progeny were predominantly AS(3CQ)-type. The skewed inheritance of 

chromosome 5 markers is discussed later with regard to the selective advantage that an 

AJ background appears to have. The skewed inheritance of chromosome 11 markers 

is of more interest however, because of the possible association with a chloroquine 
resistance locus. 

109 polymorphic sites were tested on chromosome 11 among the 13 progeny 

clones, and 78 of these were AS(3CQ)-type. Of further interest is that only two 

chromosome 11 cross-overs were found to have occurred in the progeny, whereas 

many more were found in the progeny for chromosomes which were examined with 

fewer markers: chromosome 13 was examined with seven markers, for example, and 

four cross-overs were detected. These observations may not be significant if it is 

accepted that all nine chromosome 11 markers, which were chosen at random, 

happened to be closely linked by chance; if this were the case, the detection of so few 

cross-overs would not be surprising, because only a small area of the chromosome 

was examined. 

However, six of the chromosome 11 markers are known to be genes which are 

conserved between P. falciparum and the rodent malaria species (Janse et al., 1994, 
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and this work). Synteny data shown in Table 11 suggests that they were not 

sufficiently closely linked to each other as to have prevented chromosomal 

rearrangements in a primitive ancestor of malaria parasites. Taken together, the lack of 

cross-overs and skewed inheritance of so many AS(3CQ) alleles is strong evidence for 

a locus or loci of some importance on this chromosome. 

6.6 Selective advantage of the AJ genotype 

Certain genotypes appeared to be over-represented in the progeny of the 

AJ/AS(3C0J cross. For example, six of the 34 progeny clones isolated were found to 

be AJ parental-type whereas none were AS(3CQ) parental-type, and many of the 

independent recombinant clones inherited a preponderance of AJ alleles for markers on 

chromosome 5. This suggests that selection favouring certain progeny genotypes has 

occurred during the making of this cross. Moreover, growth tests in which equal 

numbers of parasites were inoculated into mice revealed that clone AJ outgrows clone 

AS(3C0J. 

The advantage AJ has over AS has been noted in other work. Rosario (1976a; 

1976b) observed a disproportionately high number of AJ-type clones among the 

progeny of a cross between AJ and AS(3CQ). From 70 clones obtained from his 

cross, 32 were found to have the parental AJ forms of four markers, compared with 

only four having the parental AS(3C0J forms of the same markers. He suggested that 

this could have been due to: (a) AJ-type parasites outgrowing AS-type in 

splenectomised rats, (b) a disadvantage of pyrimethamine-resistant forms in 

splenectomised rats, and (c) an error of sampling. An excess of AJ parental type 

clones in the progeny of two separate crosses between AJ and a highly chioroquine-

resistant line, AS(30CQ), was also noted by Padua (1980). The results obtained from 

the work presented here are difficult to interpret because of the small numbers of 

clones isolated, but they are consistent with previous results. 

The advantage of an AJ genetic background in recombinant progeny has also been 

noted. Padua tested 97 clones from one of her AJ/AS(30C0J crosses for forms of two 

alloenzymes, LDH and 6PGD (Padua, 1980). 62 were found to have the parental AJ 

forms of the two markers, compared with only 27 having the parental AS(3CQ) forms 

of the same markers; the AJ parental form of both markers was expected to occur in 

only a quarter of the total number of clones, assuming random mating. Also, 

competition experiments between the drug sensitive AS(sens) and AJ lines, and 

AS(30C0J and a recombinant progeny clone AJ(30CQ), resulted in the AJ line and 

AJ(300O3 recombinant clone outgrowing the other two clones. Padua concluded that 

parasites having an AJ genetic background were at an advantage, and that the apparent 
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selective advantage of the recombinant clone could be explained in terms of 

'recombinant vigour', equivalent to 'hybrid vigour' but pertaining to a haploid 

organism. Once again, it is difficult to draw comparisons because of the small number 

of recombinant clones isolated from the progeny of the present cross, but it is 

interesting that many of them had inherited AJ alleles of the markers specific to 

chromosome 5. 

The difference between AJ and AS(3CQ) in rates of growth may be due to the 

action of a gene or genes determining, for example, the number of merozoites 

produced during schizogony, or the ability of the intracellular parasite to extract 

nutrients from the host cytoplasm. It is probably not due to the action of a gene or 

genes which reduce the length of the erythrocytic cycle, as periodicity remains 

unchanged in the two clones. It may be that the gene(s) are to be found on 

chromosome 5, because 43 of the 55 polymorphic sites examined on this chromosome 

were of AJ-type. Markers Ag3035 and OPL-16 may be particularly relevant because 

ten of the eleven recombinants inherited the AJ allele of both markers. Rosario 

reported that AS(3CQ) appeared to enter schizogony 2-3 hours earlier than AS(sens), 

and that this could account for its advantage in competition experiments, but it is 

unlikely that this is an explanation for the differences in growth seen between AJ and 

AS(3CQ) because of its occurrence so early on in the infections, when host 

eiythrocytes are in plentiful supply. 

It is also interesting to note that skewed RFLP distributions were found in the 

progeny of the HB3IDd2 P. falciparum cross on four chromosomes (Walker-Jonah et 

at., 1992). It was thought that some of these could be explained by biological 

phenomena rather than statistical variation. On P. falciparum chromosome 13, for 
example, the gene coding for a histidine-rich protein, HRP-ffl was inherited from the 

Dd2 parent in 14 out of 16 progeny. Genetic studies of the HB3/3D7 P. falciparum 

cross (Walliker et at., 1987) showed similar selection against the HB3 allele of this 

gene. It was suggested that progeny possessing the HB3 allele proliferated at a slower 

rate relative to those without it (Wellems et al., 1987). 

The selection of advantageous genotypes is probably responsible for other cross 

progeny results. Nine of the ten recombinant clones isolated from the second mouse 

on which infected mosquitoes had fed, had identical inheritance patterns for 14 

markers. These nine clones were probably derived from the same original 

recombinant clone and single meiotic event. Their genotype may have been at a 

selective advantage over other genotypes in the uncloned progeny, resulting in 

selection either within the mosquito salivary glands, or more likely during in vivo 

passage, where differences in growth between clones would have enabled some clones 
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to out-grow others. Recently, Viriyakosol et al. (1994) showed that approximately 
70% of 51 genotypically distinct mixtures of P. falciparum altered in composition 
during in vitro cultivation. It is likely that similar alterations in the composition of 

parasite populations occur during passage of rodent malaria parasites in vivo. 

To conclude, 28 of the 34 cross progeny clones were found to be recombinant, but 

only 13 of these were found to be genotypically distinct from each other, probably 

because of selection of particular genotypes over others. An alternative explanation 

may be that an inadequate number of independent meioses had occurred in each 

infected mosquito, resulting in the production of few independent recombinants. 

Evidence that this may have been the case comes from the number of oocysts found to 

be present on dissected midguts of mosquitoes infected with a mixture of clones AJ 

and AS(3C0J; of six mosquitoes dissected, only two were found to be infected with 

one and eight oocysts respectively (Results 5.1). The small number of mosquitoes 
dissected and few progeny clones isolated make it difficult to draw further conclusions 

from these data. 

6.7 The chioroguine susceptibility tests 

The drug test used during this project was based upon parasite recrudescence 

following drug treatment of 3 mg chloroquinefkg for 8 days; resistant parasites 
emerged on or before D13,  whereas sensitive parasites appeared after this. Rosario 

(1976b) used a drug dose of 3 mg chloroquinelkg for six days, and defined resistant 
parasites as those appearing on or before D8.  The two extra doses given to parasites 

in this work enabled an increase in the time lapsed between the emergence of resistant 

and sensitive parasites, producing more accurate phenotyping. 

Variation in parasitaemia levels was apparent between repeated drug tests of the 

same clone. This has been noted in other work (Rosario, 1976b; Padua, 1981), and it 

prevented any estimation of the number of mutations responsible for the expression of 

chloroquine resistance in AS(3C0J (Rosario, 1976b). The age, sex and strain of 

mouse used, and host diet, are variables known to affect parasite development. For 

example, genetic studies by Stevenson etal. (1982; 1988) have shown that differences 

exist between inbred strains of mice in the level of resistance to infection by P. 
chabaudi clone AS. The level of resistance is genetically determined by a major 
dominant gene, Pchr, which was found to be autosomal but to be influenced by the 

sex of the mouse, female mice exhibiting a superior resistance to parasite infection. 

However, Ott (1969) has suggested that the course of infection of P. chabaudi in mice 
can be highly reproducible under various conditions, one of which is the use of young 

mice, ideally approximately 20 g in weight. The variation in parasite growth due to 
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host diet has also been established (Gilks et al., 1989). To minimise the effect of these 
host factors on the results, all drug tests carried out during this work used male 

CBAJCa mice, 7-8 weeks old (approximately 17-23 g), maintained on a constant diet 

with drinking water supplemented with 0.05% PABA. 

Excluding variation due to sex, age, diet and mouse strain type, the variation noted 

during this work is probably due to differences in the response of parasites and mice to 

chioroquine, and the immune status of individual mice. For example, the rate at which 

drug is concentrated in red blood cells is dependent upon the rate of drug absorption 

from the alimentary canal (Vessel et al., 1971). Also, the trophozoite stage of the 

parasite is known to be most susceptible to chloroquine, while the mature schizont, 

merozoite and ring stages are only partially susceptible (Cambie et al. (1991) as cited 
by Cambie et al. (1994)). P. chabaudi infections are approximately 80% 
synchronous, and so chioroquine efficacy depends upon the timing of treatment. 

In vitro drug tests have been used in previous studies in an attempt to standardise 

the test by eliminating host factors (Rosario, 1976a; Padua, 1980). The tests were 

based upon culture of parasites from trophozoite to schizont stage in the presence of 

different concentrations of chioroquine. The tests were not successful for several 

reasons, such as the requirement for mouse dissection to be carried out asceptically, 

and the impracticable necessity of calculating individual parasitaemias and blood cell 

counts (Rosario, 1976a). It was concluded that the most reliable criterion for 

detennining resistance was either the presence or absence of healthy parasites after 

drug treatment, rather than actual levels of parasitaemias (Padua, 1980). This was the 

theory behind the method of determining drug susceptibility during this project. 

The in vivo drug tests used in this work may not have been sensitive enough to 

distinguish between additional classes of drug susceptibility among the progeny 

clones. This was also noted by Padua (1980). Recently, a test for inhibition of 
[3H]hypoxanthine uptake in P. falciparum (Desjardins et al., 1979) has been modified 
for use with P. chabaudi (Sohal and Arnot, 1993), which obviates the need for large 

numbers of mice and time-consuming parasitaemia counts. This automated method 

may be sensitive enough to define further levels of resistance. However, the 

relationship between in vitro and in vivo drug tests is not clear, and future work would 

be served best by the use of both tests to determine parasite drug responses. 

6.8 Construction of a genetic linkage map 

During this project, the chromosome number and karyotype of the P. chabaudi 
genome was finally resolved, mainly due to advances in the PFGE technique. The 

genome was found to contain 14 chromosomes, a number which is consistent with all 
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other Plasmodium species studied (Weber, 1988). Three size polymorphisms between 
chromosomes of clones AJ and AS were found. Those involving chromosomes 5 and 
6 have been described previously (Sharkey et al., 1988), but this is the first report of 
size differences between clones of P. chabaudi involving chromosome 11. 

Advances in the technology used to map genomes over the past decade (for 

reviews see Wicking and Williamson, 1991; Collins, 1992) have resulted in the 

development of genetic linkage maps for a variety of organisms. Over 4,000 markers 

have been mapped in the laboratory mouse M. musculus for example (Dietrich, 1994), 
and 5,000 markers now exist for the free-living nematode Caenorhabditis elegans 
(Waterston et al., 1992). 

The work presented here describes the development of the first genetic linkage map 
of P. chabaudi (Figure 28). 44 of approximately 100 probes identified as 
chromosome markers were found to be polymorphic between the P. chabaudi clones 
AJ and AS(3CQ). Most were RFLPs identified through probing Southern blots of 

genomic DNA with known genes from other species of Plasmodium, or anonymous 
probes collected from a P. chabaudi library. A few were polymorphic markers 
developed using the novel PCR technique, RAPD-PCR; the advantages of this 
procedure are discussed later. 

6.9 Chromosome maps of other Plasmodium species 
Chromosome maps can be distinguished from linkage maps in that the former show 

the chromosome location of markers, whereas the latter include the order of and often 

the distance between the markers. Besides the linkage maps of P. falciparum 
described above, chromosome maps of other species of Plasmodium have also been 
made. For example, Sharkey et al. (1988) mapped 11 markers to chromosome 
separations of P. chabaudi clones AS and CB, and Sheppard et al. (1989b) mapped 9 
markers to separated chromosomes of P. chabaudi, P. berghei and P. vinckei.. 

During the construction of the chromosome map of P. chabaudi described here, 
large-scale chromosome maps of three other rodent malaria parasite species were made 

in collaboration with Drs. C. Janse and A. Waters of Leiden University, The 

Netherlands. The chromosomal location of fifty markers, mostly genes, was 

established in three clones of P. berghei, one clone of P. vinckei vinckei, one clone of 
P. chabaudi adami and one clone of P. yoelii yoelii, as well as clone CB of P. 
chabaudi chabaudi (Janse et al., 1994). All species were found to contain 14 
chromosomes, ranging in size from 0.5 to 3 Mb. Polymorphisms in the sizes of 
homologous chromosomes were found to occur both between the species, and 

between different clones of a single species, as has been described in previous work 
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(Janse et al., 1989) (see Introduction 1.4.2). 

The principal finding of the work was that the location of genes on polymorphic 

chromosomes of all of the four species appeared to be well conserved. Of the 50 

genes studied, only the location of 3 were not conserved among the species. This was 

not expected, since homologous chromosomes of the species show differences in size 

(Sheppard, 1989), and because large scale chromosomal rearrangements have been 

reported to occur quite frequently (Cowman and Lew, 1989; Janse et al., 1992; van 
Dijk et al., 1994). 

As described in the Introduction, such chromosome polymorphisms may be 
caused by changes in the number of repeat sequences in the subtelomeric regions of 

chromosomes (Ponzi et at., 1990), or through unequal crossing-over between (Janse 

et al., 1992), and amplification and translocation of genes (Cowman and Lew, 1989; 

van Dijk et at., 1994). However, several of the described large scale rearrangements 

have been found in parasites maintained in an artificial environment, for example 

cultured in vitro (Wellems et at., 1988) or passaged through laboratory hosts (Janse et 
al., 1989), and it is uncertain whether these parasites would be able to survive in 

nature. Therefore, it was important to find out whether the genome plasticity regularly 

affected the chromosome location of genes in parasites from field isolates, resulting in 

shuffling of linkage groups. The principle conclusion which can be drawn from the 

chromosome maps of the four rodent malaria species described in Janse et al. (1994) is 
that there is no evidence that large-scale rearrangements frequently affect the gene 

composition and linkage groups of their chromosomes. 

An explanation for the conserved location of genes on chromosomes among the 

four species of rodent malaria might be that internal chromosomal rearrangements 

occur less frequently in parasites which multiply under natural conditions than in 

parasites which are maintained under laboratory conditions. A more likely explanation 

might be that parasites with internal chromosomal rearrangements have a selective 

disadvantage in nature. It has been proposed that carriers of most types of 

chromosomal rearrangements suffer from sterility, and because of this, many types of 

chromosomal change cannot be fixed as a new species characteristic (Ohno, 1970). if 
this is the case, the shuffling of genes into novel linkage groups will be severely 
limited in natural Plasmodium populations. 

6.10 Synteny between the genomes of P. falciparum and P. chabaudi 
The conclusions drawn from a comparison of the locations of genes of the four 

rodent malaria species, as outlined above, show the value of comparative mapping 

between closely related species. Comparative mapping between distantly related 
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species may also be useful, for example in answering questions concerning genome 

evolution, and in predicting the location of genes in one species given their locations in 
another. 

During this project, a comparison was made between the location and synteny of 
genes in P. falciparum and P. chabaudi. A further study gauged the level of sequence 
conservation between chromosome 7 of P. falciparum and chromosome 13 of P. 
chabaudi. 

6.10.1 Synteny between genomes 

25 out of 40 homologous genes localised to single chromosomes in P. chabaudi 
and P. falciparum appear to be conserved in their location within 10 synteny groups. 

Some of these associations may have occurred by chance. For example, genes coding 
for j tubulin and enolase are found on chromsome 10 in P. falciparum and their 
homologues are found on chromosome 12 in P. chabaudi. If the genes are far apart on 
each chromosome, it is possible that they are present on the same chromosome in the 

two species purely by chance. If, however, the genes are closely linked to each other, 

then it is likely that both chromosome regions are conserved and represent a relic of the 

primitive ancestor from which both species evolved. 

Unfortunately, none of the genes in this study have been mapped to particular 

regions of chromosomes, which makes the assessment of conserved linkage difficult. 
The one exception is the P. falciparum genes EF1a and pfPK5 which are known to be 
on the same 4.5 kb Hind ifi fragment on chromosome 13, and to lie within 1 kb of 

each other (D. Williamson, personal communication). These two genes are also found 
on the same P. chabaudi chromosome number 11. It may be that the P. chabaudi 
homologues are as tightly linked to each other as they are in P. falciparum, in order for 
the linkage to have been conserved since the two species diverged from each other. 

Some of the P. falciparum chromosomes have groups of genes on the same 
chromosome which show synteny conservation with more than one P. chabaudi 
chromosome. For example, P. falciparum chromosome 14 has two conserved 
syntenies: Group 1 contains 5s rRNA, Topoisomerase II, Calmodulin, PGI, Pf7ap-1; 
and Group 2 contains Aldolase and G6PD. These two groups are not found on the 
same P. chabaudi chromosome; Group 1 is found on chromosome 10 and Group 2 on 
chromosome 13. P. chabaudi also has split regions of synteny. 

If the conserved syntenies shown here for a limited set of genes are representative 
of all the homologous genes shared between P. falciparum and P. chabaudi, then more 
than 60% of the total number of genes are likely to be within a conserved synteny. 

Moreover, this figure is only an estimate, as chromosomes 2, 7 and 12 of P. 
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falciparum and chromosomes 2 and 3 of P. chabaudi were not included in the analysis 
because of the lack of cloned genes from these chromosomes. It has been estimated 
that the Plasmodium genome contains 7,500 genes (Reddy, 1995), and only a small 
fraction of these have been examined in this work. Analysis of additional genes will 

be necessary to obtain a more precise indication of synteny between the two species. 

Although this work has shown that there is significantly less conservation of 
syntenies between P. chabaudi and P. falciparum compared to the conservation 
observed between the rodent malaria species (Janse et al., 1994), it presents exciting 
possibilities for genome analysis. Comparative mapping data are currently available 

for more than 25 species of mammals (Nadeau, 1989), for five species of Leishinanja 
(Ravel et al., 1995) and for some invertebrate species (e.g. Weller and Foster, 1993). 

The map of homology segments for mouse and man is the closest to saturation for any 

pair of species, and it provides an example of the applications that comparative 

mapping has. Of 2616 loci mapped to the mouse genome, 917 have homologues 

which have been mapped in the human genome, marking 101 segments of conserved 
linkage homology (Copeland et al., 1993). From these data, it has been estimated that 
approximately 150 chromosomal rearrangements have occurred since the divergence of 

the lineage leading to humans and mice, roughly 1 per million years (Nadeau and 

Taylor, 1984). Using the data from comparative mapping of the rodent malaria 
species and P. falciparum, it should be possible to determine the location and number 
of rearrangements that have occurred during evolution of the species. If data from 
other Plasmodium species are included, an evolutionary map of the genus could be 
drawn. 

Other applications of comparative mapping centre around the question of why 

syntenic groups are stable. As mentioned previously, it may be that chromosome 

rearrangements often lead to meiotic disturbances and are selected against (Ohno, 

1970). Alternatively, perhaps not enough evolutionary time has passed to allow the 

break-up of a sufficient number of conserved linkages to cause a random pattern in 

respect of distantly related species. A third view is based upon the preservation of 
linkage groups due to function (Lundin, 1993). if a group is conserved over a long 
period of time, it may be as a consequence of some vital structure of the chromatin 

necessary for the satisfactory expression of the genes within it. In prokaryotes, genes 

specifying enzymes of the same metabolic pathway are often clustered and coordinated 

as a group (or operon) because they transcribe a single polycistromc mRNA. The best 

known example is the lac-operon of E. coli which contains genes used for the 
metabolism of lactose. Scrutiny of conserved syntenies may therefore provide 

information on genome organisation and gene regulation. 
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Perhaps the most significant application of comparative mapping, in terms of this 

project, is in predicting the location of loci in one species from their locations in 

another. The scope for identifying genes in P. falciparum after their initial 

identification in the rodent malaria species is of considerable importance, especially 

considering the functional information of candidate genes which can be obtained 

through genetic crossing work and transfection studies (C.Janse and A.Waters, 

personal communication), which are more easily carried out in the rodent malaria 

models. 

Examples of genes suited to isolation across species by comparative mapping 

include those coding for antigens, which are difficult to clone because of the problems 

involved in cross-species DNA hybridisation. Genes coding for enzymes could also 

be located, for example the gene for LDH in P. falciparum has been cloned (Simmons 

et al., 1985) and its chromosomal location could be used to locate the P. chabaudj 

homologue which has not been cloned. Of more relevance to this project are the 

isolation of genes implicated in mechanisms of drug resistance. A recent example of 

this was the discovery of an insecticide resistance gene on chromosome 5 in the 
housefly Musca domestica and chromosome 2R of D. melanogaster. Comparative 
mapping of other loci on these chromosomes suggests that when resistance to this 

drug arises in the sheep blowfly Lucilia cupina, it will be due to a gene on 

chromosome 6 (Weller and Foster, 1993). An attempt to locate the locus in P. 
chabaudi implicated in chloroquine resistance in P. falciparum by comparative 
mapping is discussed in the following section. 

6.10.2 Search for synteny with P. falciparum chromosome 7 
Wellems et al. located a marker, pS590.7, on P. falciparum chromosome 7, which 

segregated with the chioroquine resistance phenotype in 16 progeny from a cross 

between clones HB3 and Dd2 (Wellems et al., 1991). During this work, an attempt 
was made to isolate the P. chabaudi homologue of pS590.7, and to identify regions of 
synteny between P. falciparum chromosome 7 and other P. chabaudi chromosomes. 

The marker pcpS590.7 was isolated from P. chabaudi DNA by PCR. The 
evidence for it being the homologue of pfpS590.7 is ambiguous:- 

single amplified bands were produced from both P. falcipa rum and P. 

chabaudi DNA using the same primers 

a high annealing temperature of 52.50C was used 

the amplified bands had similar sizes, 456bp for pfpS590.7 and 400bp for 

pcpS59O.7 

both sequences were present as single copies in their respective genomes 
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(v) the P. chabaudi product cross-hybndised to P. falciparum chromosome 7. 

However, neither fragment contained an open reading frame, and sequence 

comparisons at the nucleotide level are difficult to interpret because of the high A + T 

content of pcpS590.7. Subsequently, the P. falciparum marker pS590.7 was found to 

hybridise to chromosome 12 of P. chabaudi, whereas the fragment amplified from P. 

chabaudi hybridised to chromosome 13. 

These ambiguous results led to the search for regions of synteny between P. 

falciparum chromosome 7 and P. chabaudi chromosome 13. The results of these 

studies involving hybridisation of eight chromosome 7 P. falciparum probes were also 

too ambiguous to deduce whether conserved syntenies exist between these 

chromosomes. Weak hybridisation between the P. falciparum probes and P. chabaudi 

chromosomes may have been the result of lack of homology, or a result of the non-

coding nature of the probes. 

Recently, a gene belonging to the heat shock protein-90 family has been cloned 

from the chloroquine resistance locus on P. falciparum chromosome 7 (Su and 
Wellems, 1994). It is likely to be highly conserved between the P. chabaudi and P. 
falciparum genomes. Cross-hybridisation of the gene to P. chabaudi chromosome 
separations should enable a P. chabaudi homologue to be located; its location may 

resolve the relationship between chromosome 13 of P. chabaudi and 7 of P. 
falciparum. 

6.11 RAPD-PCR technique: conclusions 

The RAPD-PCR technique was used in an attempt to produce genome markers 

more quickly than had been possible using cloned genes. It represents an advance 

over the more traditional method of identifying RFLPs by probing Southern blots with 

markers because (i) it is faster and more effective at detecting large numbers of 

anonymous polymorphic markers; (ii) a great many randomly chosen primers can be 

used for the screening; (iii) it requires little parasite material and is technically easy to 

perform; and (iv) the anonymous markers obtained represent independent loci which 

are not biased towards particular sequences, and so are representative of the genome. 

However, in its simplest form, the technique proved not to be reproducible. It was 

found necessary to purify the variable bands obtained by initial RAPD-PCR 

amplification, and to hybridise them to genomic DNA blots to obtain stable single 

locus RFLP markers. This increased the time and complexity of the procedure. 

Nevertheless, the initial RAPD-PCR screening was advantageous because it identified 

polymorphic loci for further analysis, unlike anonymous markers which are 

uncharacterised before screening. This means that RAPD-PCR markers are more 
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likely to produce an RFLP when screened than unknown markers. Evidence for this 

comes from a comparison between the number of RFLPs obtained using the RAPD-

PCR technique and the number obtained from the anonymous library screened during 

this project. 43% (6 out of 14) recombinant plasmids containing unique sequence 

DNA detected RFLPs, whereas with the RAPD-PCR technique, 100% (5 out of 5) of 
the polymorphic bands recognising a single locus detected RFLPs. Some caution is 

necessary when interpreting these results because of the small sample size analysed. 

To conclude, the RAPD-PCR technique promises to be of significant value in 

developing markers for use in mapping the Plasmodium genome. 

6.12 Relevance of P. chabaudi work to P. falciparum 
Using P. chabaudi as a model for P. falciparuin is relevant for several reasons: 

Of the four rodent malaria models available, P. chabaudi shares the most 
biological traits with P. falciparum. For example, both have a preference for mature 

erythrocytes, both show synchronous schizogony, and both have an innate sensitivity 

to antimalarial drugs. 

Pyrimethamine-resistant parasites from both species have been shown to contain 

equivalent point mutations within the DHFR gene (Cowman et al., 1988; Peterson et 
al., 1988; Cowman and Lew, 1990). Genetic studies have shown the P. falciparum 
allele to be inherited by all the resistant progeny of a P. falciparum cross (Peterson et 
al., 1988). Analysis of the uncloned, pyrimethamine-treated progeny of the 

AS(3C0J/AJ cross for inheritance of the P. chabaudi DHFR gene presented during 
this work (Table 13), has produced the first genetic evidence for the role of DHFR in 
resistance to this drug in P. chabaudi. Thus it appears that the molecular genetic 
mechanism of at least one type of drug resistance is the same between the two malaria 

parasite species. Further studies on cloned progeny are required to confirm this result, 

for the reasons mentioned in Section 6.5. 
A genetic linkage map has been made for P. falciparum from the data of 85 

RFLP markers inherited among 16 progeny of the Dd2IHB3 cross (Triglia et al., 
1992; Walker-Jonah et al., 1992) and from other chromosome map studies (Kemp et 
al., 1987; Walliker et al., 1987). The limiting factor in its future development is 

likely to be the number of independent recombinant progeny clones available. Cloning 

and examination of more clones is likely to be expensive and time consuming. In an 

attempt to circumvent the difficulty of performing classical genetic analyses with P. 
falciparum, and in the absence of a stable P. falciparum transfection system, physical 
mapping and sequencing of the genome is being undertaken by groups within the 

Weilcome Trust Malaria Genome Collaboration (for the objectives and approaches 
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being undertaken, see Craig and Langsley, 1993). 

However, genetic crosses between clones of P. chabaudi are easier to perform than 
between clones of P. falciparum, because the process involves using laboratory 

rodents which are cheap, easy to maintain and ethically more acceptable than primates. 

Moreover, studies presented here show that a high proportion of genes homologous 

between P. chabaudi and P. falciparum are likely to be within conserved synteny 

groups. Taken together, exciting possibilities exist for the isolation of genes 

determining important phenotypic traits by linkage analysis and positional cloning 

using P. chabaudi crosses. Once located to a particular chromosome and cloned, 

examination of conserved synteny groups between the P. falciparum and P. chabaudi 
genomes could identify the chromosome location of the P. falciparum homologue. 

6.13 Finding the chioroguine resistance gene(s): money well spent? 

Determining the molecular genetic mechanism of chloroquine resistance has almost 

become the 'Holy Grail' of malaria research. Novel molecular techniques and genetic 

mapping methods have greatly aided the task. One question often left unasked, 

however, is how relevant an understanding of the genes(s) and molecular mechanism 

involved in resistance would be in combating the disease. 

Firstly, determining the number of mutations involved in chloroquine resistance 

may provide practical information for its continued use in the field. If chioroquine 

resistance is a multigenic trait, it is possible that resistance would not have emerged if 

use of the drug had been restricted and higher doses used. This principle could be 

adhered to in areas where chloroquine resistance is not yet a problem. It is not known 
whether chloroquine resistant P. falciparum persists in the absence of drug pressure; 
reports that reversion occurs (e.g. Thaithong et al., 1988) are interesting in the light of 
a possible inverse relationship between chloroquine resistance and mefloquine 
resistance. 

Determining the number of mutations would also be valuable in the construction of 

models which predict the rate of spread of resistance. Curtis and Otoo (1986) have 

proposed a model which determines the rate of spread of resistance to two unrelated 

drugs, caused by mutations in two unlinked genes. They concluded that when only a 

small fraction of the population is taking drugs, and when both resistance genes are 

initially very rare, random mating and free recombination between the loci will break 

up linkage disequilibrium, and so delay the build-up of resistance to both drugs. 

Thus, administering a mixture of drugs would be preferable to administering the drugs 

in sequence. 

Secondly, if the molecular mechanism of chioroquine resistance is known, the 
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possibility exists to develop new antimalarials which would not induce the same 

resistance mechanism. This requires detailed knowledge of the structure of proteins 

involved in the mechanism, obtainable through experimental techniques such as X-ray 

crystallography and nuclear magnetic resonance. In the past, new drugs were 
developed from an initial 'blanket' screening of many compounds, and their mode of 

action was often not determined. Now there is a move towards more rational 

chemotherapy which aims to design drugs tailored to known biochemical pathways or 

parasite molecules which differ between parasite and host (Hyde, 1990b). 

Determining the molecular basis of chloroquine resistance will enable an overall 

understanding of parasite mechanisms of resistance. 

Finally, if the number of molecular mutations required to produce chioroquine 

resistance is known, it may be possible to monitor the spread of drug resistance in 

natural populations more effectively. The current method of monitoring resistance 

using in vitro drug tests is inefficient and may not correlate with in vivo results. 
Mutation-specific PCR is now available for observing pyrimethamine resistance in 

samples of blood taken directly from infected patients (Zoig et al., 1990; Gyang et al., 
1992). Determining DNA mutations which cause chloroquine resistance, and their 

detection by simple molecular methods, would represent a significant step towards 
monitoring this resistance directly. 
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Appendix 1. The composition of buffers, solutions and media 

All solutions were sterilised either by autoclaving or by filtration, unless otherwise 

indicated. 
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Citrate saline 

0.9% (w/v) NaCl 

1.5% (w/v) Na citrate 

Complete medium 
incomplete medium with the 

following: 
0.2% (w/v) NaHCO3 (42 mIll 5% 

NaHCO3) 

10% (vlv) heat inactivated human 

serum 

Stored at 40C. Used within 1 week. 

Deep-freeze solution 
28% (v/v) glycerol 

3.0% (v/v) sorbitol 

0.65% (v/v) NaCl 

Sterilised by filtration. 

Electra-HR buffer 

18g Tris Barbital-Sodium Barbital, 

pH 8.6-9.0 

Gel-loading buffer (6 x) 
0.25% (wlv) bromophenol blue 

0.25% (w/v) xylene cyanol FF 

30% (w/v) glycerol in water 

Not stenlised. Stored at 40C 

Incomplete medium 

RPII 1640 

25 mM HEPES buffer (5.94 g/l) 

50 j.tg/ml gentamycin sulphate 

Sterilised by filtration. Stored at 4 0C 

for up to 4 weeks. 

Luria-bertani (LB) medium 

per litre: 10 g bacto-tryptone 

5 g bacto-yeast extract 

lOg NaCl 

pH adjusted to 7.5 with NaOH 

Lysis solution 
0.1 mM EDTA pH 8.0 

0.5 % (w/v) sarcosyl 

Mammalian Ringer solution 
27 mM KC1 
27 mM CaC12 

0.15 M NaCl 

2.7 mM KC1 

4.3 mM Na2HP047H20 

1.4 mM KH2PO4 

PCR buffer 

50 mM KC1 

10 mM Tris-HC1 pH 8.8 
2.5 mM MgCl2 

PCR dNTP solution (100 x) 
75 iM dGTP 

75 p.M dCTP 

75 p.M dTTP 

75 .tM dATP 

Phosphate buffer pH 7.5 
for 1 litre: 

4.53 g Na2HPO47H20 

10.61 g NaH2PO4•7H20 

PBS (phosphate buffered saline) 
137 mM NaCl 



PFG lysis solution 
0.5 M EDTA 

0.01 M Tris pH 9.5 

1% (w/v) sarcosyl 

Pre-hybridisation solution 
for 1 litre: 

100 g dextran sulphate (sodium 

salt, MW -500,000, Sigma) 

100 ml 10% SDS 

58 g NaCl 
846 ml H20 

Mixed at 65 0 C for 45 minutes, 

aliquoted and frozen at -20 0C 

RAPD-PCR Clontech Buffer 
10 mM Tris-Ci pH 8.8. 

50 mM KC1 
1.5 mM MgC12 

0.1% (v/v) Triton X-100 

Serum Ringer 
50% (v/v) heat inactivated calf 

serum 

50% (v/v) mammalian Ringer 

solution 

20 units heparin/ml mouse blood 

Anachem Sequencing Gel 
Solution 

7 M urea 

6% (w/v) acrylamide 

0.16% (w/v) bis-acrylamide 

in 1 xTBE 

TEMED and 25% (w/v) ammonium 

persuiphate added to fmal 

concentration of 0.6p.1/ml 

SSC (saline-sodium citrate) 
3MNaC1 

0.3 M sodium citrate 

Supra-heme buffer 

0.025 M TBE, pH 8.2-8.6 

TAE buffer (Tris-acetatelEDTA) 
0.04 M Tns-acetate 

0.002 M EDTA 

TBE buffer (Tris/borate/EDTA) 
0.09 M Tris base 

0.09 M boric acid 

0.002 M EDTA 

TE buffer (Tris/EDTA) 
10 mM Tris-HCJ 

1 mM EDTA 

Used at the required pH of 7.4 to 8.0 

Thawing solutions 
12% (w/v) NaCl 

1.6% (w/v) NaCl 

0.2% (w/v) dextrose, 0.9% 

(w/v) NaCl 
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KitE 5' 	 3' 

OPE-Ol CCCAAGGTCC 

OPE-02 GGTGCGGGAA 

OPE-03 CCAGATGCAC 

OPE-04 GTGACATGCC 

OPE-05 TCAGGGAGGT 

OPE-06 AAGACCCCTC 

OPE-07 AGATGCAGCC 

KitL 5' 	 3' 

OPL-1 GGCATGACCT 

OPL-2 TGGGCGTCAA 

OPL-3 CCAGCAGCF 

OPL-4 GACTGCACAC 

OPL-5 ACGCAGGCAC 

OPL-6 GAGGGAAGAG 

OPL-7 AGGCGGGAAC 

KitOS' 	 3' 

OPO-1 GGCACGTAAG 

OPO-2 ACGTAGCGTC 

OPO-3 CTGTFGCTAC 

OPO-4 AAGTCCGCTC 

OPO-5 CCCAGTCACT 

OPO-6 CCACGGGAAG 

OPO-7 CAGCACTGAC 

KitR 5' 	 3' 

OPR-1 TGCGGGTCCT 

OPR-2 CACAGCTGCC 

OPR-3 ACACAGAGGG 

OPR-4 CCCGTAGCAC 

OPR-5 GACCTAGTGG 

OPR-6 GTCTACGGCA 

OPR-7 ACTGGCCTGA 

OPE-08 TCACCACGGT 

OPE-09 CTFCACCCGA 

OPE-lO CACCAGGTGA 

OPE-li GAGTCTCAGG 

OPE-12 TFATCGCCCC 

OPE-13 CCCGATFCGG 

OPE-14 TGCGGCTGAG 

OPL-8 AGCAGGTGGA 

OPL-9 TGCGAGAGTC 

OPL-10 TGGGAGATGG 

OPL-11 ACGATGAGCC 

OPL-12 GGGCGGTACT 

OPL-13 ACCGCCTGCT 

OPL-14 GTGACAGGCT 

OPO-8 CCTCCAGTGT 

OPO-9 TCCCACGCAA 

OPO-lO TCAGAGCGCC 

OPO-li GACAGGAGGT 

OPO-12 CAGTGCTGTG 

OPO-13 GTCAGAGTCC 

OPO-14 AGCATGGCTC 

OPR-8 CCCGTGCCT 

OPR-9 TGAGCACGAG 

OPR-10 CCATFCCCCA 

OPR-11 GTAGCCGTCT 

OPR-12 ACAGGTGCGT 

OPR-13 GGACGACAAG 

OPR-14 CAGGATFCCC 

OPE-15 ACGCACAACC 

OPE-16 GGTGACTGTG 

OPE-17 CTACTGCCGT 

OPE-18 GGACTGCAGA 

OPE-19 ACGGCGTATG 

OPE-20 AACGGTGACC 

OPL-15 AAGAGAGGGG 

OPL-16 AGGTFGCAGG 

OPL-17 AGCCTGAGCC 

OPL-18 ACCACCCACC 

OPL-19 GAGTGGTGAC 

OPL-20 TGGTGGACCA 

OPO-15 TGGCGTCCTT 

OPO-16 TCGGCGGTTC 

OPO-17 GGCTTATGCC 

OPO-18 CTCGCTATCC 

OPO-19 GGTGCACGTT 

OPO-20 ACACACGCTG 

OPR-15 GGACAACGAG 

OPR-16 CTCTGCGCGT 

OPR-17 CCGTACGTAG 

OPR-18 GGCYVFGCCA 

OPR- 19 CCTCCTCACTC 

OPR-20 ACGGCAAGGA 



Appendix 3. Conference abstracts. 

British Society for Parasitology Spring Meeting 

University of Edinburgh, Scotland 10th-12th April 1995. 

Oral presentation: The genetics of mefloquine resistance in the rodent malaria 

Plasnwdium chabaudi. 

Jane Canton, Laura Bisoni and David Walliker. 

'Variation and Immune Responses to Infections' 

Two day symposium on current research on HIV, Malaria and 
Nematode infections, University of Edinburgh, Scotland 5th-6th 
January 1995. 
Oral presentation: Drug resistance in malaria. 

ft 

British Society for Parasitology Malaria Meeting 

University of Liverpool, England 18th-21st September 1994. 

Oral presentation: The genetics of chloroquine resistance in the rodent malaria 

Plasmodium chabaudi. 

Jane Canton and David Walliker. 

Scottish Universities Molecular Parasitology Group Summer Meeting 
Kirkmichael, Perthshire 6th-8th May 1994. 

Winner of the best oral presentation: A locus for chioroquine resistance in 
Plasmodjum. 

Jane Canton and David Walliker. 

Australian Society for Parasitology Meeting 

Heron Island, Queensland 28th-30th September 1993. 

Oral presentation: Unravelling the genetics of chioroquine resistance in malaria 

parasites. 

Jane Canton and David Walliker. 

Royal Society of Tropical Medicine and Hygiene Annual Meeting 

Royal College of Physicians, Edinburgh, Scotland 5th-7th July 1993. 
Poster presentation: A rapid technique for the detection of DNA polymorphisms in 

Plasmodium. 

Jane Canton, Janet Howard, Jim Jensen and David Walliker. 
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Appendix 4. Publications arising from this study. 

Copies of these manuscripts are at the end of the References. 

Canton, J.M-R., Howard, J., Jensen, J.B. and Walliker, D. 1995. A rapid technique 

for the detection of DNA polymorphisms in Plasmodium. Experimental Parasitology 

80, 163-166. 

Janse, C.J., Canton, J.M-R., Walliker, D. and Waters, A.P. 1994. Conserved 

location on polymorphic chromosomes of four species of malaria parasites. Molecular 

and Biochemical Parasitology 68, 285-296. 

Creasey, A., Mendis, K., Canton, J., Williamson, D., Wilson, I. and Carter, R. 

1994. Maternal inheritance of extrachromosomal DNA in malaria parasites. Molecular 
and Biochemical Parasitology 65, 95-98. 

Bayoumi, R.A.L., Creasey, A.M., Babiker, H.A., Carlton, J.M-R., Sultan, A.A., 

Satti, G., Sohal, A.K., Walliker, D., Jensen, J.B. and Arnot, D.E. 1993. Drug 

response and genetic characterisation of Plasmodium falciparum clones recently 
isolated from a Sudanese village. Transactions of the Royal Society of Trpical 

Medicine and Hygiene 87, 454-45 8. 

In press: 

Doerig C., Doenig, C., Hornocks, P., Coyle, J., Carlton, J., Sultan, A., Arnot, D. 
and Carter, R. 1995. Pfcrk-1, a developmentally regulated cdc2-related protein kinase 
of Plasmodiumfalcipa rum. Molecular and Biochemical Parasitology. 
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We describe here the use of the RAPD—PCR tech-
nique (random amplified polymorphic DNA-
polymerase chain reaction) to detect DNA polymor -
phisms in malaria parasites. This has proved to be a 
powerful and rapid method for detecting polymorphic 
genetic markers in other organisms. It requires little 
parasite material and is technically easy to perform. A 
large number of anonymous markers can be readily 
obtained, representing independent loci which are not 
biased towards particular sequences, and so are rep-
resentative of the genome. Such markers can be used 
in population and phylogenetic studies, in the identifi-
cation of parasite strains and species and in the com-
parison of field isolates. The markers may also be used 
to detect genomic polymorphisms for use in linkage 
analysis of simple and complex phenotypic traits, for 
example, drug resistance and virulence. 

RAPD—PCR involves amplifying fragments of geno-
mic DNA with short, single, primers of arbitrary se-
quence (Welsh and McClelland 1990; Williams et al. 
1990). No prior sequence information is required, un-
like conventional PCR of loci of known sequences 
(Saiki el al. 1988). This feature allows the analysis of 
genomes for which little sequence information exists, 
for example, isolates taken from the field. The reaction 
takes place under conditions of low stringency that 
encourage the simultaneous amplification of DNA at a 
number of loci. The amplified products are separated 
by agarose gel electrophoresis and visualised by ethid-
ium bromide staining. The majority of the products are 
expected to be identical in different individuals of a 
single species. A small proportion are likely to be poly-
morphic, variant forms shown by the presence or ab- 

To whom correspondence should be addressed.  

sence of amplified bands in different parasite strains, 
or by variations in their size or intensity due to differ-
ences in primer binding sites caused by mutation, de-
letion, or insertion of DNA sequences. 

We have used RAPD—PCR to examine polymor-
phisms in the genomes of two genetically distinct 
cloned lines of the rodent malaria species Plasmodium 
chabaudi. The clones, denoted AJ and AS, were de-
rived originally from thicket rats of the Central African 
Republic and maintained by passage in laboratory 
mice (Carter and Walliker 1975). Parasites were ex-
tracted from host cells and DNA was prepared follow-
ing the method of Snounou et al. (1988). RAPD—PCR 
reactions were performed on this DNA using each of 
80 decamer primers (Operon Technologies, Kits E, L, 
0, and R, each kit containing 20 decamers with a G + C 
content of at least 60%). Each reaction was carried out 
in 15 p.l containing 0.4 p.M of one primer in lx reaction 
buffer (10 mM Tris—CI, pH 8.8, 50 mM KCI, 1.5 mM 
MgCl2 , 0.1% Triton X-lOO, Clontech), 200 p.M each 
dATP, dCTP, dT'UP, dGTP, 2.5 mill MgCI21  0.6 units 
Taq DNA polymerase (Clontech), and 200 ng of P. 
chabaudi DNA. Reactions were overlaid with 100 p.1 
light mineral oil (Sigma). Negative controls for each 
primer contained all of the above components except 
for 2 p.1 of TE in place of P. chabaudi DNA. Cycling 
conditions were as follows: 92°C for 3 min initially, 
then for I min at the start of each cycle; 36°C for I mm 
45 sec; 72°C for 2 min and for 7 min at the end of all 35 
cycles. Amplification products were electrophoresed 
on 1.5% agarose gels and visualised by ethidium bro-
mide staining. 

In an initial screening, 51 of the 80 primers tested 
produced one or more polymorphic bands which were 
different in clones AS and AJ. As an example, Fig. IA 
shows the amplification products of primer OPL-16. 
Several fragments were amplified, ranging in size from 
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FIG. I. DNA polymorphisms in P. chabaudi revealed by RAPD primer OPL-16. (A) Products of 
initial amplification from clones AS and AJ; arrow indicates 1.3-kb band in AS used in subsequent 
work. (B) Lane I, AIuI digests of genomic DNA of clones AS and AJ. Lane 2, Autoradiograph of 
Southern blot probed with purified 1.3-kb band. (C) Lane I, PFG separation of P. chabaudi AS and 
AJ chromosomes; electrophoresis conditions were 140 V, 120-sec pulse time for 24 hr; 130 V, 300-sec 
pulse time for 24 hr; 140 V, 180-sec pulse time for 24 hr, using a contour-clamped homogeneous 
electric field apparatus (CHEF DR 11, Bio-Rad) and a 1% chromosomal grade agarose gel (Bio-Rad). 
Lane 2, Southern blot probed with purified 1.3-kb band showing hybridisation to chromosomeS; note 
that chromosome 5 of clone AJ is larger than in AS, while chromosome 6 is smaller. 

0.3 to 2.4 kb. Most of the bands were present in both 
AJ and AS. However, some were present in one clone 
but absent from the other. In the example shown, an 
amplified band of approximately 1.3 kb was present in 
AS but absent from AJ. Also, a difference in the in-
tensity of a band of approximately 0.35 kb existed be-
tween the two clones, the AJ 0.35-kb band being more 
intense than the AS band. Using other RAPD primers, 
differences in the sizes of certain bands in the two 
clones could be seen (data not shown), which repre-
sents a third type of polymorphism due to insertion or 
deletion of sequences between the primer binding sites 
at a single locus; alternatively, such bands could be 
presence and absence types of polymorphism at two 
loci. 

The OPL-l6 negative control (Fig. IA) contains am-
plified products in the range 0.6 to 1.2 kb. We found 
that the majority of RAPD primers produced bands in 
their negative controls and that the pattern and sizes of 
bands in these control lanes varied from one reaction  

to another. The possibility of contaminating parasite 
DNA was eliminated by radiolabelling all of the nega-
tive control products and attempting to hybridise them 
to a Southern blot of restricted parasite DNA. No hy-
bndisation to the blots was seen (data not shown). 
Recently it has been shown that contamination of Taq 
polymerase with T. aquaticus DNA is a common oc-
currence (Bottger 1990). We believe that the most 
likely explanation for the presence of these bands is 
amplification of small amounts of such contaminating 
DNA. In the presence of an excess of P. chabaudi 
DNA, primers are able to anneal to this DNA at more 
sites and so compete out the contaminating material. 

Some polymorphic bands could not be amplified re-
producibly in repeated experiments. This has been 
noted in studies of other organisms (Ellsworth et al. 
1993; Kernodle etal. 1993; Meunier and Grimont 1993; 
Riedy et al. 1992; Schierwater and Ender 1993). Some 
laboratories have optimised the PCR reagents and con-
ditions for the parasite under study (Dias Neto et al. 
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1993; Tighe et al. 1993; Waitumbi and Murphy 1993). 
We have circumvented this problem by screening 
polymorphic bands for RFLPs in restriction enzyme 
digests of genomic DNA. Polymorphic bands obtained 
with 7 of the SI primers successfully used in this work 
(oligonucleotides OPL-04, OPL-12, OPL-16, OPR-02, 
OPR-14, OPL-08, and OPL-13; Table 1) were excised 
from agarose gels and the DNA was purified (Vaux 
1992). The DNA was radiolabelled by random priming 
(random primed DNA labelling kit, Boehringer Mann-
nheim) and used to probe Southern blots (Hybond 
N, Amersham International) of A!ui, Dra!, Hindu, 
HinfI, Sau3A, Rsai, and EcoRi digested DNA of each 
parasite clone. The blots were washed at 65°C in 0.5x 
SSC, 0.1% SDS for 2 X 30 min and exposed to Kodak 
XAR-5 film. Figure 1 shows the OPL-16 1.3-kb poly-
morphic band hybridised to blots of A/ui-digested 
DNA and to P. chabaudi chromosomes in a pulsed-
field gel. An RFLP of this marker is clearly seen in 
digests of AS and AJ genomic DNA (Fig. IB), and it 
appears to exist as a single copy on chromosome 5 

(Fig. IC). 
Polymorphic bands obtained from five of the seven 

primers produced clear and reproducible RFLPs 
which appear to exist as single copies in the genome of 
each clone (Table 1). The remaining two, OPL-08 and 
OPL-13, produced amplified bands which were 
present on more than one chromosome and may con-
tain repetitive sequences or be members of a multigene 
family. Such repetitive markers have potential as fin-
gerprinting probes, which can be used to distinguish 
different lines or clones. Products of all seven RAPD-
PCR primers were reamplified using the same primers 
and reagents as described above, but with 2 l of the 
purified DNA of the excised polymorphic band in 
place of P. chabaudi DNA. Amplification conditions 
were 92°C for 30 sec; 50°C for 30 sec; 72°C for I min 30  

sec for 25 cycles. The reamplified products were 
cloned into the vector pCR II using the TA cloning kit 
(Invitrogen) and stored as glycerol stocks for future 
use as probes. 

Although we used DNA prepared by standard meth-
ods, the technique could utilise material prepared by 
other means. For example, several methods have been 
described for preparing DNA from field isolates col-
lected on filter paper (Kain el al. 1992; reviewed in 
McCabe 1991) and from finger-prick samples (Foley el 
al. 1992). Preparing DNA samples using these alterna-
tive methods would be faster and eliminate the need 
for noxious chemical reagents such as phenol. 

In summary, the RAPD-PCR technique has proved 
a fast and effective method for detecting large numbers 
of anonymous polymorphic markers in this parasite. A 
great many randomly chosen primers can be used for 
the screening of different parasite lines, and results are 
obtained in a few hours. This has considerable advan-
tages over the traditional method of probing Southern 
blots with anonymous markers because the initial 
screening quickly identifies polymorphic loci for fur -
ther characterisation. The method outlined here of pu-
rifying variable bands and hybridising them to genomic 
DNA blots allows stable single locus RFLP markers to 
be obtained readily and thus overcomes the problem of 
the reproducibility of the basic RAPD—PCR technique. 
Although we exploited only 7 of the 51 primers in this 
way here, the method could be extended to any of the 
RAPD—PCR products obtained with these types of 
primer. We are currently using the RAPD—PCR mark-
ers obtained through this work to map drug resistance 
genes to chromosomes of P. chabaudi. Such linkage 
analysis has been hindered in the past by the absence 
of suitable DNA markers. The RAPD—PCR technique 
has the potential to provide many more markers for 
the P!as,nodium genome. 

TABLE I 
RAPD Primers Which Produced Polymorphic Bands, Subsequently Used to Detect RFLPs in P. c/iabaudi 

Primer No. Sequence RFLP 
Chromosome 

No. 

OPL-04 5'-GACTGCACAC-3' EcoRl 11 
OPL-l2 5'-GGGCGGTACT-3' Hincii 13 
OPL-16 5'-AGGTTGCAGG-3' A/ui, Rsai 5 
OPR-02 5'-CACAGCTGCC-3' A!uI, HinclI, Hinfi, Rsal 14 
OPR-14 5'-CAGGATTCCC-3' Hincil 12 
OPL-08 5'-AGCAGGTGGA-3' A!uI, Drai, HincII, HinJi, 1/2, 7, 8/9, 

Sau3A,RsaI,EcoRi Ii, 13/14 
OPL-13 5'-ACCGCCTGCT-3' A/ui, Drai, HincIi, HinJl, 1/2. 3, 4, 

Sau3A, RsaI, EcoRl 5 (AJ only), 14 

Note. The chromosomal location of each RAPD—PCR product is shown. OPL-08 and OPL-13 recognised 
multiple sites; their precise chromosomal location was unclear in some instances, due to incomplete separation 
of the chromosomes during PFG electrophoresis. 
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Abstract 

The number of chromosomes and the chromosomal location and linkage of more than 50 probes, mainly of genes, have 
been established in four species of Plasmodium which infect African murine rodents. We expected that the location and 
linkage of genes would not be conserved between these species of malaria parasites since extensive inter- and intraspecific 
size differences of the chromosomes existed and large scale internal rearrangements and chromosome translocations in 
parasites from laboratory lines had been reported. Our study showed that all four species contained 14 chromosomes, 
ranging in size between 0.5 and 3.5 Mb, which showed extensive size polymorphisms. The location and linkage of the genes 
on the polymorphic chromosomes, however, was conserved and nearly identical between these species. These results 
indicate that size polymorphisms of the chromosomes are more likely due to variation in non-coding (subtelomeric, repeat) 
sequences and show that a high plasticity of internal regions of chromosomes that may exist does not frequently affect 
chromosomal location and linkage of genes. 

Keywords: Malaria parasite; Chromosome; Polymorphism; Gene location 

1. Introduction 

The genome of the unicellular eukaryotic para- 
sites which are members of the genus Plasmodium, 
comprises 14 chromosomes, ranging in size between 
0.5 and 3.5 megabases (Mb) (for review see [11). 
These organisms exhibit a remarkable plasticity of 
their genomes as shown by the frequent occurrence 

Abbreviations: FIGE, field inversion gel electrophoresis; 
CI-IEF, contour clamped homogenous electric field electrophoresis 

Corresponding author. Tel: +31-71-276842; Fax: +31-71-
276850; E-mail: Waters@rullf2.leidenuniv.nl.  

of intra-specific size differences between homolo-
gous chromosomes. For example, size differences of 
up to 0.5 Mb have been found between homologous 
chromosomes of different cloned lines of Plasmod-
ium falciparum [2-4]. Extensive size polymorphism 
of chromosomes has also been observed in other 
Plasmodium species [5,6]. Size polymorphisms in 
these organisms arise as a result of various pro-
cesses, such as unequal crossing-over between ho-
mologous chromosomes during meiosis [4,7], dele-
tion and insertion of repeat-sequences [8,9], gene 
amplification [10] and chromosome breakage, fol-
lowed by 'healing' by the process of telomere addi-
tion [11]. Most of these rearrangements affect only 

0166-6851/94/$07.00 © 1994 Elsevier Science B.V. All rights reserved 
SSD! 0166-6851(94)00179-0 
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the subtelomeric regions of chromosomes, while the 
internal regions appear to be less prone to large scale 
rearrangements [9,121. However, chromosome 
translocations resulting in exchange of genes be-
tween non-homologous chromosomes have also been 
reported [13].  Moreover, evidence has been pre-
sented for the occurrence of mitotic recombination 
between non-homologous chromosomes resulting in 
the exchange of DNA-sequences [14]. Analysis of 
the patterns of sequence diversity of ribosomal genes 
also suggest that genetic exchange may occur be-
tween genes which are located on non-homologous 
chromosomes (A.P. Waters and C.J. Janse, unpub-
lished). Large scale rearrangements can even result 
in duplication of chromosomes, by which parasites 
arise with 15 instead of 14 chromosomes ([151; 
unpublished observations). 

Large-scale genome rearrangements in Plasmod-
ium have mainly been found in parasites from labo-
ratory cultures or in parasites under strong selective 
pressure [1]. It is not known whether these kinds of 
rearrangements play a significant role in changes in 
location and linkage of genes on chromosomes of 
parasites in natural populations. In this study we 
have compared the location and linkage of a large 
number of genes on the polymorphic chromosomes 
of four distinct species belonging to the genus Plas-
modium. These species infect African murine rodents 
and are closely related [16].  We show that the loca-
tion and linkage of genes on homologous chromo-
somes are conserved between these species despite 
extensive intra- and interspecific size polymorphisms 
of their chromosomes. This result indicates that large  

scale rearrangements involving inter-chromosomal 
translocations of genes do not significantly con-
tribute to size polymorphisms of chromosomes in 
Plasmodium species which infect rodents. Appar-
ently, parasites with large internal rearrangements 
have a selective disadvantage in nature. 

2. Materials and methods 

2.1. Parasites 

Four distinct species of malaria parasites of 
African murine rodents have been recognized: Plas-
modium berghei, Plasmodium chabaudi, Plasmod-
ium vinckei and Plasmodium yoelii. The clones and 
lines of several of the (sub)species which were used 
in this study are listed in Table 1. 

2.2. Separation of chromosomes 

Field inversion gel electrophoresis (FIGE) and 
contour clamped homogenous electric field (CHEF) 
conditions were used to separate the chromosomes. 
Preparation of parasites and of agarose blocks con-
taining the chromosomes was performed as de-
scribed [9].  FIGE conditions to separate the chromo-
somes of the rodent parasites were as described 
previously [9] and specified in the legends to the 
figures. CHEF separations were performed using a 
BioRad CHEF-DR II apparatus. Conditions are spec-
ified in the legends to the figures. 

Table 1 
Different clones and lines of four species of Plasmodium which infect African murine rodents 

Species Line Origin Clone Reference/source 

P. berghei ANKA Katanga 8417 [5] 
P. berghei ANKA Katanga PE [30] 
P. berghei K173 Katanga 1 [13] 
P. berghei NYU2 Kasapa 1 a [311, T.F. McCutchan, Bethesda, MD 
P. uinckei uinckei V-67 Katanga 1 a M. Wery, Antwerp 
P. yoelii yoelii 17X Central African Rep. 1 a [16], M. Wery, Antwerp 
P. chabaudi chabaudi CB Central African Rep. 1 a G. Snounou, London 
P. chabaudi chabaudi AS Central African Rep. 1 a [33], G. Snounou, London 
P. chabaudi chabaudi AJ Central African Rep. [33], D. Walliker 
P. chabaudi adami Brazaville 1 a [20], G. Snounou, London 

a Clones derived from the lines in our laboratory 
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Table 2 
Molecular probes which have been mapped to the chromosomes of the rodent malaria parasites 

Probe Marker a Reference/source 

Actin-I 14,1 [34] 
Anonymous: HPI12 14,2 [9] 
VAP A (Vaculoar ATPase) 14,3 [35] 
Aldolase-I,II 13,1,2 [36] 
SSP-II (Sporozoite Surface Protein 2) 13,3 [37] 
Cysteine Proteinase 13,4 [38] 
G6PD 13,5 D. Kaslow, Bethesda; O'Brien and Luzzatto (submitted) 
RNA p01111 13.6 [39] 
Small subunit (SSU) rRNA 12,1 [17] 
chab 451 12,2 [40] 
(HSP70) (12,3) [41] 
(GGMP) (12,4) [18] 
Pcmdrl (multidrug resistance) 12,5 J.M.R.C., Edinburgh 
13-tubulin 12,6 [42] 
PCNA (proliferating cell nuclear antigen 11,1 [43] 
CDC2 11,2 R. Vinkenoog, Leiden 
Efi a (Elongation factor 1 a) 11,3 D. Williamson, London 
Histone 2a 11.4 [44] 
VAP B (Vacuolar ATPase subunit B) 10,1 Karcz, Herrman, Trottein and Cowman (submitted) 
Topoisomerase II 10,2 B. Kilbey, Edinburgh 
Calmodulin 10,3 [45] 
5S-RNA 10,4 [46] 
AMA-I (Apical Membrane Antigen-i) 9,1 [47] 
Hexokinase 9-11,2 [48] 
RAN-I (Ras related nuclear antigen) 9,2 A. Sultan, Edinburgh 
PGK (3-phosphoglycerate kináse) 8,1 [49] 
MSA-I (merozoite surface antigen) 8,2 [50] 
RNA-polymerase-II 8,3 [51] 
DHFR (dihydrofolate reductase) 7,1 (15] 
SSU-rRNA 7,2  
Anonymous: 3.18 7,3 [9] 
Anonymous: 3.50 7,4 [9] 
HSP70 7,5 [41] 
GGMP 7,6  
CRK-1 (CDC2-related kinase) 7.7 C. Doeng, Edinburgh 
SSU-rRNA 6.1 [17] 
Ubiquitin fusion protein 6,2 [52] 
Anonymous: 1.9 6,3 [9] 
DNA polymerase-a 6,4 [54] 
PbS21 (21-kDa ookinete surface antigen) 5,1 [29] 
ADPRF (ADP ribosylation factor) 5,2 A.P. Waters, Leiden 
SSU-rRNA 5,3 [17] 
a-Tubulin 5,4 [53] 
Anonymous: 2.2 5,5 [9] 
DNA polymerase- 5,6 [54] 
CSP (Circumsporozoite Protein) 4,1 [55] 
a-Tubulin 4,2 [53] 
Anonymous: 4.1 4,3 [9] 
Anonymous: SPII 3,1 [9] 
X-open reading frame 3,2 A. Thomas, Rijswijk 

2+ ATPase 2,1 [56] 
Anonymous: 7.1 1,1 [9] 
a 

Probes are numbered according to their location on the chromosomes of clone 8417 of P. berghei. The location of the genes on the 
separate chromosomes of the group of 9, 10, and 11, which cannot be separated in P. berghei, has been established in P. chabaudi where 
size polymorphisms between different lines allow the separation of these chromosomes. 
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2.3. Restriction digests of separated chromosomes 

Individual chromosomes or groups of chromo-
somes were excised as small agarose blocks from 
FIGE gels after ethidium bromide staining of the gel. 
The blocks were rinsed once for 15 min with 10 mM 
Tris-HC1/1 mM EDTA, pH 8, once with double 
distilled water and 3 times for 15 min in fresh 
restriction buffer. Thereafter blocks were incubated 
for 24 h in 200 p.l restriction buffer containing 100 
p.g ml of bovine serum albumin (BSA; Promega) 
and 10 U of the restriction enzyme. Restriction 
fragments were separated using FlOE [13].  Elec-
trophoretic conditions are specified in the legends to 
the figures. 

2.4. Blotting, labelling and hybridization 

Agarose gels were blotted to Hybond-N plus 
membranes (Amersham). DNA probes were radiola-
belled by random priming. Hybridization was per-
formed under standard conditions at 60 °C. Blots 
were washed at 60°C as follows: 3 X 15 min in 
3 X SSC/0.5% SDS, 3 X 15 min in 1 X SSC/0.5% 
SDS (1 X SSC: 0.15 M NaCI, 0.015 M Na citrate). A 
further 30 min wash in 0.1 X SSC/0.5% SDS at 
60°C was performed when appropriate. 

2.5. Description of probes 

Table 2 shows the probes which were used in this 
study. Details of most probes and sequence of the 
genes have been published elsewhere (for references 
see Table 2). All probes selected have been obtained 
from Plasmodium species, except the probe for 
Ubiquitin Fusion Protein. All housekeeping genes 
which have been cloned from P. falciparum showed 
a strong cross-hybridization with the rodent malaria 
parasites. In contrast many of the cloned genes en-
coding antigens of the human parasites did not show 
cross-hybridization (results not shown). To establish 
the location of antigen-genes we therefore selected 
the genes cloned from the rodent parasites which 
showed cross-hybridization with all four rodent 
species. Nearly all probes hybridized to only one of 
the fourteen chromosomes. The few exceptions were: 
The SSU-rRNA gene which is present in four copies 
in the genome [17].  The HSP70 and the GGMP gene  

(a protein homologous to HSP70 encoding glycmne-
glycine-methionine-proline repeats), which are lo-
cated on chromosome 7 [18]. Both probes show a 
consistent cross-hybridization with chromosome 12 
of all species. The a-tubulin gene, which is present 
in two different forms in the genome of P. falci-
parum [19]. 

3. Results 

3.1. Location and linkage of genes on chromosomes 

Each of the four species, P. berghe4 P. yoelii, P. 
chabaudi and P. vinckei, has 14 chromosomes (see 
below and Fig. 2). We have mapped more than 50 
probes to the chromosomes of isolates of each species 
by hybridization to blots of pulsed field gels (Table 
2). Fig. 1 shows the chromosomal location of each 
probe in each species. Chromosomal location and 
linkage of the genes appear to be well conserved 
between the species, with certain exceptions as de-
tailed below. 

P. be,gheI 	 P... VInokIl 	 P.C. oh.b.OdI 	 Pp. p0.555 

14,14 

14 	14,14 
53.14 

13,14 
13.1€ 

9.11 	12.1€ 
13 	13,14 13,14 14,14 9-11, 1-11 

12 	12.1€ 12 	12.14 8 	1.14 

9-11 	9-11.1-11 
12 	12.1€ 

10,11 

B 	8,14 89 __ 9. 1  

7,2 

7,5-7 = 61-4 . 5.6 	
5.1€ 

I 	 6,14 55,54 __ 	7.1.7 __ 
5 	5.14 6 	 6,1-4 6 	 6.14 4,14 

5 	 9,14 
2,3 ____ 3,1-2 

2,1 

4.1.3 
7 	7.1-7 
4 	4,14 

4 	4,1-3 

3 3 	,11.2 
2 	2. 3 	3,1-2 

3 = 3,5-2  

1 	1,1 1,2 	2.1 2.1 ___ 
1,1 5,2 	 1.1 

Fig. 1. Schematic representation of the karyotypes and the loca-
tion and linkage of probes on different chromosomes of four 
species of Plasmodium. Chromosomes were separated by pulsed 
field gel electrophoresis (FIGE or CHEF conditions). The number 
of chromosomes in groups of co-migrating chromosomes in pulsed 
field gels was determined as described in Fig. 2. The karyotype of 
clone 8417 of the ANKA Strain of P. berghei (see Fig. 2)is used 
as the reference karyotype to number the chromosomes (see left 
hand side of the karyotypes). The chromosomal location of the 
probes was established by hybridization of radio-labelled probes 
to the chromosomes (see right-hand side of the karyotype for the 
numbers of the probes and Table 1 for the description of the 
probes). The three genes which show a deviant location compared 
to the conserved location and linkage of most genes are boxed. 
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As noted in previous work, polymorphisms in the 
sizes of homologous chromosomes occur both be-
tween the species, and between different isolates and 
clones of a single species. Results obtained for each 
species are as follows. 

P. berghei 
The number of chromosomes and size polymor-

phisms in a number of cloned lines of several dis-
tinct strains of P. berghei have been previously 
studied in detail [9]. The genome comprises 14 chro-
mosomes ranging in size between 0.5 and 3 Mb. The 
molecular karyotype of clone 8417 of the ANKA 
strain has been chosen as the reference karyotype to 
number the chromosomes from 1 (the smallest chro-
mosome) to chromosome 14 (the largest) (Fig. 2). 
Chromosomes 13 and 14 co-migrate in FIGE gels 
and we were not able to separate them by this 
method. However, by applying CHEF conditions 
these chromosomes can readily be separated (Fig. 3). 
Chromosomes 9. 10 and 11 always co-migrate as a 
condensed group, using both FIGE and CHEF condi-
tions. The number of chromosomes in this group has 
been determined previously by counting the number 

P. b.pMI 

ASKA AMW KIfl .n 

P. .j333 

P.,. ,1nc1 

P. *.t.od3 

P. 	th.b.dI P c. .d,J 

P. 

P. y. yoII 

nr 	mb = 3 = = = = 
- 3 - 

2= 

WJno. 14 	- 	14 	- 14 	 14 	14 	 14 

Fig. 2. Schematic representation of the karyotype.s and the total 
number of chromosomes of four species of Plasmodium. The total 
number of chromosomes have been established by separation of 
chromosomes by pulsed field gel electrophoresis (both FIGE and 
CHEF conditions; see also Fig. 3). In each species several of the 
14 chromosomes have the same size and co-migrate as a group in 
pulsed field gels. The exact number of the chromosomes in all 
those groups (see the number at the left hand side of the kary-
otypes) was established by counting the number of telomenc 
fragments after digestion of the chromosomes by Apal (see Fig. 
4). 

of telomeric restriction fragments after digestion of 
this group with rare cutting enzymes and hybridiza-
tion with a telomere specific probe [91 (see also Fig. 
4). 

P. chabaudi 
Two subspecies are recognised, P. c. chabaudi, 

which occurs in the Central African Republic, and 
P. c. adami in the Congo, Brazaville [201. As in P. 
berghei, some chromosomes co-migrate in pulse field 
gels, and the exact number of 14 has been estab-
lished after digestion of chromosomal bands with 
Apat and hybridization with a telomeric probe (Fig. 
4). 

Size polymorphisms of homologous chromosomes 
are seen between P. c. chabaudi and P. c. adami 
(Fig. 2). In addition size polymorphisms occur be-
tween different P. c. chabaudi lines [21]. For exam-
ple, in line AS, chromosome 11 migrates with chro-
mosome 12 but in Al-line, chromosome 11 migrates 
with chromosome 10. Also, chromosome 5 of line 
Al is larger than chromosome 6 of the same line, and 
chromosome 5 of line AS has an intermediate size 
between the two. 

P. iinckei 
Four subspecies have been recognised [16]. Here 

we have studied only P. V. rinckei in detail, which 
has 14 chromosomes. Two other subspecies, P. u. 
le,zturn and P. c. brucechwatti, had nearly identical 
molecular karyotypes as P. t. vinckei (unpublished 
results). 

P. yoelii 
Three subspecies have been recognized [16]. Here 

the 17 X strain of P. y. yoelii is studied in detail. 
The molecular karyotype appears at first sight quite 
different from the other three rodent species (Figs. 1 
and 3). The same is true for the subspecies P. v. 
killicki (unpublished results). In general the chromo-
somes appear to be larger than the chromosomes of 
the other three species and the low number of sepa-
rated bands in ethidium bromide-stained pulsed field 
gels suggest that the total number of chromosomes is 
lower than 14. However, many chromosomes co-
migrate and are difficult to separate both with FIGE 
and CHEF conditions. Counting of restriction frag-
ments of Apal digested chromosomes which hy- 
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bridize to the telomeric probe indicates that the 
genome of this species also comprises 14 chromo-
somes (Fig. 4). 

3.2. Chromosomal rearrangements 

While the linkage groups appeared to be con-
served in the parasite lines studied, there were cer-
tain examples where they were not. Two examples of 
this are shown in Figs. 5 and 6 and are the dihydro-
folate reductase-thymidylate synthase (DHFR-TS) 
gene and the small subunit ribosomal (SSUrRNA) 
genes. In most parasites the DHFR-TS gene is lo-
cated on chromosome 7. However, in one laboratory 
line of P. berghei this gene is on chromosome 13 
(Fig. 5, lane c) as a result of a chromosome translo-
cation [131. In another laboratory line of the same  

species, the gene is present in two copies (Fig. 5, 
lane e) as a result of a chromosome duplication 
(unpublished results). 

In all species four rRNA gene units are present 
which are unlinked in the genome and are located on 
four different chromosomes (Fig. 6). In most lines of 
the different species they are located on chromosome 
5, 6, 7 and 12. In P. chabaudi, however, chromo-
some 7 lacks a copy, while a gene unit is present on 
chromosome 8/9 (Fig. 6, lane d). None of the other 
markers for either chromosome 7 or 8/9 are af-
fected. In the laboratory line of P. berghei, EP, the 
rRNA gene unit of chromosome 7 is on chromosome 
13 as a result of a chromosome translocation [13] 
(Fig. 6, lane c). 

We observed only two further cases in which the 
location of genes deviated from an otherwise con- 
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Fig. 3. Separation of chromosomes of four species of Plasmodium by pulsed field gel electrophoresis under different FIGE and CHEF 
conditions. FlOE conditions were used to separate the chromosomes in the complete size range from 0.5-3.5 Mb (lanes a—j). Different 
CHEF conditions (lanes k—n) were used to separate chromosomes which co-migrate in groups under FIGE conditions. Lanes A-D: S. 
cererisiae (A). P. berghei K173 (B), P. berghei ANKA (C,D). (FIGE: 100 h, 3.5 V cm, pulse time from 30-550 s). Lanes E-J: P. 

berghei ANKA(E). P. c. chabaudi (F.G), P.r. vinckei (H.!), P. y. yoe!ii (J). (FlOE: 90 h, 3.5 V cm', pulse time from 60-500 s). Lanes 
K.L: P. berghei ANKA (CHEF: 24 h, 80-120 s pulse time; 24 h, 130-180 pulse time; 24 h, 180-240 pulse time; 4.5 V cm')Lanes M,N: 
P. berghei ANKA (M), P. v. tinckei (N). (CHEF: 60 h, 500-700s pulse time; 25 h, 300-500 s pulse time; 3.5 V cm'). 
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served gene linkage (Fig. I). In P. r'inckei the RNA 
polymerase-Il gene is on one of chromosomes 9, 10 
or II while in the other species the gene is linked to 
genes on chromosome 8. In the same species the 
yAP-B gene is on chromosome 8 but found on 
chromosome 10 in all other species. 

4. Discussion 

The principal novel finding here is that location 
and linkage of genes on polymorphic chromosomes 
of four malaria parasites which infect rodents appear 
to be well conserved. This conservation of linkage  

groups was not expected since the chromosomes of 
the four species showed considerable inter- and in-
tra-specific size differences and since large scale 
chromosomal rearrangements have been reported fre-
quently. 

Large scale rearrangements in chromosomes, such 
as chromosome translocation, gene amplification and 
chromosome duplication we now know to occur in 
most eukaryotes. Most of these large scale rearrange-
ments occur infrequently and do not belong to devel-
opmentally regulated DNA rearrangements. These 
rearrangements seem to have no specific function 
and may simply be aberrant processes during DNA 
replication and recombination [221. Cells bearing 
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Fig. 4. Telomeric fragments of (co-migrating) chromosomes of four species of Plasmodium. Chromosomes were separated by pulsed field 
gel electrophoresis (see Fig. 3) and groups of chromosomes were excised as small agarose blocks from the gels (see Fig. 1 for the 
numbering of the chromosomes). These chromosomes were digested by Apal and the restriction fragments separated using FIGE conditions 
[131. The fragments were hybridized to a probe which is specific for the telomeres of Plasmodium. Arrows show the telomeric fragments in 
groups of chromosomes which co-migrate in pulsed field gels. P.b. = P. berghei ANKA P.c. = P. c. chabaudi P.v. = P. t. iinckei; 
P.y. = P. y. yoelii. The exact number of the telomeric fragments for all species have been determined after interpretation of results from 
different experiments. This is neccessary since the large difference in size of the fragments requires different FlOE conditions for optimal 
separation of the fragments. In addition, individual chromosomes separated by ROE are often contaminated with (fragments) of other 
chromosomes, resulting in additional weak hybridization bands. Larger Apal fragments always show a weaker signal than the smaller 
telomeric fragments, which is possibly due to a less efficient transfer of the large fragments during the blotting procedure. In P. yoelli the 
chromosomes are shown from a heterogenous population with regard to chromosome 5, which is present in two different size forms. 
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chromosomes with large scale rearrangements often 
show abnormal functions in the progression of the 
normal cell cycle. There is, however, no doubt that 
chromosomal rearrangements have played a large 
role in the evolution of eukaryotic genomes [231. 

Species belonging to the genus Plasmodiurn ex-
hibit an extensive genome plasticity. Chromosome 
size polymorphism and large scale rearrangements 
have been frequently reported. Many of the observed 
size polymorphisms are due to variations in the 
number of subtelomerically located, repeat sequences 
[9]. Besides structural changes in the subtelomeric 
areas, large scale rearrangements can also affect the 
internal regions of chromosomes. Several lines of 
evidence indicate that large scale rearrangements can 
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Fig. 5. Chromosomal location of the DHFR-TS gene on polymor -
phic chromosomes of four species of Plasmodium. This gene is 
usually located on chromosome 7. ranging in size between 1 and 
1.5 Mb (see Fig. 1). In line EP of P. berghei ANKA this gene is 
translocated to chromosome 13 of about 3 Mb (lane c) and in line 
NYU2 of P. berghei two copies are found as a result of a 
chromosome duplication (lane e). Lanes a—e. P. berghei; lane f, 
P. c. chabaudi; lane g. Pt. rinckei; lane h. P.y. yoelii. 
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Fig. 6. Chromosomal location of the rRNA units on polymorphic 
chromosomes of four species of Plasmodium. In all species only 
four copies are present which are unlinked and reside on chromo-
some 5, 6, 7 and 12 in P. berghei (lane AB), Pt. vinckei (lane 
E) and P. y. yoelii (lane F). In P.c. chabaudi (lane D) the genes 
are located on chromosome 5,6,8/9 and 12. In line EP of P. 
berghei ANKA the unit of chromosome 7 is translocated to 
chromosome 13 of about 3 Mb (lane C). 

also cause exchange of genetic material between 
non-homologous chromosomes of Plasmodiurn 

[13,14]. It was unknown whether such large scale 
rearrangements involving translocation of genes be-
tween non-homologous chromosomes occur fre-
quently in nature. Several of the described large 
scale rearrangements have been found in parasites 
which had been cultured in vitro or in artificial 
laboratory hosts and it is uncertain whether these 
parasites would be able to survive in nature. An 
interesting question was therefore whether the 
genome plasticity frequently affected the chromoso-
mal location of genes in parasites from field isolates, 
resulting in reshuffling of linkage groups and whether 
this plasticity could be a specific feature of chromo-
somes of Plasmodiuni. 

The comparison of the location and linkage of 
genes on chromosomes of four murine Plasmodiwn 



CJ. Janse et al. / Molecular and Biochemical Parasitology 68 (1994) 285-296 
	

293 

species reported here, has produced no evidence that 
large-scale rearrangements frequently affect the gene 
composition of their chromosomes. An explanation 
for the conserved location and linkage of genes on 
chromosomes of the four rodent species might be 
that internal chromosomal rearrangements occur less 
frequently in parasites which multiply under natural 
conditions than in parasites which are maintained 
under laboratory conditions. A more likely explana-
tion might be that parasites with rearranged chromo-
somes have a selective disadvantage in nature. It is 
known that chromosomal rearrangements often lead 
to meiotic disturbances and are selected against [24]. 
This will substantially limit the reshuffling of genes. 
Internal large scale rearrangements in Plasmodium 
have mainly been found. in laboratory lines which 
only proliferate by asexual multiplication without the 
occurrence of meiosis which takes place during the 
sexual cycle in the mosquito [1]. 

Studies on chromosome structure of the human 
parasite P. falciparum points to the existence of 
conserved internal regions of chromosomes [12] and 
the less frequent appearance of rearranged chromo-
somes in field isolates compared to parasites cultured 
in the laboratory [25].  Studies on the molecular basis 
of pyrimethamine resistance of P. falciparum for 
example showed that in culture induced resistance 
could coincide with duplication of genes and chro-
mosome rearrangements. In resistant parasites from 
field isolates this kind of rearrangements have so far 
not been detected, and resistance has been found to 
be exclusively due to point mutations [26]. 

Despite the conserved linkage of the genes under 
study, the chromosomes of the four rodent species 
showed considerable inter- and intraspecific size dif-
ferences. Although we localized only a small propor-
tion of the total number of genes present in the 
genome, it seems unlikely that all these size differ-
ences result from differences in the chromosomal 
location of as yet unlocalized genes. If we assume 
therefore that the probes selected are representative 
of a reasonable proportion of the genome and no 
large variation exists in the total number of genes 
between the different species, the observed size poly-
morphisms are most likely caused by differences in 
number and structure of non-coding intervening se-
quences. Studies on different sized chromosomes 
from P. berghei have shown that size differences of  

up to 0.5 Mb were almost exclusively due to varia-
tions in the number of 2.3-kb repeats, which are 
subtelomerically located [9]. Large variations in those 
repeats did not influence the viability of the parasites 
and apparently did not exclude cross-fertilization 
between parasites containing different sized chromo-
somes (unpublished results). 

We found a few exceptions to the conserved 
linkage of the genes in these species. In P. chabaudi 
chromosome 7 lacks a copy of the rRNA gene unit, 
while a copy is present on chromosome 8/9. In the 
other three rodents a copy is present on 7 and the 
copy on 8/9 is missing. The organization of rRNA 
genes in Plasmodium is unusual in that only a low 
number of unlinked gene units are present and unique 
in that they can be divided in two different types, A-
and C-type units [27,28]. We recently showed that in 
P. berghei the A-type genes are on chromosome 7 
and 12 and the C-type genes on chromosome 5 and 6 
(unpublished results). Since all rodent species appear 
to have four copies, it is likely that the ancestor of 
these species had the same number of units. Most 
probably these genes were located in the ancestor on 
chromosome 5, 6, 7 and 12 since in three out of four 
species the units reside on those chromosomes. In 
the case of P. chabaudi the 'deviant' location on 
chromosome 8/9 could be the result of a chromo-
some translocation event, comparable to the translo-
cation of a rRNA gene from chromosome 7 to 
chromosome 13 in a laboratory line of P. berghei. 
Since rodent parasites are usually maintained by 
asexual multiplication in artificial hosts in the labora-
tory, it is still possible that the few exceptions of 
deviant locations of genes are caused by rearrange-
ments under laboratory conditions, and do not occur 
in field isolates. In the case of P. chabaudi this is 
unlikely since isolates of both, geographically iso-
lated, subspecies have the rRNA gene copy on chro-
mosome 8/9 (see also [21]). The other two deviant 
locations were found in P. vinckei and involved 
genes located on chromosome 8. Interestingly, in 
three subspecies of P. vinckei (P. u. vinckei, P. v. 
lentum, P. U. brucechwatti) chromosome 8 has the 
same size and is small compared to the same chro-
mosome in the other three rodent species. This may 
suggest that in the ancestor of these subspecies a 
translocation of a region of chromosome 8 to a larger 
chromosome has occurred. These few exceptions of 
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deviant gene locations suggest that occasionally vi-
able parasites with inter-chromosomal translocations 
do arise in nature, although the frequency of these 
events appears to be lower than expected. More 
importantly, the results indicate that a high plasticity 
of internal regions of chromosomes is not a clear and 
specific feature of the chromosomes of Plasmodium. 

Comparison of linkage of genes between closely 
and distantly related species might be useful to estab-
lish information about the evolution of genomes and 
species. Recently a comparison was made between 
the chromosomal linkage of genes in the rodent 
parasites and the linkage groups in the human para-
site P. falciparum. This work has shown that there is 
some conservation of linkage groups between the 
rodent species and P. falciparum, although this is 
significantly less than is observed between the four 
rodent species (J.M.R. Carlton, unpublished observa-
tions). The presence of conserved linkage groups of 
genes in distantly related species might be an indica-
tion of the existence of functional relationships be-
tween linked genes [23].  For example, coordination 
of timing of expression of a set of genes might 
require linkage. Interestingly, in the rodent malaria 
parasites several genes which are expressed during 
early sexual development (C-type rRNA [28],  unpub-
lished observations), PbS21 [29],  a-tubulin [191) are 
located on chromosome 5 in the rodent malaria 
parasites. Deletions in this chromosome coincided 
with the loss of the capacity to produce sexual cells 
[30]. Characterization and localization of more genes 
involved in sexual development is necessary to es-
tablish whether this chromosome might play a cru-
cial role in the sexual cycle. If indeed genes involved 
in sexual development appear to be clustered in the 
genome of Plasmodium, the study of the region 
might provide information about genes which deter-
mine the initial steps in the sexual differentiation of 
Plasmodium. Knowledge of stable linkage groups 
within the genus Plasmodium may also be applied in 
a predictive sense to aid the search for homologous 
genes in other human parasites. 
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Abstract 

Plasmodium falciparum has two extrachromosomal genomes, the mitochondrial 6-kb DNA element and the 35-kb 
circular DNA. The mitochondrial gene cytochrome b on the 6-kb element has been shown to be inherited uniparentally. 
In order to ascertain whether the route is maternal or paternal we have examined preparations of male and female 
gametes of the closely related Plasmodium gallinaceum for the presence of extrachromosomal DNA. DNA from purified 
preparations of gametes was hybridised to probes for both the 6-kb and 35-kb extrachromosomal genomes. Both 
probes hybridised to the preparation of Plasmodium gallinaceum female gametes but not to that of the males. We 
conclude that the extrachromosomal DNAs of malaria parasites are transmitted maternally. 

Key words: Maternal inheritance; Plasmodium falciparum; Plasmodium gallinaceum; Extrachromosomal genomes 

1. Introduction 

Malaria parasites have two forms of extrachro-
mosomal DNA; a multi-copy 6-kb linearly reiter -
ated molecule and a low copy number 35-kb circle 
[1]. Subcellular fractionation [2] suggested that the 
6-kb element is mitochondrial in origin unlike the 
35-kb molecule which has yet to be assigned to a 
specific organelle. In a previous study of a cross 
between two clones of the human malaria para-
site Plasmodium falciparum, we showed that in in-
dividual hybrid oocysts the cytochrome b gene lo-
cated on the 6-kb element was inherited from one 

Corresponding author. Tel.: 031 650 8659, Fax: 031 668 3861 

or other but not both parents [3]. We interpreted 
this to mean that the 6-kb element may be present 
in only one of the parental gametes and we now 
describe experiments designed to distinguish 
whether inheritance is through the male or the 
female route. 

Our approach has been to hybridise prepara-
tions of DNA from purified male and female ga-
metes with probes representing the 6-kb element 
(the mitochondrial cytochrome b gene) or the 35-
kb circle (the rpoB gene). Since it is not yet possi-
ble to obtain purified male gametes from P. falci-
parum, we prepared male and female gametes 
from the related parasite P. gallinaceum [4] whose 
male gametes are sufficiently robust to withstand 
the purification procedure [5]. 

0166-6851/94/$7.00 © 1994 Elsevier Science B.V. All rights reserved 
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2. Materials and methods 

Gamete preparations. Two types of gamete pre-
paration were derived from the blood of chickens 
infected with P. gallinaceum. One consisted of pur-
ified male gametes prepared by fractionation fol-
lowed by differential centrifugation as previously 
described [5]. The other was a mixture of female 
gametes and fertilised zygotes, hereafter referred 
to as the female gamete preparation, and was pre-
pared also by fractionation and centrifugation as 
previously described [6]. Both preparations were 
approximately 98% pure, with respect to other 
contaminating cell material, as assessed by micro-
scopic examination. 

Preparation of DNA blots. DNA was obtained 
by phenol/chloroform extraction [7], from both 
male and female gamete preparations, and the 
DNA concentrations were estimated following 
electrophoresis. The male gamete preparation was 
not diluted since the concentration of the DNA 
was very low. The female preparation was diluted 
to give a sample in the same range of concentra-
tion as that of the male. Both samples were di-
gested at 37°C overnight, with Hindu, and 
electrophoresed on a 1 % agarose gel at 70 V. The 
gel was blotted overnight onto nylon membrane 
(Hybond N +, Amersham) by alkaline transfer, 
using the method of Southern [7]. 

Preparation of probes. A fragment of a single 
copy P. gallinaceum nuclear gene, Pgs25 [8], 
which encodes the ookinete surface protein, was 
amplified by the polymerase chain reaction techni-
que using a mixed male and female P. gallinaceum 
gamete DNA template. The amplified product was 
used as a probe to determine the relative amounts 
of nuclear DNA in the male and female samples. 
A fragment of the mitochondrial cytochrome b 
gene [9] was similarly amplified for use as a probe 
for the 6-kb element. A fragment of the 35-kb 
molecule overlapping the 5' end of the rpoB gene 
was amplified from P. falciparum DNA using P. 
falciparum primers. An attempt to amplify this 
fragment from the P. gallinaceum gamete DNA 
using the P. falciparum-specific oligonucleotides 
failed to give reliable results, possibly because of 

the high 85% AT richness of the 35-kb primers. 
The various primers cited above and the condi-
tions of the polymerase chain reactions were as 
follows: (a) for the Pgs25, primers 5'-GTA CTA 
ACA TCT GAA AGT ACC TG-3' and 5'-CTT 
CCT TAT CGA AAG TGT AAC C-3' with 35 
cycles of 95°C for 30 s, 50°C for 1 mm, and 70°C 
for 2 mm, (b) for the cytochrome b gene, primers 
5'-TCA ACA ATG ACT TFA TTT G-3' and 5'-
TTT GTT CTG CTA ATA G-3' with 30 cycles of 
95°C for 30 s, 45°C for 30 s, and 72°C for 2 mm, 
(c) for the rpoB gene primers 5'-AAT AAT TGA 
ATA CAT GTT TTA TAT AAT C-3' and 5'-
AAT TTF AAA GAA ATT AAT ATA TTF 
AAA T-3' with 35 cycles of 95°C for 30 s, 42°C 
for 30 s and 72°C for 2 mm. 

Hybridisation of probes to DNA blots. Both the 
nuclear and the two extrachromosomal DNA 
fragments were labelled with [ 32P]dATP by ran-
dom-priming [10]. The Southern blot of male and 
female gamete DNA preparations was hybridised 
with the nuclear Pgs25 probe overnight, washed 
and exposed to film for 4 h before examination. 
The blot was then stripped and the hybridisation 
procedure repeated as before using the 6-kb ele-
ment cytochrome b gene probe. The blot was ex-
posed to film for 4, 8, and 25 h. For the 35-kb 
probe the blot was again stripped and hybridised 
at a low stringency of 50°C overnight and washed 
with 2 x saline sodium citrate + 0.1% sodium do-
decyl sulphate. The blot was exposed to film for 4 
h, overnight and for 6 days. 

3. Results 

Visual examination of the Southern blots of 
male and female gamete DNA preparations 
showed that there was approximately twice the 
amount of DNA in the male track as in the fe-
male track, as measured by the intensity of the 
nuclear gene probe (Figs. 1A and 2A). The cyto-
chrome b gene probe hybridised very strongly to 
the female track but was undetectable at 4-h expo-
sure in the male track (Fig. lB). However, follow -
ing 8-h and 25-h exposure, a faint band in the 
male track was detectable at the same position as 
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Fig. 1. The same Southern blot of male (M) and female (F) P. 
gallinaceum DNA gamete preparations probed with three dif-
ferent probes: (A) probed for a fragment of the nuclear gene 
Pgs25; (B) probed for a fragment of the 6-kb cytochrome b 
gene; (C) probed for a fragment from the 35-kb circle. 

the cytochrome b gene probe on the female track. 
The density of these bands was measured on a 
densitometer (Fig. 2), and on a Molecular Dy -
namics Phosphorimager (Fig. 3). The Phosphori-
mager readings for all three exposures (4, 8 and 25 
h) in the female track were in linear progression. 
In both the 4- and 8-h exposures where a male 
track signal was detectable, this reading was only 
2% of the signal in the female track. Thus in rela-
tion to the amount of DNA recognised by the 
probe for the nuclear genome (female=0.5 male), 
there was approximately 1% of the signal for cy- 

Fig. 2. Densitometnc traces of Southern blot of P. gallinaceum 
male and female gamete preparation DNA probed with: (A) a 
nuclear gene fragment Pgs25 (integral: male = 3334, female = 
1506), and (B) a fragment from the cytochrome b gene on the 
extrachromosomal 6-kb element (integral male = 640, female 
= 17710). 

tochrome b in the preparation of male gametes, 
compared to that in the female gametes. 

The 35-kb probe showed a similar hybridisation 
pattern to the 6-kb probe with a single clear band 
in the female track but no hybridisation visible in 
the male track even after 6 days exposure of the 
film to the blot (Fig. 1C). The lower intensity of 
the hybridisation with this probe may be due to 

Se 

 

4 

 

5 

2 

4 	8 	 25 

Hours of autoradiograph exposure 

Fig. 3. Readings taken on the Molecular Dynamics Phosphor-
imager of three different exposures of the male and female P. 
gallinaceum gamete preparations probed with the cytochrome b 
gene probe. 
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the fact that the probe was from a different spe-
cies. Furthermore, dot blot analysis shows the 35-
kb circle to be present at one, or at the most two, 
copies per cell compared to around 20 copies of 
the 6-kb element per cell (P. Preiser and D. Wil-
liamson, unpublished data). This may also contri-
bute to the lower intensity of signal. 

4. Discussion 

We found that with respect to the amounts of 
nuclear DNA in our two samples, the female ga-
mete DNA contained large amounts of the cyto-
chrome b gene fragment compared to the male 
gamete DNA. The female preparation also con-
tained DNA corresponding to the fragment de-
rived from the 35-kb element, which was undetect-
able in our male gamete preparation. Similar find-
ings have recently been reported by Vaidya et al. 
[11]. Whilst our purification technique went a long 
way towards obtaining pure male and female ga-
metes, we are aware that the preparations were 
not 100% pure. The female preparation undoubt-
edly contained some fertilised zygotes and possibly 
damaged or dead male gametes. The male pre-
paration may have contained female-derived deb-
ris and residual body material from the male ga-
metocytes. It is reasonable to suppose therefore, 
that the small amounts of 6-kb cytoplasmic ele-
ment detected in the male preparation could be 
the result of contamination. 

Electron microscopic examination of male and 
female gametes in malaria species indicates that 
each of the six to eight male gametes, derived from 
a single male gametocyte, contains little more than 
a nucleus, surface membrane and an axoneme 
whereas the female gamete contains a full comple-
ment of cytoplasmic organelles [12]. Crosses be-
tween two different clones of P. falciparum indi-
cated that inheritance of the cytochrome b gene 
was uniparental [3,11]. We conclude from the re-
sults presented here that both the 6-kb and the 35-
kb cytoplasmic elements are most probably inher -
ited only through the female gamete. 
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threat to health than Edge Hill virus itself. Two mono-
clonal antibodies, 1137 and 4G2, which react with epi-
topes common to Edge Hill and dengue viruses, en-
hanced infection of a human monocytic cell line (U-937) 
by dengue virus (HENCHAL etal., 1985). Most isolations 
of Edge Hill virus have been made in the north-east re-
gion of Australia (Dot-tERrY, 1972) where dengue 1 ap-
pears to have become endemic and the first cases of 
dengue 2 infection for almost 50 years were diagnosed in 
1992. 

Apart from drawing attention to the possibility of 
clinical infections with Edge Hill virus, this report raises 
2 other significant issues. Diagnostic laboratories which 
do not routinely test for antibody against Edge Hill virus 
should be aware of the close serological relationship be-
tween it and dengue 2, even in 1gM assays which are 
often virus specific (ScoTT et al., 1972), and consider-
ation may need to be given to the possibility of antibody 
against Edge Hill virus enhancing subsequent dengue in-
fections in residents of areas where only a single dengue 
serotype is in circulation. 
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sistance. This study was supported, in part, by a donation from 
Dr T. B. Lynch, Rockhampton. 

References 
Aaskov, J. G., Ross, P., Davies, C. E. A., Innis, M. D., Guard, 

R. W., Staliman, N. D. & Tucker, M. (1981). Epidemic 
polyarthritis in north-eastern Australia, 1978-1979. Medical 
Journal ofAustralia, ii, 17-19. 

Blok, J., Henchal, E. A. & Gorman, B. M. (1984). Comparison 
of dengue viruses and some other flaviviruses by eDNA-
RNA hybridisation analysis and detection of a close relation-
ship between dengue virus serotype 2 and Edge Hill virus. 
Journal of General Virology, 65, 2173-2181. 

Doherty, R. L. (1972). Arboviruses of Australia. Australian Ve-
terinay Journal, 48, 172-180. 

Doherty, R. L., Marks, E. M., Carley, J. G. & Mackerras, M. 
J. (1963). Studies of arthropod-borne virus infections in 

Queensland. III. Isolation and characterisation of virus 
strains from wild caught mosquitoes in north Queensland. 
Australian Journal of Experimental Biology and Medical 
Science, 41, 17-40. 

Doherty, R. L., Carley, J. G., Kay, B. H., Filippich, C., 
Marks, E. N. & Frazier, C. L. (1979). Isolation of virus 
strains from mosquitoes collected in Queensland, 1972-
1976. Australian Journal of Experimental Biology and Medical 
Science, 57, 509-520. 

Francis, T. (1955). The current status of the control of in-
fluenza. Annals of InternalMedicine, 43, 534-538. 

Hawkes, R. A., Boughton, C. R., Naim, H. M., Wild, J. & 
Chapman, B. (1985). Arbovirus infections of humans in 
New South Wales. Sero-epidemiology of the flavivirus group 
of togaviruses. MedicalJourual ofAustralia, 143, 555-561. 

Henchal, E. A., McCown, J. M., Burke, D. S., Sequin, M. C. 
& Brandt, W. E. (1985). Epitope analysis of antigenic deter-
minants on the surface of dengue 2 virions using monoclonal 
antibodies. American Journal of Tropical Medicine and Hy-
giene, 34, 162-169. 

Hunder, G. G. & Hazleman, B. L. (1985). Giant cell arteritis 
and polymyalgia rheumatica. In: Textbook of Rheumatology, 
Kelly, W. N., Harris, E. D., Ruddy, S. & Sledge, C. B. 
(editors), 2nd edition. London: W. B. Saunders, pp.  1166-
1173. 

Lumley, G. F. & Taylor, F. H. (1943). Dengue. Sydney: School 
of Public Health and Tropical Medicine, Commonwealth of 
Australia, Service Publication no. 3. 

Marshall, I. D. & Woodroofe, G. M. (1975). Epidemiology of 
arboviruses. Report of the John Curtin School of Medical Re-
search, p. 2. 

Scott, R. M., McCown, J. M. & Russell, P. K. (1972). Human 
immunoglobulin specificity after group B arbovirus infec-
tions. Infection and Immunity, 6, 277-281. 

Spradbrow, P. B. (1972). Arbovirus infections of domestic ani- 
mals in Australia. Australian Veterina,yJournal, 48, 181-185. 

Wiemers, M. A. & Stallman, N. D. (1975). Immunoglobulin M 
in Murray Valley encephalitis. Pathology, 7, 187-191. 

Received 21 July 1992; accepted for publication 8 October 
1992 

A 

Annual International Course on Identification of Arthropods and other Insects of Medical and 
Veterinary Importance 

18 April-13 May 1994: London, UK 

Further information can be obtained from: Dr M. J. R. Hall, Medical and Veterinary Division, Department 
of Entomology, The Natural History Museum, Cromwell Road, London, SW7 51313, UK; phone 
(0)71-938-9451, fax (0)71-938-9395/8937. 



454 

TRANSACTIONS OF THE ROYAL SOCIETY OF TROPICAL MEDICINE AND HYGIENE (1993) 87, 454-458 

Drug response and genetic characterization of Plasmodium falciparum clones 
recently isolated from a Sudanese village 

Riad A. L. Bayoumi2 , Alison M. Creasey', Hamza A. Babiker 1 ' 4, Jane M.-R. Carlto&, All A. Sultan 1 ' 3 , Gwiria 
Satti3 , Awinder K. SohaI 1 , David Walliker 1 , James B. Jensen 5  and David E. Arnot 1  1lnstitute of Cell, Animal and 
Population Biology, University of Edinburgh, Scotland, UK; 2Biochemistiy Department, Faculty of Medicine and Health 
Sciences, United Arab Emirates University, Al-A in, United Arab Emirates; 3Faculty of Medicine, University of Khartoum, 
Khartoum, Sudan; 4Malaria Administration, Ministry of Health, Khartoum, Sudan; 5Brigham Young University, Provo, 
Utah, USA - 

Abstract 
We have isolated 20 clones of Plasmodiumfalciparum from isolates from patients attending a village clinic in 
Sudan during 10 d in October—November 1989. The clones were genetically diverse, having highly variable 
molecular karyotypes and a wide range of drug responses. Chloroquine-sensitive (50% inhibitory concentra-
tion [IC50] in the 4-15 nM range) and chloroquine-resistant clones (1050 in the 40-95 nM range) co-existed in 
the population, but no obvious amplification of the P-glycoprotein homologue gene, Pghl (previously 
known as the multi-drug resistance gene, mdrl) marked the chloroquine-resistant clones. Chloroquine re-
sistance was reversible by verapamil in these clones, although they varied in their susceptibility to verapamil 
alone. These observations indicate that the biochemical characteristics of the Sudanese chloroquine-resistant 
P. falciparum are similar to those reported from south-east Asian and Latin American isolates, which is con-
sistent with there being a similar molecular basis for this phenomenon. 

Introduction 
Chloroquine is the only antimalarial drug available at a 

cost accessible to even a minority of the Sudanese people 
and as such constitutes the major element of malaria con-
trol in Sudan and similar African countries (PETERS, 
1987). The emergence of chloroquine-resistant Plasmo-
dium falciparum in the Eastern Province since around 
1986 (BAYOUMI et al., 1989) is causing acute problems as 
the episodic, post-rainy season malaria epidemics charac-
teristic of sub-Sahelian Sudan cease to be controlled by 
this drug. 

The mode of action of chloroquine and the mechanism 
of resistance to the drug are unclear, and several oppos-
ing viewpoints exist (HOMEw00D et al., 1972; KROG-
STAD et al., 1987; GINSBURG, 1988; WARHURST, 1988; 
FOOTE et al., 1990; WELLEMS et al., 1990). Studies in 
vitro on chloroquine resistance in different laboratories 
have made use of different long-term cultured lines of P. 
falciparum originating mainly from south-east Asia or the 
Amazon basin. Conclusions drawn from the analysis of 
such isolates may not accurately reflect the present situ-
ation in an area such as Sudan. Although currently 
spreading rapidly, chloroquine-resistant P. falciparum 
was not reported in Sudan until 25 years after its appear -
ance in south-east Asia and South America, and several 
years after its appearance in East Africa (AL TAWIL & 
AKOOD, 1983). Chloroquine is essentially the only anti-
malarial drug available in most of Sudan, and for econ-
omic and climatic reasons usage has not been as heavy as 
in more prosperous areas with more stable malaria trans-
mission. 

In order to study the genetic basis for the spread of 
chloroquine-resistant P. falciparum, we have recently 
characterized 29 isolates from a single village in eastern 
Sudan with a developing problem of chloroquine-resis-
tant malaria (BABIKER et al., 1991a, 1991b). Since most 
of these isolates proved to be mixtures of genetically dif -
ferent parasites, we have now obtained cloned lines from 
some of the isolates, in order to define parasite genotypes 
and their biochemical profiles of drug resistance. We 
showed that the clones had highly variable molecular ka-
ryotypes and wide ranges of drug responses. Chloroquine 
resistance is reversible by verapamil, but no obvious am-
plification of the P-glycoprotein homologue gene, Pghl 
(previously known as the multi-drug resistance gene, 
mdrl) marked the chloroquine-resistant clones. 

Address for correspondence: R. A. Bayoumi, Biochemistry De-
partment, Faculty of Medicine and Health Sciences, U.A.E. 
University, Al-Am, P.O. Box 17666, United Arab Emirates. 

Materials and Methods 
Study area 

The study area in Asar village, 20 km from Gedaref in 
the Eastern Province of Sudan, has been described else-
where (BABIKER et al., 1991b). Malaria transmission is 
seasonal and reaches a peak in October or November fol-
lowing the rainy season. The main Plasmodium species 
present is P. falciparum. Chloroquine resistance was first 
reported in this region in 1986 (BAY0uMI et al., 1989). 

Isolation and characterization of P. falciparum clones 
The initial isolates were obtained with informed con-

sent from villagers attending a local clinic during the Oc-
tober—November malaria season of 1989. Clones were 
obtained using the limiting dilution method (R0SARI0, 
1981), from a selection of isolates known to exhibit a 
range of sensitivity to chloroquine and to pyrimeth-
amine. Certain of these isolates were known to be mixed 
infections by their possession of more than one allele of 
genes for antigens and other proteins (BABIKER et al., 
1991a). Following the cloning procedure, the resulting 
cultures were shown to be pure clones by ensuring that 
each haploid clone was monoallelic for each of 2 highly 
polymorphic antigens (merozoite surface protein [MSP]-
1 and MSP-2) when tested in immunofluorescence assays 
with a panel of allele-specific monoclonal antibodies 
(CONWAY & MCBRIDE, 1991). 

Pulsed field gels 
P. falciparum chromosomes were separated by pulsed 

field gradient gel electrophoresis (PFG) as described pre-
viously (BABIKER et al., 1991b), with a basic regime of 22 h, 
120s pulses, 140 V followed by 22 h, 180s pulses, 140 V, 
and finally 24 h, 300s pulses, 120 V. Southern blotting, 
dot-blotting and hybridization were performed using 
standard techniques (SAMBROOK et al., 1989). 

Measurement of drug sensitivity 
Hypoxanthine incorporation assay. Chloroquine-induced 

inhibition of uptake of [3H]hypoxanthine by the clones 
was measured using the methods of DESJARDINS et al. 
(1979) and GEARY et al. (1983). Tests were carried out on 
unsynchronized cultures, diluted in RPMI medium con-
taining 10% human serum to 1% parasitaemia and 1% 
haematocrit, in a final volume of 0•2 mL in microtitre 
plate wells. [3H]hypoxanthine was added to a final con-
centration of 5 !lCiJmL. Chloroquine sulphate was added 
to final concentrations ranging from 10 to 160 nM. After 
40-44 h incubation, cells were lysed, washed and har-
vested on to fibre glass filters. Filters were then baked 
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and counted in a PPOPOPOP* !toluene  scintillation fluid 
supplemented with 300/0  Triton X-lO0. Results were ex-
pressed as percentage inhibition compared to the incor -
poration of label in control wells without drug. The con-
centration of chloroquine which produced 50% 
inhibition of parasite growth (IC50) was obtained from 
the regression line of dose response curves of parasite in-
hibition plotted against the logarithm of drug concentra-
tion. 

Microscopical determinatwns. Clones were cultured in 
microtitre plates in serial dilutions of chloroquine, meflo-
quine and pvrimetharnne in complete RPMI medium 
for 72 h, essentially according to the method of THAI-
THONG et al. (1983). Each well contained 100tL, at lob 
parasitaemia and 5% haematocrit. After 72 h, thin blood 
films were made from each well, and the viability as-
sessed by microscopical examination. The results were 
expressed as the minimum inhibitory concentration 
(MIC) which killed all, or nearly all, of the parasites. 

Effect of verapamil 
Drug sensitivity of the parasites to chloroquine, meflo-

quine and pyrimethamine was assessed with and without 
the addition of 1 tM verapamil to the cultures. The effect 
of verapamil alone over a wider range of concentrations 
(0-5 lAM) was also tested on some clones. 
Chemicals 

[ 3 H]hvpoxanthine (40 Cimmol) was obtained from 
Amersham International Ltd. UK; chloroquine sulphate 
(Nivaquine) from May and Baker Ltd, UK; pvrimeth-
amine from Wellcome, UK; mefloquine from Hoffman 
La Roche, Switzerland; and verapamil from Sigma 
Chemical Company. Glass fibre filters were obtained 
from Titertek.  

of results were obtained. 
All the clones from a single isolate possessed chro-

mosomes of identical size, as observed in isolate SUD 
111. This suggests that, at the time of cloning, the para-
sites in these samples were of a clonal type, due either to 
a clonal-tvpe infection in the patient or to selection of a 
predominant clone during initial culturing of the Un-
cloned isolate. 

The clones of a single isolate varied in the size of 
only one or 2 chromosomes. This was most probably due 
to deletions or accretions in the chromosomes concerned 
during asexual growth in culture of a clonal-type parasite 
(WELLEMS et al., 1988). This was seen in isolate SUD 
105, in which the 4 clones obtained were karvotvpically 
identical, except that clone 7 had a 300-400 kilobase (kb) 
deletion of chromosome 10, and clones 9 and 11 both 
had 200 kb accretions in chromosome 4. These related 
clones had identical drug sensitivities and possessed the 
same MSP-1 and MSP-2 alleles. 

Several quite different karyotypes were obtained 
from a single isolate. This result can be presumed to have 
been due to the patient's hrbouring a mixed infection at 
the time the parasites were obtained. The clones derived 
from patients SUD 106 and 124 illustrate this situation. 
While SUD 1067 and 10610 differed from other clones 
of the same isolate, the' were identical to each other, ex-
cept in the size of 2 chromosomes. 

Identical clones have never been isolated from differ-
ent individuals, a result consistent with the extremely 
diverse genetic profiles of malaria isolates in general 
(CREASEY, 1990) and in particular the uncloned Asar iso-
lates from which these clones were derived (BABIKER et 
al., 1991a, 1991b). 

An autoradiograph of a Southern blot of gel IA probed 

Fig. I Karotvp Wversitv in some examples of P. falctparurn Jones 1mm Asar village, eastern Sudan. A. Ethidium bromide stained chromosomes separ-
ated on a 05. agarose gel using a 01EF electrophoresis apparatus. Seien ol the parasites tested are Asar clones. 2 of which. 112 I and 124 Il. were not 
included in the study see the Table for the drug sensitivity phenotypes. T994 is a Thai clone. Chromosomes 4 and 5 are marked, and approximate chro-
mosome sizes in kilobases are indicated on the right. B. After Southern blotting, gel A was successively probed with gene markers for chromosomes 4 and 5, 
the Pg/i I gene and the DHFR gene respectively. The 2 autoradiographs from the same blot have been superimposed before photography for comparison 
and signal intensities are not proportional to gene copy number. 

Results 
Clone characterization 

All the clones were confirmed as pure by their pos-
session of single alleles of MSP-1 and MSP-2, using 
monoclonai antibody typing (results not shown). 

The clones were examined for chromosomes by pulsed 
field electrophoresis. Results for a representative sample 
of clones are shown in Fig. lA. When clones from indi-
vidual isolates were compared, the following 3 categories 

2,5-Diphenyloxazole 1 ,4-bis[5-phenvl-2-oxazolyl]benzene 

with the genes encoding the P. falciparim dihydrofolate 
reductase .DHFR gene' located on chromosome 4, and 
Pghl located on chromosome 5 is shown in Fig. lB. In 
each clone the DHFR probe always hybridized to the 
fourth smallest chromosome, which, however, differed 
in size among the clones. The Pghl probe hybridized to 
the fifth smallest chromosome in only 2 clones (SUD 
1285 and SUD 1284). These results illustrate clearly the 
considerable size polymorphism of these 2 chromosomes, 
especially of chromosome 5, among this group of iso-
lates. 



456 

Although there were differences in the relative intens-
ity of hybridization of the probes shown in Fig. 1, deo-
xyribonucleic acid (DNA) transfer from pulsed field gels 
is not reliably quantitative and the amount of DNA per 
lane in this gel was not constant. Using more quantitative 
dot-blots and Southern blots of DNA digested with re-
striction enzymes, we have not been able to detect 
DHFR or Pghl gene amplification in DNA samples of 
any of the clones, whether drug-resistant or drug-sensi-
tive. 

Chioroquine sensitivity 
Drug resistance measurements, even with identical 

clones, may show considerable inter-laboratory variation. 
To increase confidence in assessing the drug response of 
a given clone, we have, therefore, employed and com-
pared 2 different assays in this work. 1050 values above 
35 nM, as assessed by [ 3 H]lypoxanthine incorporation, 
and MIC values of 16xl0M, as assessed microscopi-
cally, were taken to indicate clear chloroquine resistance. 
The drug responses of the 20 clones are presented in the 
Table. They are listed in ascending order of ICso values, 

Table. Drug sensitivity phenotypes of twenty P. falciparum clones 
derived from patient blood samples collected in the village of Asar, 
Sudan, during October and November 1989 

ChloroquineChloroquine' Mefloquine P yrimethamine a 

ic50t 	MICC 	MICC 	MICC 
(xl0 9M) (x10 7M) (xlO TM) 	 (M) 

Verapamil 	No Yes No Yes No Yes 	No 	Yes 

Experimental clones" 
SUD 105/1 4 3 8 4 4 4 lO lO 
SUD 105/9 6 5 8 4 4 4 lO lO 
SUD 105/11 7 4 8 4 4 4 lO lO 
SUD 106/10 7 4 2 2 4 4 10' 10-6  
SUD 105/7 8 4 8 4 4 4 10' lO 
SUD 106/9 9 8 4 4 4 4 10 106 
SUD 106/7 13 4 4 2 4 4 10" 10_6 
SUD 106/11 11 5 4 4 4 4 10 10_6 
SUD 106/1 15 6 2 2 4 4 10 - ' 10_ 6  
SUD 128/5 43 10 8 4 4 2 10-1 106f 

SUD 128/4 45 11 8 4 4 2 10 i0 
SUD 124/8 58 19 16' 4 2 2 10' 10' 
SUD 128/1 64 18 8 4 4 2 10 iO 
SUD 123/5 64 18 16 8 8 8 f  10" 10' 
SUD 124/5 65 28 16 4 2 2 10- ' 10' 
SUD 124/1 73 27 16 8 2 2 10' 10 6f 
SUD 126/1 83 18 16 1 2 2 iO iO 
SUD 10211 85 12 16 8 2 2 10 8  o' 
SUD 122/1 92 23 16 4 2 2 106 10-6f 

SUD 111/1 95 21 16 8 2 2 10" 10' 
Control clones 

31376  8 3 4 2 4 2 10' lO 
Dd26  57 15 16 8 16 8 10-6 10-6f 

All values are means of 3 or more separate experiments, with ('yes') and 
without ('no') verapamil (1 sM). 

bConcen tra tion  giving 50% inhibition of parasite growth. 
Concentration killing all parasites within 72 h. 

"Clones with the same 'one hundred' number before the solidus were 
isolated from a single patient sample. 

'A few parasites were still viable at the indicated concentrations. 
tReduced parasitaemia at the indicated concentrations. 
8 'Control' chloroquine-sensitive and chloroquine-resistant clones, respec-
tively. 

with the chloroquine-resistant Dd2 and chloroquine-sen-
sitive 3D7 laboratory-adapted clones as reference con-
trols. 

On the whole, the 2 tests of sensitivity in vitro to chlo-
roquine gave comparable results. No clone with an MIC 
of 16x 10 7M chloroquine had an ICso <50 nM. Simi-
larly, no clone with an ICso value <35 nM has an MIC 
>8x10 7M. Certain ambiguities remain, in that some 
clones of isolate SUD 105 which appeared very chloro-
quine-sensitive in the IC50 test, showed intermediate sen-
sitivity in the MIC test. Apart from this, the combination 
of both tests appeared to allow differentiation of the para-
sites into a sensitive group comprising all the SUD 105  

and SUD 106 clones, and a resistant group consisting of 
all the other clones. No clone had chloroquine sensitivity 
in the 1050 range 15-43 nM. 

Resistance to mefloquine and pyri methamine 
Most of the clones were sensitive to mefloquine (Table), 

in agreement with the results of tests on the original 29 
uncloned isolates from Asar village (BABIKER et al., 
1991b). Again in accordance with our earlier results, 5 
clones (SUD 124/1, SUD 124/5, SUD 124/8, SUD 123/5 
and SUD 111/1) were highly resistant to pyrimethamine. 

One clone, SUD 123/5, was resistant to both chloro-
quine and pyrimethamine and showed a slight decrease 
in susceptibility to mefloquine. However, none of the 
other clones was resistant to all 3 drugs. Mefloquine re-
sistance is clearly not linked to chloroquine resistance. 
While high level pyrimethamine resistance was found 
only in chloroquine-resistant clones, many of the latter 
were sensitive to pyrimethamine. 
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Fig. 2. The effect of 1 jAm verapamil on the response of 4 Sudanese and 2 
standard laboratory-adapted P. falciparum clones to chloroquine. Closed 
circles (S), without verapamil; open circles (0), with verapamil. SUD 
105/11, SUD 106/1 and 31317 were chloroquine sensitive, SUD 126/I, 
SUD 128/I and Dd2 were chloroquine resistant. Points represent the 
average of simultaneous duplicate experiments. Similar curves have been 
obtained for all clones tested. 

Effect of verapamil 
Verapamil, a calcium channel blocker, has been re-

ported to reverse chioroquine resistance in some isolates 
of P.falciparum (MARTIN etal., 1987). We tested the ef-
fects of verapamil on our clones (Table) to ascertain 
whether verapamil reversibility was also characteristic of 
the chloroquine-resistant parasites studied here. 
Examples of drug tests where the capacity of increasing 
concentrations of chloroquine to inhibit [ 3 H]hypoxan-
thine uptake has been measured, with and without the 
addition of 1 tM verapamil, are shown in Fig. 2. Clones 
SUD 105/11, SUD 106/1 and 3D7 were chloroquine-sen-
sitive. Verapamil did not shift the inhibition curve of the 
3D7 reference control, although it slightly increased the 
toxicity of chloroquine to the drug-sensitive Asar (SUD) 
clones. Clones SUD 126/1, SUD 128/1 and Dd2 were 
chloroquine-resistant, and verapamil clearly increased 
their chloroquine sensitivity, although not to the levels of 
the naturally sensitive clones. 
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Fig. 3. The effect of verapamil alone on [3 H]hypoxanthine uptake over 
4-0-44 h by 2 Sudanese and 2 standard laboratory-adapted P. falciparum 
clones. Dd2 and SUD 124/5 were chloroquine resistant and 3D7 and 
SUD 106/7 were chioroquine sensitive. Points represent the average of 
duplicate experiments carried out simultaneously on the same microtitre 
plate. Three separate experiments gave the same rank order of drug sen-
sitivities. 

It has been reported (MARTIN et al., 1987) that vera-
parnil itself has intrinsic antimalarial activity. An 
example of the effect of verapamil alone on the capacity 
of parasites to incorporate [3 H]hypoxanthine is shown in 
Fig. 3. Dd2 and SUD 124/5 were chloroquine-resistant, 
and SUD 106/7 and 3D7 were chloroquine-sensitive. 
There were large intrinsic differences in their suscepti-
bility to the antimalarial effect of verapamil, Dd2 being 
particularly sensitive. 

The sensitivity of some of the Sudanese clones to me-
floquine and pyrimethamine also appeared to increase on 
addition of verapamil (Table), although to only a limited 
extent. 

Discussion 
In our initial survey of uncloned P. falciparum isolates 

from Asar village, we found that no 2 isolates were gene-
tically identical and that it was possible to detect several 
obviously mixed isolates (BABIKER et al., 1991a, 1991b). 
The molecular karyotypes of the clones derived from 
these isolates have further confirmed the highly diverse 
nature of this small parasite population. Mapping of 
DHFR and Pgh 1 markers on to chromosomes demon-
strates that comparisons of chromosome separations 
stained with ethidium bromide underestimate the true 
extent of karyotypic diversity. More detailed genome 
maps would undoubtedly reveal more radical differences 
in genome organization between these clones which, it 
should be emphasized, represent only a small sample of 
the total population of P. falciparum in this small com-
munity. 

In general, our results indicated that the biochemical 
characteristics of the Sudanese chloroquine-resistant P. 
falciparum are similar to those reported for south-east 
Asian and Latin American isolates, and are consistent 
with there being a similar molecular basis for the phe-
nomenon. The use of genetically pure clones from the 
1989 transmission peak permitted a clearer differentia-
tion of some of the characteristics of the drug resistant P. 
falciparum in this village, as follows. 

(i) Clones of P. falciparum exhibiting low, intermediate 
and high level chloroquine resistance co-existed with 
highly sensitive parasites in the population of this village. 

The reversibility of chioroquine resistance of P. 
falciparum by verapamil (MARTIN et al., 1987) also ap-
peared to be characteristic of the chloroquine resistant 
malaria currently spreading in Asar. However, verapamil 
has an antimalarial effect of its own, as shown by MAR-

TIN et al. (1987) and in our work. The addition of vera-
pamil increased the sensitivity of these clones not only to 
chioroquine but also, in some instances to mefloquine 
and pyrimethamine. 

The Pgh 1 gene has been reported to be amplified 
in some, but not all, chloroquine-resistant P. falciparum 
isolates (FOOTE et al., 1989). However, we have not been 
able to detect Pgh 1 gene amplification in DNA samples 
from either chloroquine-resistant or chloroquine-sensi-
tive Sudanese P.falciparum clones. 

In accordance with our earlier findings with the 
uncloned isolates, 5 clones were highly resistant to pyri-
methamine. This result is of interest, since pyrimeth-
amine was not widely used in Sudan before 1986. Since 
then, however, Fansidar® (pyrimethamine/sulfadoxine) 
became available through relief agencies. This may ex-
plain the appearance and selection of mutants resistant to 
this drug. It may also be relevant that clinical pyrimeth-
amine resistance was noted in Sudan as early as 1954 
(PHILLIPS, 1954) and, more recently, in the Sennar re-
gion (IBRAHIM et al., 1991). Only a few parasites in this 
and our previous survey (BABIKER et al., 1991b) showed 
any degree of resistance to mefloquine. 

In the survey of the uncloned isolates, some were 
found to exhibit resistance to all 3 drugs. However, none 
of the clones examined in this work was multi-drug resis-
tant, with the possible exception of clone SUD 123/5. 
Since clones resistant to both chloroquine and, at a high 
level, to pyrimethamine coexisted in this community, 
and many patients were infected with more than one 
clone, it is certainly possible that genetic recombination 
during mosquito transmission could increase the fre-
quency of multi-drug resistant clones. 

These results suggest that chloroquine-resistant P. fal-
ciparum in this small village (and presumably the rest of 
Sudan) is not a distinct parasite 'strain'. Rather, it ap-
pears that genes conferring resistance to this drug are in-
creasing in frequency in the parasite population, prob-
ably due to the continuing use of chloroquine in the area. 
While clinical chloroquine resistance has increased in fre-
quency among patients attending the nearby Gadaref 
District Hospital during 1986-1990 (unpublished data), 
most patients in the village appeared to be cured by 
standard chloroquine therapy. Whether the situation is 
slowly deteriorating and chloroquine will soon be clini-
cally useless remains to be seen. 
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