1,300 research outputs found

    Modelling interplanetary CMEs using magnetohydrodynamic simulations

    No full text
    International audienceThe dynamics of Interplanetary Coronal Mass Ejections (ICMEs) are discussed from the viewpoint of numerical modelling. Hydrodynamic models are shown to give a good zero-order picture of the plasma properties of ICMEs, but they cannot model the important magnetic field effects. Results from MHD simulations are shown for a number of cases of interest. It is demonstrated that the strong interaction of the ICME with the solar wind leads to the ICME and solar wind velocities being close to each other at 1 AU, despite their having very different speeds near the Sun. It is also pointed out that this interaction leads to a distortion of the ICME geometry, making cylindrical symmetry a dubious assumption for the CME field at 1 AU. In the presence of a significant solar wind magnetic field, the magnetic fields of the ICME and solar wind can reconnect with each other, leading to an ICME that has solar wind-like field lines. This effect is especially important when an ICME with the right sense of rotation propagates down the heliospheric current sheet. It is also noted that a lack of knowledge of the coronal magnetic field makes such simulations of little use in space weather forecasts that require knowledge of the ICME magnetic field strength

    First Cluster results of the magnetic field structure of the mid- and high-altitude cusps

    No full text
    International audienceMagnetic field measurements from the four Cluster spacecraft from the mid- and high-altitude cusp are presented. Cluster underwent two encounters with the mid-altitude cusp during its commissioning phase (24 August 2000). Evidence for field-aligned currents (FACs) was seen in the data from all three operating spacecraft from northern and southern cusps. The extent of the FACs was of the order of 1 RE in the X-direction, and at least 300 km in the Y-direction. However, fine-scale field structures with scales of the order of the spacecraft separation (300 km) were observed within the FACs. In the northern crossing, two of the spacecraft appeared to lie along the same magnetic field line, and observed very well matched signals. However, the third spacecraft showed evidence for structuring transverse to the field on scales of a few hundred km. A crossing of the high-altitude cusp from 13 February 2001 is presented. It is revealed to be a highly dynamic structure with the boundaries moving with velocities ranging from a few km/s to tens of km/s, and having structure on timescales ranging from less than one minute up to several minutes. The cusp proper is associated with the presence of a very disordered magnetic field, which is entirely different from the magnetosheath turbulence

    Development and calibration of a sand pluviation device for preparation of model sand bed for centrifuge tests

    Get PDF
    A bespoke 0.068m3 (18.5 gallon) sand hopper is employed at the newly established 50gTon centrifuge facility at the University of Sheffield. The sand hopper employs a series of mesh inserts of different diameters which control the flow rate and thus the relative density of the model. A series of calibration tests on equivalent Fraction E and Fraction C sands were performed to calibrate the mesh diameter and drop height for a desired relative density. Result showed that the sand hopper is capable of delivering repeatable relative densities in the range of 30% to above 90%, for both kinds of sand grades. This wide range relative density is considered sufficient to satisfy the needs of researchers preparing dry sand models for testing in the center

    Analysis and Modeling of Two Flare Loops Observed by AIA and EIS

    Full text link
    We analyze and model an M1.0 flare observed by SDO/AIA and Hinode/EIS to investigate how flare loops are heated and evolve subsequently. The flare is composed of two distinctive loop systems observed in EUV images. The UV 1600 \AA emission at the feet of these loops exhibits a rapid rise, followed by enhanced emission in different EUV channels observed by AIA and EIS. Such behavior is indicative of impulsive energy deposit and the subsequent response in overlying coronal loops that evolve through different temperatures. Using the method we recently developed, we infer empirical heating functions from the rapid rise of the UV light curves for the two loop systems, respectively, treating them as two big loops of cross-sectional area 5\arcsec by 5\arcsec, and compute the plasma evolution in the loops using the EBTEL model (Klimchuk et al. 2008). We compute the synthetic EUV light curves, which, with the limitation of the model, reasonably agree with observed light curves obtained in multiple AIA channels and EIS lines: they show the same evolution trend and their magnitudes are comparable by within a factor of two. Furthermore, we also compare the computed mean enthalpy flow velocity with the Doppler shift measurements by EIS during the decay phase of the two loops. Our results suggest that the two different loops with different heating functions as inferred from their footpoint UV emission, combined with their different lengths as measured from imaging observations, give rise to different coronal plasma evolution patterns captured both in the model and observations.Comment: Accepted for publication in Ap

    Comparison of Hinode/XRT and RHESSI detection of hot plasma in the non-flaring solar corona

    Full text link
    We compare observations of the non-flaring solar corona made simultaneously with Hinode/XRT and with RHESSI. The analyzed corona is dominated by a single active region on 12 November 2006. The comparison is made on emission measures. We derive emission measure distributions vs temperature of the entire active region from multifilter XRT data. We check the compatibility with the total emission measure values estimated from the flux measured with RHESSI if the emission come from isothermal plasma. We find that RHESSI and XRT data analyses consistently point to the presence of a minor emission measure component peaking at log T ~ 6.8-6.9. The discrepancy between XRT and RHESSI results is within a factor of a few and indicates an acceptable level of cross-consistency.Comment: 12 pages, 3 figures, Letter accepted for publicatio

    Engine Component Retirement-For-Cause: A Nondestructive Evaluation (NDE) and Fracture Mechanics Based Maintainance Concep

    Get PDF
    Historically, cyclic life limited gas turbine engine components have been retired when they reach an analytically determined life where the first fatigue crack per 1000 parts could be expected. By definition, 99.9% of these components are being retired prematurely as they have considerable useful life remaining. Retirement for Cause is a procedure which would allow safe utilization of the full life capacity of each individual component. Since gas turbine engine rotor components are prime candidates and are among the most costly of engine components, adoption of a RFC maintenance philosophy could result in substantial engine systems life cycle cost savings. Two major technical disciplines must be developed and integrated to realize those cost savings: Fracture Mechanics and Nondestructive Evaluation. This paper discusses the methodology, and development activity required, to integrate these disciplines to provide a viable RFC system for use on military gas turbine engines, and illustrates potential benefits of its application
    • …
    corecore