21,229 research outputs found
A Control Framework for Autonomous Smart Grids for Space Power Applications
With the National Aeronautics and Space Administration's (NASA) rising interest in lunar surface operations and deep space exploration, there is a growing need to move from traditional ground-based mission operations to more autonomous vehicle level operations. In lunar surface operations, there are periods of time where communications with ground-based mission control could not occur, forcing vehicles and a lunar base to completely operate independent of the ground. For deep space exploration missions, communication latency times increase to greater than 15 minutes making real-time control of critical systems difficult, if not near impossible. These challenges are driving the need for an autonomous power control system that has the capability to manage power and energy. This will ensure that critical loads have the necessary power to support life systems and carry out critical mission objectives. This paper presents a flexible, hierarchical, distributed control methodology that enables autonomous operation of smart grids and can integrate into a higher level autonomous architecture
Neutron matter from chiral two- and three-nucleon calculations up to NLO
Neutron matter is an ideal laboratory for nuclear interactions derived from
chiral effective field theory since all contributions are predicted up to
next-to-next-to-next-to-leading order (NLO) in the chiral expansion. By
making use of recent advances in the partial-wave decomposition of three-
nucleon (3N) forces, we include for the first time NLO 3N interactions in
many-body perturbation theory (MBPT) up to third order and in self-consistent
Green's function theory (SCGF). Using these two complementary many-body
frameworks we provide improved predictions for the equation of state of neutron
matter at zero temperature and also analyze systematically the many-body
convergence for different chiral EFT interactions. Furthermore, we present an
extension of the normal-ordering framework to finite temperatures. These
developments open the way to improved calculations of neutron-rich matter
including estimates of theoretical uncertainties for astrophysical
applications.Comment: minor changes, published versio
Uncertainties in constraining low-energy constants from H decay
We discuss the uncertainties in constraining low-energy constants of chiral
effective field theory from H decay. The half-life is very
precisely known, so that the Gamow-Teller matrix element has been used to fit
the coupling of the axial-vector current to a short-range two-nucleon
pair. Because the same coupling also describes the leading one-pion-exchange
three-nucleon force, this in principle provides a very constraining fit,
uncorrelated with the H binding energy fit used to constrain another
low-energy coupling in three-nucleon forces. However, so far such H
half-life fits have only been performed at a fixed cutoff value. We show that
the cutoff dependence due to the regulators in the axial-vector two-body
current can significantly affect the Gamow-Teller matrix elements and
consequently also the extracted values for the coupling constant. The
degree of the cutoff dependence is correlated with the softness of the employed
NN interaction. As a result, present three-nucleon forces based on a fit to
H decay underestimate the uncertainty in . We explore a range
of values that is compatible within cutoff variation with the
experimental H half-life and estimate the resulting uncertainties for
many-body systems by performing calculations of symmetric nuclear matter.Comment: 9 pages, 11 figures, published version, includes Erratum, which
corrects Figs. 2-6 due to the incorrect c_D relation between 3N forces and
two-body currents use
Measuring the LISA test mass magnetic proprieties with a torsion pendulum
Achieving the low frequency LISA sensitivity requires that the test masses
acting as the interferometer end mirrors are free-falling with an unprecedented
small degree of deviation. Magnetic disturbances, originating in the
interaction of the test mass with the environmental magnetic field, can
significantly deteriorate the LISA performance and can be parameterized through
the test mass remnant dipole moment and the magnetic susceptibility
. While the LISA test flight precursor LTP will investigate these effects
during the preliminary phases of the mission, the very stringent requirements
on the test mass magnetic cleanliness make ground-based characterization of its
magnetic proprieties paramount. We propose a torsion pendulum technique to
accurately measure on ground the magnetic proprieties of the LISA/LTP test
masses.Comment: 6 pages, 3 figure
Ab initio constraints on thermal effects of the nuclear equation of state
We exploit the many-body self-consistent Green's function method to analyze finite-temperature properties of infinite nuclear matter and to explore the behavior of the thermal index used to simulate thermal effects in equations of state for astrophysical applications. We show how the thermal index is both density and temperature dependent, unlike often considered, and we provide an error estimate based on our calculations. The inclusion of many-body forces is found to be critical for the density dependence of the thermal index. We also compare our results to a parametrization in terms of the density dependence of the nucleon effective mass. Our study questions the validity of predictions made for the gravitational-wave signal from neutron-star merger simulations with a constant thermal index
Model-Independent Sum Rule Analysis Based on Limited-Range Spectral Data
Partial sum rules are widely used in physics to separate low- and high-energy
degrees of freedom of complex dynamical systems. Their application, though, is
challenged in practice by the always finite spectrometer bandwidth and is often
performed using risky model-dependent extrapolations. We show that, given
spectra of the real and imaginary parts of any causal frequency-dependent
response function (for example, optical conductivity, magnetic susceptibility,
acoustical impedance etc.) in a limited range, the sum-rule integral from zero
to a certain cutoff frequency inside this range can be safely derived using
only the Kramers-Kronig dispersion relations without any extra model
assumptions. This implies that experimental techniques providing both active
and reactive response components independently, such as spectroscopic
ellipsometry in optics, allow an extrapolation-independent determination of
spectral weight 'hidden' below the lowest accessible frequency.Comment: 5 pages, 3 figure
Spin network setting of topological quantum computation
The spin network simulator model represents a bridge between (generalised)
circuit schemes for standard quantum computation and approaches based on
notions from Topological Quantum Field Theories (TQFTs). The key tool is
provided by the fiber space structure underlying the model which exhibits
combinatorial properties closely related to SU(2) state sum models, widely
employed in discretizing TQFTs and quantum gravity in low spacetime dimensions.Comment: Proc. "Foundations of Quantum Information", Camerino (Italy), 16-19
April 2004, to be published in Int. J. of Quantum Informatio
Transport anisotropy in biaxially strained La(2/3)Ca(1/3)MnO(3) thin films
Due to the complex interplay of magnetic, structural, electronic, and orbital
degrees of freedom, biaxial strain is known to play an essential role in the
doped manganites. For coherently strained La(2/3)Ca(1/3)MnO(3) thin films grown
on SrTiO(3) substrates, we measured the magnetotransport properties both
parallel and perpendicular to the substrate and found an anomaly of the
electrical transport properties. Whereas metallic behavior is found within the
plane of biaxial strain, for transport perpendicular to this plane an
insulating behavior and non-linear current-voltage characteristics (IVCs) are
observed. The most natural explanation of this anisotropy is a strain induced
transition from an orbitally disordered ferromagnetic state to an orbitally
ordered state associated with antiferromagnetic stacking of ferromagnetic
manganese oxide planes.Comment: 5 pages, 4 figure
Orchestrating Forest Policy in Italy: Mission Impossible?
In the Italian political and economic agenda the forest sector occupies a marginal role. The forest sector in Italy is characterized by a high institutional fragmentation and centralized decision-making processes dominated by Public Forest Administrations. Public participation in forest policy processes has been implemented since the 1990s at national, regional and local levels in several cases. However, today no significant changes have been observed in the overall governance of the forest sector and stakeholders' involvement in Italian forest policy decision-making is still rather limited. The aims of this paper are to describe the state of forest-related participatory processes in Italy at various levels (national, regional and local) and identify which factors and actors hinder or support the establishment and implementation of participatory forest-related processes in the country. The forest-related participatory processes are analyzed adopting a qualitative-based approach and interpreting interactive, complex and non-linear participatory processes through the lens of panarchy theory
MALT1, BCL10 and FOXP1 in salivary gland mucosa-associated lymphoid tissue lymphomas
In view of the certain anatomic site-dependent frequency of chromosomal translocations involved in extranodal marginal zone B cell lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) pathogenesis, 17 salivary gland MALT lymphoma cases were analyzed for MALT1 and FOXP1 translocations. B cell CLL/lymphoma 10 (BCL10) and forkhead box PA (FOXP1) protein expression were studied by immunohistochemistry and translocations identified using fluorescence in situ hybridization (FISH)-specific probes FOXP1, t(11;18)(q21;q21)/API2-MALT1 and t(14;18)(q32;q21)/IgH-MALT1. None of the 11 analyzed cases showed FOXP1 rearrangement or amplification. The t(11;18) was present in five of 13 cases and the t(14;18) in three of 13 cases. MALT1 translocations were mostly mutually exclusive except in a single case. FOXP1 protein expression showed differences in the proportion of tumor cells with nuclear expression but not in their intensity, with the exception of one case where very intense nuclear staining was noted. BCL10 nuclear expression was present in four of 17 cases, two of which lacked t(11;18). Our results suggest that MALT1-specific translocations and FOXP1 rearrangements are not commonly involved in pathogenesis. A case with strong FOXP1 protein expression indicates the possibility that the upregulation of FOXP1 expression is significant in a small subset of salivary gland MALT lymphomas. Also a single case in which both MALT1 translocations were present indicates that these are not always mutually exclusive
- …
