281 research outputs found

    Wireless phone use in childhood and adolescence and neuroepithelial brain tumours: Results from the international MOBI-Kids study

    Get PDF
    In recent decades, the possibility that use of mobile communicating devices, particularly wireless (mobile and cordless) phones, may increase brain tumour risk, has been a concern, particularly given the considerable increase in their use by young people. MOBI-Kids, a 14-country (Australia, Austria, Canada, France, Germany, Greece, India, Israel, Italy, Japan, Korea, the Netherlands, New Zealand, Spain) case-control study, was conducted to evaluate whether wireless phone use (and particularly resulting exposure to radiofrequency (RF) and extremely low frequency (ELF) electromagnetic fields (EMF)) increases risk of brain tumours in young people. Between 2010 and 2015, the study recruited 899 people with brain tumours aged 10 to 24 years old and 1,910 controls (operated for appendicitis) matched to the cases on date of diagnosis, study region and age. Participation rates were 72% for cases and 54% for controls. The mean ages of cases and controls were 16.5 and 16.6 years, respectively; 57% were males. The vast majority of study participants were wireless phones users, even in the youngest age group, and the study included substantial numbers of long-term (over 10 years) users: 22% overall, 51% in the 20-24-year-olds. Most tumours were of the neuroepithelial type (NBT; n = 671), mainly glioma. The odds ratios (OR) of NBT appeared to decrease with increasing time since start of use of wireless phones, cumulative number of calls and cumulative call time, particularly in the 15-19 years old age group. A decreasing trend in ORs was also observed with increasing estimated cumulative RF specific energy and ELF induced current density at the location of the tumour. Further analyses suggest that the large number of ORs below 1 in this study is unlikely to represent an unknown causal preventive effect of mobile phone exposure: they can be at least partially explained by differential recall by proxies and prodromal symptoms affecting phone use before diagnosis of the cases. We cannot rule out, however, residual confounding from sources we did not measure. Overall, our study provides no evidence of a causal association between wireless phone use and brain tumours in young people. However, the sources of bias summarised above prevent us from ruling out a small increased riskFunding for the coordination of the MOBI-Kids study was obtained from the European Community’s Seventh Framework Programme under grant agreements number 226873 and 603794, and from the Spanish Ministry of Science and Innovation (MINECO). In Spain, additional funding was obtained from the Spanish Health Research Fund (FIS) of the National Institute for Health Carlos III, and from the Junta de AndalucĂ­a, ConsejerĂ­a de Salud. Proyecto PI-0317-2010. ISGlobal also acknowledges support from the Spanish Ministry of Science, Innovation and Universities through the “Centro de Excelencia Severo Ochoa 2019- 2023” Program (CEX2018-000806-S), support from the Generalitat de Catalunya through the CERCA Program and support from the Secretariat of Universities and Research of the Department of Business and Knowledge of the Generalitat of Catalonia through AGAUR (the Catalan Agency for Management of University and Research Grants) (Project 2017 SGR 1487). Australian participation in MOBI-Kids was supported by the Australian National Health and Medical Research Council with a five-year research grant (grant number: 546130). Austrian participation in MOBI-Kids was partly supported by a grant from the Ministry of Science. In Canada, participation in MOBI-Kids was supported by a university-industry partnership grant from the Canadian Institutes of Health Research (CIHR), reference number 110835, with the Canadian Wireless Telecommunications Association (CWTA) serving as the industrial partner. CWTA provides technical information on wireless telecommunications in Canada and facilitates access to billing records from Canadian network operators, but has no involvement in the design, conduct, analysis, or interpretation of the MOBI-KIDS study. French participation was also supported by the French National Agency for Sanitary Safety of Food, Environment and Labour (ANSES, contract FSRF2008-3), French National Cancer Institute (INCa), Pfizer Foundation and League against cancer. The German study centre received additional funding from the Federal Office for Radiation Protection (BfS) under grant number 3609S30010. In Greece, the study was partially supported by the Hellenic Society for Social Pediatrics and Health Promotion, ELKE (Special Account for Research Grants of the National and Kapodistrian University of Athens) and GGET (General Secretariat for Research and Technology). Mobi-Kids India was supported by Board of Research in Nuclear Sciences (BRNS, sanction no: 2013/38/01-BRNS). Italian participation was partially supported by a Ministry of Health grant (RF-2009-1546284). MOBI-Kids Korea was supported by the ICT R&D program (2017-0-00961 and 2019-0-00102) of MSIT/IITP, Korea. Mobi-Kids Japan was supported by Research on biological electromagnetic environment (Grant Number: 0155-0107) of Ministry of Internal Affairs and Communications Japan. New Zealand participation was supported by the Health Research Council (HRC 12/380) and Cure Kids (grant number 3536). The Netherland’s participation in MOBI-KIDS was partly supported by The Netherlands Organisation for Health Research and Development (ZonMw) within the program Electromagnetic Fields and Health Research under grant number 85800001, and by the ODAS foundation, a private foundation supporting activities in the field of pediatric oncology and visual disabilities. The funding sources had no role in the study design; the collection, analysis, and interpretation of data; the writing of the report; or the decision to submit the article for publicationDepartamento de BiologĂ­a Ambiental y Salud PĂșblic

    Clinical presentation of young people (10–24 years old) with brain tumors: results from the international MOBI‑Kids study

    Get PDF
    We used data from MOBI-Kids, a 14-country international collaborative case–control study of brain tumors (BTs), to study clinical characteristics of the tumors in older children (10 years or older), adolescents and young adults (up to the age of 24). Information from clinical records was obtained for 899 BT cases, including signs and symptoms, symptom onset, diagnosis date, tumor type and location. Overall, 64% of all tumors were low-grade, 76% were neuroepithelial tumors and 62% gliomas. There were more males than females among neuroepithelial and embryonal tumor cases, but more females with meningeal tumors. The most frequent locations were cerebellum (22%) and frontal (16%) lobe. The most frequent symptom was headaches (60%), overall, as well as for gliomas, embryonal and ‘non-neuroepithelial’ tumors; it was convulsions/seizures for neuroepithelial tumors other than glioma, and visual signs and symptoms for meningiomas. A cluster analysis showed that headaches and nausea/ vomiting was the only combination of symptoms that exceeded a cutof of 50%, with a joint occurrence of 67%. Overall, the median time from frst symptom to diagnosis was 1.42 months (IQR0.53–4.80); it exceeded 1 year in 12% of cases, though no particular symptom was associated with exceptionally long or short delays. This is the largest clinical epidemiology study of BT in young people conducted so far. Many signs and symptoms were identifed, dominated by headaches and nausea/vomiting. Diagnosis was generally rapid but in 12% diagnostic delay exceeded 1 year with none of the symptoms been associated with a distinctly long time until diagnosisThis work was supported by the MOBI-Kids study and the work in this study was obtained from the European Community’s Seventh Framework Programme under Grant Agreements Number 226873—the MOBI-Kids Project—and 603794—the GERoNiMO project. Additional funds for the coordination of MOBI-Kids were obtained from the Spanish Ministry of Science and Innovation (MINECO), while complementary funds for the conduct of MOBI-Kids in Spain were obtained from the Spanish Health Research Fund (FIS) of the National Institute for Health Carlos III. Italian participation is partially supported by a Ministry of Health grant (RF-2009-1546284). In Canada, funding was provided by a grant from the Canadian Institutes for Health Research under a peer-reviewed university-industry partnership program that involved the Canadian Wireless Telecommunications Association, who provided technical data on wireless telecommunications practices in Canada. The German study centre received additional support by the Federal Ofce for Radiation Protection (BfS). Japanese participation in MOBI-Kids was supported by the Ministry of Internal Afairs and Communications. New Zealand participation was supported by Health Research Council and Cure Kids. In France, this study received funds from the French National Agency for Sanitary Safety of Food, Environment and Labour (ANSES, contract FSRF2008-3), French National Cancer Institute (INCa), Pfzer Foundation and League against cancer. India received funding from Board of Research in Nuclear Sciences (BRNS). The funding sources had no role in: the study design; the collection, analysis, and interpretation of data; the writing of the report; and the decision to submit the article for publicationDepartamento de BiologĂ­a Ambiental y Salud PĂșblic

    Tumeurs cérébrales et téléphonie mobile chez les jeunes

    Get PDF
    International audienceL’utilisation croissante du tĂ©lĂ©phone portable chez les adolescents, et plus rĂ©cemment chez les enfants, suscite des inquiĂ©tudes quant Ă  de possibles effets sanitaires des radiofrĂ©quences. C’est dans ce contexte que le projet de recherche international "MOBI-KIDS" a Ă©tĂ© initiĂ©, afin d’évaluer chez les jeunes de 10 Ă  24 ans le risque potentiel de tumeurs cĂ©rĂ©brales liĂ© Ă  l’exposition aux radiofrĂ©quences

    Numerical Implementation of Representative Mobile Phone Models for Epidemiological Studies

    Get PDF
    This paper describes an implementation method and the results of numerical mobile phone models representing real phone models that have been released on the Korean market since 2002. The aim is to estimate the electromagnetic absorption in the human brain for casecontrol studies to investigate health risks related to mobile phone use. Specific absorption rate (SAR) compliance test reports about commercial phone models were collected and classified in terms of elements such as the external body shape, the antenna, and the frequency band. The design criteria of a numerical phone model representing each type of phone group are as follows. The outer dimensions of the phone body are equal to the average dimensions of all commercial models with the same shape. The distance and direction of the maximum SAR from the earpiece and the area above –3 dB of the maximum SAR are fitted to achieve the average obtained by measuring the SAR distributions of the corresponding commercial models in a flat phantom. Spatial peak 1-g SAR values in the cheek and tilt positions against the specific anthropomorphic mannequin phantom agree with average data on all of the same type of commercial models. Second criterion was applied to only a few types of models because not many commercial models were available. The results show that, with the exception of one model, the implemented numerical phone models meet criteria within 30%

    Subtle excess in lifetime cancer risk related to CT scanning in Spanish young people

    Get PDF
    Background: CT scan is a life-saving medical diagnostic tool, entailing higher levels of ionising radiation exposure than conventional radiography, which may result in an increase in cancer risk, particularly in children. Information about the use and potential health effects of CT scan imaging among young people in Spain is scarce. Objective: This paper aims to estimate the number of radiation-related cancer cases which can be expected due to the use of CT scanning in Spanish children and young adults in a single year (2013). Methods: The 2013 distribution of number and types of CT scans performed in young people was obtained for Catalonia and extrapolated to the whole Spain. Organ doses were estimated based on the technical characteristics of 17,406 CT examinations extracted from radiology records. Age and sex-specific data on cancer incidence and life tables were obtained for the Spanish population. Age and sex-specific risk models developed by the Committee on Health Risks of Exposure to Low Levels of Ionizing Radiations (BEIR VII) and Berrington de Gonzalez were used, together, with the dose estimates to derive the lifetime attributable risks of cancer in Spain due to one year of CT scanning and project the number of future cancer cases to be expected. Results: In 2013, 105,802 CT scans were estimated to have been performed in people younger than age 21. It was estimated that a total of 168.6 cancer cases (95% CrI: 30.1-421.1) will arise over life due to the ionising radiation exposure received during these CTs. Lifetime attributable risks per 100,000 exposed patients were highest for breast and lung cancer. The largest proportion of CTs was to the head and neck and hence the highest numbers of projected cancer cases were of thyroid and oral cavity/pharynx. Conclusions: Despite the undeniable medical effectiveness of CT scans, this risk assessment suggests a small excess in cancer cases which underlines the need for justification and optimisation in paediatric scanning. Given the intrinsic uncertainties of these risk projection exercises, care should be taken when interpreting the predicted risks

    CT scan exposure in Spanish children and young adults by socioeconomic status: Cross-sectional analysis of cohort data

    Get PDF
    Recent publications reported that children in disadvantaged areas undergo more CT scanning than others. The present study is aimed to assess the potential differences in CT imaging by socioeconomic status (SES) in Spanish young scanned subjects and if such differences vary with different indicators or different time point SES measurements. The associations between CT scanning and SES, and between the CT scan rate per patient and SES were investigated in the Spanish EPI-CT subcohort. Various SES indicators were studied to determine whether particular SES dimensions were more closely related to the probability of undergoing one or multiple CTs. Comparisons were made with indices based on 2001 and 2011 censuses. We found evidence of socio-economic variation among young people, mainly related to autonomous communities of residence. A slightly higher rate of scans per patient of multiple body parts in the less affluent categories was observed, possibly reflecting a higher rate of accidents and violence in these groups. The number of CT scans per patient was higher both in the most affluent and the most deprived categories and somewhat lower in the intermediate groups. This relation varied with the SES indicator used, with lower CT scans per patients in categories of high unemployment and temporary work, but not depending on categories of unskilled work or illiteracy. The relationship between these indicators and number of CTs in 2011 was different than that seen with the 2001 census, with the number of CTs increasing with higher unemployment. Overall we observed some differences in the SES distribution of scanned patients by Autonomous Community in Spain. There was, however, no major differences in the frequency of CT scans per patient by SES overall, based on the 2001 census. The use of different indicators and of SES data collected at different time points led to different relations between SES and frequency of CT scans, outlining the difficulty of adequately capturing the social and economic dimensions which may affect health and health service utilisation

    Review of the Epidemiologic Literature on EMF and Health

    Get PDF
    Exposures to extremely low-frequency electric and magnetic fields (EMF) emanating from the generation, transmission, and use of electricity are a ubiquitous part of modern life. Concern about potential adverse health effects was initially brought to prominence by an epidemiologic report two decades ago from Denver on childhood cancer. We reviewed the now voluminous epidemiologic literature on EMF and risks of chronic disease and conclude the following: a) The quality of epidemiologic studies on this topic has improved over time and several of the recent studies on childhood leukemia and on cancer associated with occupational exposure are close to the limit of what can realistically be achieved in terms of size of study and methodological rigor. b) Exposure assessment is a particular difficulty of EMF epidemiology, in several respects: i) The exposure is imperceptible, ubiquitous, has multiple sources, and can vary greatly over time and short distances. ii) The exposure period of relevance is before the date at which measurements can realistically be obtained and of unknown duration and induction period. iii) The appropriate exposure metric is not known and there are no biological data from which to impute it. c) In the absence of experimental evidence and given the methodological uncertainties in the epidemiologic literature, there is no chronic disease for which an etiological relation to EMF can be regarded as established. d) There has been a large body of high quality data for childhood cancer, and also for adult leukemia and brain tumor in relation to occupational exposure. Among all the outcomes evaluated in epidemiologic studies of EMF, childhood leukemia in relation to postnatal exposures above 0.4 microT is the one for which there is most evidence of an association. The relative risk has been estimated at 2.0 (95% confidence limit: 1.27-3.13) in a large pooled analysis. This is unlikely to be due to chance but, may be, in part, due to bias. This is difficult to interpret in the absence of a known mechanism or reproducible experimental support. In the large pooled analysis only 0.8% of all children were exposed above 0.4 microT. Further studies need to be designed to test specific hypotheses such as aspects of selection bias or exposure. On the basis of epidemiologic findings, evidence shows an association of amyotrophic lateral sclerosis with occupational EMF exposure although confounding is a potential explanation. Breast cancer, cardiovascular disease, and suicide and depression remain unresolved

    Medical applications of ionizing radiation and radiation protection for European patients, population and environment

    Get PDF
    Medical applications of ionising radiation (IR) represent a key component of the diagnosis and treatment of many diseases, guaranteeing efficient health care. The use of IR in medicine, the largest source of general population radiation exposure, is potentially associated with increased risk of cancer and non-cancer diseases, which needs to be evaluated to provide evidence-based input for risk-benefit considerations. Efforts are also needed to improve the safety and efficacy of medical applications through optimisation. The EC Euratom programme enhances research in medical radiation protection. The four complementary multidisciplinary projects presented here contribute to (1) improving knowledge on exposure and effects of diagnostic and therapeutic applications and (2) transferring results into clinical practice. The common aim is to optimise use for individual patients, enhance education and training, ensuring adherence to ethical standards, particularly related to technologies based on artificial intelligence. MEDIRAD, SINFONIA and HARMONIC focus on improving exposure estimation and studying the detrimental effects of diagnostic and therapeutic medical exposures in patients and staff using different endpoints. EURAMED rocc-n-roll brings together the results of the projects and the recommendations generated by them to build, in collaboration with the EU Radiation Protection research platforms, a strategic research agenda and a roadmap for research priorities
    • 

    corecore