21,229 research outputs found

    A Control Framework for Autonomous Smart Grids for Space Power Applications

    Get PDF
    With the National Aeronautics and Space Administration's (NASA) rising interest in lunar surface operations and deep space exploration, there is a growing need to move from traditional ground-based mission operations to more autonomous vehicle level operations. In lunar surface operations, there are periods of time where communications with ground-based mission control could not occur, forcing vehicles and a lunar base to completely operate independent of the ground. For deep space exploration missions, communication latency times increase to greater than 15 minutes making real-time control of critical systems difficult, if not near impossible. These challenges are driving the need for an autonomous power control system that has the capability to manage power and energy. This will ensure that critical loads have the necessary power to support life systems and carry out critical mission objectives. This paper presents a flexible, hierarchical, distributed control methodology that enables autonomous operation of smart grids and can integrate into a higher level autonomous architecture

    Neutron matter from chiral two- and three-nucleon calculations up to N3^3LO

    Full text link
    Neutron matter is an ideal laboratory for nuclear interactions derived from chiral effective field theory since all contributions are predicted up to next-to-next-to-next-to-leading order (N3^3LO) in the chiral expansion. By making use of recent advances in the partial-wave decomposition of three- nucleon (3N) forces, we include for the first time N3^3LO 3N interactions in many-body perturbation theory (MBPT) up to third order and in self-consistent Green's function theory (SCGF). Using these two complementary many-body frameworks we provide improved predictions for the equation of state of neutron matter at zero temperature and also analyze systematically the many-body convergence for different chiral EFT interactions. Furthermore, we present an extension of the normal-ordering framework to finite temperatures. These developments open the way to improved calculations of neutron-rich matter including estimates of theoretical uncertainties for astrophysical applications.Comment: minor changes, published versio

    Uncertainties in constraining low-energy constants from 3^3H β\beta decay

    Full text link
    We discuss the uncertainties in constraining low-energy constants of chiral effective field theory from 3^3H β\beta decay. The half-life is very precisely known, so that the Gamow-Teller matrix element has been used to fit the coupling cDc_D of the axial-vector current to a short-range two-nucleon pair. Because the same coupling also describes the leading one-pion-exchange three-nucleon force, this in principle provides a very constraining fit, uncorrelated with the 3^3H binding energy fit used to constrain another low-energy coupling in three-nucleon forces. However, so far such 3^3H half-life fits have only been performed at a fixed cutoff value. We show that the cutoff dependence due to the regulators in the axial-vector two-body current can significantly affect the Gamow-Teller matrix elements and consequently also the extracted values for the cDc_D coupling constant. The degree of the cutoff dependence is correlated with the softness of the employed NN interaction. As a result, present three-nucleon forces based on a fit to 3^3H β\beta decay underestimate the uncertainty in cDc_D. We explore a range of cDc_D values that is compatible within cutoff variation with the experimental 3^3H half-life and estimate the resulting uncertainties for many-body systems by performing calculations of symmetric nuclear matter.Comment: 9 pages, 11 figures, published version, includes Erratum, which corrects Figs. 2-6 due to the incorrect c_D relation between 3N forces and two-body currents use

    Measuring the LISA test mass magnetic proprieties with a torsion pendulum

    Full text link
    Achieving the low frequency LISA sensitivity requires that the test masses acting as the interferometer end mirrors are free-falling with an unprecedented small degree of deviation. Magnetic disturbances, originating in the interaction of the test mass with the environmental magnetic field, can significantly deteriorate the LISA performance and can be parameterized through the test mass remnant dipole moment mr\vec{m}_r and the magnetic susceptibility χ\chi. While the LISA test flight precursor LTP will investigate these effects during the preliminary phases of the mission, the very stringent requirements on the test mass magnetic cleanliness make ground-based characterization of its magnetic proprieties paramount. We propose a torsion pendulum technique to accurately measure on ground the magnetic proprieties of the LISA/LTP test masses.Comment: 6 pages, 3 figure

    Ab initio constraints on thermal effects of the nuclear equation of state

    No full text
    We exploit the many-body self-consistent Green's function method to analyze finite-temperature properties of infinite nuclear matter and to explore the behavior of the thermal index used to simulate thermal effects in equations of state for astrophysical applications. We show how the thermal index is both density and temperature dependent, unlike often considered, and we provide an error estimate based on our ab initio{\it ab~initio} calculations. The inclusion of many-body forces is found to be critical for the density dependence of the thermal index. We also compare our results to a parametrization in terms of the density dependence of the nucleon effective mass. Our study questions the validity of predictions made for the gravitational-wave signal from neutron-star merger simulations with a constant thermal index

    Model-Independent Sum Rule Analysis Based on Limited-Range Spectral Data

    Full text link
    Partial sum rules are widely used in physics to separate low- and high-energy degrees of freedom of complex dynamical systems. Their application, though, is challenged in practice by the always finite spectrometer bandwidth and is often performed using risky model-dependent extrapolations. We show that, given spectra of the real and imaginary parts of any causal frequency-dependent response function (for example, optical conductivity, magnetic susceptibility, acoustical impedance etc.) in a limited range, the sum-rule integral from zero to a certain cutoff frequency inside this range can be safely derived using only the Kramers-Kronig dispersion relations without any extra model assumptions. This implies that experimental techniques providing both active and reactive response components independently, such as spectroscopic ellipsometry in optics, allow an extrapolation-independent determination of spectral weight 'hidden' below the lowest accessible frequency.Comment: 5 pages, 3 figure

    Spin network setting of topological quantum computation

    Full text link
    The spin network simulator model represents a bridge between (generalised) circuit schemes for standard quantum computation and approaches based on notions from Topological Quantum Field Theories (TQFTs). The key tool is provided by the fiber space structure underlying the model which exhibits combinatorial properties closely related to SU(2) state sum models, widely employed in discretizing TQFTs and quantum gravity in low spacetime dimensions.Comment: Proc. "Foundations of Quantum Information", Camerino (Italy), 16-19 April 2004, to be published in Int. J. of Quantum Informatio

    Transport anisotropy in biaxially strained La(2/3)Ca(1/3)MnO(3) thin films

    Full text link
    Due to the complex interplay of magnetic, structural, electronic, and orbital degrees of freedom, biaxial strain is known to play an essential role in the doped manganites. For coherently strained La(2/3)Ca(1/3)MnO(3) thin films grown on SrTiO(3) substrates, we measured the magnetotransport properties both parallel and perpendicular to the substrate and found an anomaly of the electrical transport properties. Whereas metallic behavior is found within the plane of biaxial strain, for transport perpendicular to this plane an insulating behavior and non-linear current-voltage characteristics (IVCs) are observed. The most natural explanation of this anisotropy is a strain induced transition from an orbitally disordered ferromagnetic state to an orbitally ordered state associated with antiferromagnetic stacking of ferromagnetic manganese oxide planes.Comment: 5 pages, 4 figure

    Orchestrating Forest Policy in Italy: Mission Impossible?

    Get PDF
    In the Italian political and economic agenda the forest sector occupies a marginal role. The forest sector in Italy is characterized by a high institutional fragmentation and centralized decision-making processes dominated by Public Forest Administrations. Public participation in forest policy processes has been implemented since the 1990s at national, regional and local levels in several cases. However, today no significant changes have been observed in the overall governance of the forest sector and stakeholders' involvement in Italian forest policy decision-making is still rather limited. The aims of this paper are to describe the state of forest-related participatory processes in Italy at various levels (national, regional and local) and identify which factors and actors hinder or support the establishment and implementation of participatory forest-related processes in the country. The forest-related participatory processes are analyzed adopting a qualitative-based approach and interpreting interactive, complex and non-linear participatory processes through the lens of panarchy theory

    MALT1, BCL10 and FOXP1 in salivary gland mucosa-associated lymphoid tissue lymphomas

    Get PDF
    In view of the certain anatomic site-dependent frequency of chromosomal translocations involved in extranodal marginal zone B cell lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) pathogenesis, 17 salivary gland MALT lymphoma cases were analyzed for MALT1 and FOXP1 translocations. B cell CLL/lymphoma 10 (BCL10) and forkhead box PA (FOXP1) protein expression were studied by immunohistochemistry and translocations identified using fluorescence in situ hybridization (FISH)-specific probes FOXP1, t(11;18)(q21;q21)/API2-MALT1 and t(14;18)(q32;q21)/IgH-MALT1. None of the 11 analyzed cases showed FOXP1 rearrangement or amplification. The t(11;18) was present in five of 13 cases and the t(14;18) in three of 13 cases. MALT1 translocations were mostly mutually exclusive except in a single case. FOXP1 protein expression showed differences in the proportion of tumor cells with nuclear expression but not in their intensity, with the exception of one case where very intense nuclear staining was noted. BCL10 nuclear expression was present in four of 17 cases, two of which lacked t(11;18). Our results suggest that MALT1-specific translocations and FOXP1 rearrangements are not commonly involved in pathogenesis. A case with strong FOXP1 protein expression indicates the possibility that the upregulation of FOXP1 expression is significant in a small subset of salivary gland MALT lymphomas. Also a single case in which both MALT1 translocations were present indicates that these are not always mutually exclusive
    corecore